ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Distributed
Computing

Developing a Jass Al Server

Bachelor’s Thesis

Jonas Althaus

jalthaus@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Oliver Richter

Prof. Dr. Roger Wattenhofer

March 18, 2021

Acknowledgements

I would like to thank my supervisor Oliver Richter for guiding me throughout
this project and always giving me valuable feedback and ideas.

Next, I thank Noél Rimensberger for developing the Jass Al and Niklaus
Kappeler for enabling HT'TPS on our WebApp.

Lastly, I want to thank Schweizer Jassverzeichnis' for publishing our project
on their blog as well as all the players for having played over 130 games of Jass.

"https://www.jassverzeichnis.ch

Abstract

To evaluate various self-play reinforcement learning agents in the domain of Jass,
we have built a web application in which players can compete against each other
and the Artificial Intelligence. Since the outcome of a stochastic trick-taking
game such as Jass depends on the distribution of the cards, we propose a new
game mode which eliminates the luck factor and provides a fair game dynamic.
Analysing those fair games enables us to compare different agents with human
players under equal conditions. Our results show one agent playing on a par
with human Jass players, frequently even outperforming them. Furthermore, we
demonstrate the fairness of the new game mode by showing that fair games are
more balanced than regular Jass games and thus lead to a more competitive game
environment.

i

Contents

Acknowledgements i
Abstract ii
1 Introduction 1

2 Background 2
2.1 Jass Terminology 2
2.2 SEIVETo 2

221 Setup 2
222 Bots 3
2.3 Data e 3

3 Extensions to the WebApp 4
3.1 Fair Game Mode

3.2 Replay Mode)

4 Evaluation 7
4.1 Performance of the Bots 7

4.1.1 General Performance 7
4.1.2 Performance in Fair Games 9
4.2 Fair Game Mode Evaluation 9
4.2.1 User Study 11

5 Conclusion 13

Bibliography 14

A User Study A-1

1ii

CHAPTER 1

Introduction

Schieber Jass is a traditional trick-taking Swiss card game which is played by
two teams of two players each. As a challenge for game Al research, Noél Ri-
mensberger has developed four different Jass bots using self-play reinforcement
learning [1]. In order to ensure accurate evaluation of each agent, it is necessary
to analyse more of their games against human Jass players. Therefore, we devel-
oped a web application (WebApp) in which people from all over the world can
play a game of Jass against each other and the Al

Even though Jass is not considered as gambling in Switzerland [2]|, being
a stochastic game, it contains a relevant luck factor. The outcome of a game
depends on the random distribution of the starting hands, as not every hand is
equally strong. In order to mitigate that luck factor, we propose a new fair game
mode that provides equal conditions for each team, i.e. every starting hand will
be played twice, once for each team. Consequently, we can analyse the agents
when starting with equal hands and compare their plays against one another and
to the choices made by human players. Furthermore, we address the effects and
potential issues of the fair game mode and carry out a user study to count in the
experiences made by the players themselves.

Our main goal of this project is to generate interest among Jass players to test
our WebApp and thus play alongside and/or against the AI. Therefore, the pri-
mary objective is to develop a bug-free server and a capable user interface [3|. Ad-
ditionally, we provide various features to enhance the overall experience, including
a replay mode that allows users to revisit their best games, analyse their mis-
takes and potentially discover better plays. Revisiting previously played games
is a feature exclusively available on our WebApp and not found on other Jass
websites!.

'www.schieber.ch, ~www.jasse.ch, www.swisslos.ch/de/jass/schieber/spielen.html and
www.jassfederal.ch

CHAPTER 2

Background

In this chapter, we explain relevant information for the rest of the thesis.

2.1 Jass Terminology

In a Schieber Jass game, two opposing teams of two players each play against
one another. First, a 36 card deck is randomly shuffled and evenly distributed
amongst the four players, giving every player their starting hand. Then the first
round begins. The starting player makes a trump call by either choosing one
of the suits (Roses, Shields, Acorns, Bells), or one of the trumps bottom-up or
top-down. Alternatively, s/he may let the partner decide for him/her (to shove),
hence the name Schieber (shoving in German). Then s/he plays the first card,
followed by the other players in counter-clockwise direction. They must always
play the same suit or a trump card. If they can’t, they may discard any card into
play. Then, the player who played the highest card or the strongest trump card
wins the trick, earns the points from the four cards and begins the next trick.
After 9 tricks have been played, the next round begins with the new starting
player being the one counter-clockwise to the right. As soon as one team reaches
a set number points, they win the game. In each round, 157 points can be made
- with the exception of 257 points for a match (winning all 9 tricks).

2.2 Server

Our Jass server was built upon the implementation of the Ziihlke Jass Chal-
lenge [4].

2.2.1 Setup

The back-end of our WebApp runs on a Express server in Node.js [5][6], whereas
the front-end was developed using React.js [7]. As soon as a client accesses our

2. BACKGROUND 3

website!, he connects to the server via a new websocket. The WebSocket Protocol
enables two-way communication over a persistent TCP connection between a web
browser and a web server [8]. This allows the back-end to send messages to the
client without having to wait for a request. On connection, the SessionHandler
module starts sending requests to the browser. By starting a new game, the client
sends back a response. With that information, the SessionHandler creates a
new Jass Session to which the player’s websocket is added. The game starts
once four players have joined the session. Throughout the game, the server sends
information about the current state to all the clients and/or requests the next
move from them.

2.2.2 Bots

Instead of waiting for 3 other players, the client can fill the remaining slots with
python bots. In [1], Rimensberger has created four different agent types that can
play a game of Jass, namely bot A, bot B, bot C and bot D. We decided to only
use bot C and bot D for our WebApp, as they achieved the highest performance
in testing [1]. Bot D is a mixed agent having a policy trained by Proximal
Policy Optimization [9] for the trump phase and a Determinized Monte Carlo
Tree Search (DMCTS) [10] agent with 40 determinizations of 400 iterations each
for the card play phase. Bot C uses a DMCTS agent with 10 determinizations of
100 iterations each for both phases [1].

2.3 Data

All played games are saved to a SQL database [11] using phpMyAdmin [12].
For each round, we store the round number, trump call, starting player, game
mode (see Chapter 3.1) and the points, as well as the four starting hands. In
addition, to be able to reconstruct every game, each trick is also saved. In total,
the collected information consisted of over 14’500 rows of data. However, that
included many rounds and tricks from prematurely finished games. Therefore,
we pre-processed the data by filtering out all the games that lasted less than 6
rounds. This resulted in over 11’800 rows of data to analyse.

"https://jass.ethz.ch

CHAPTER 3

Extensions to the WebApp

Users now have the possibility to log in to our WebApp, which allows us to track
multiple games from the same player. After logging in, the user name is saved to
the local storage of the browser. When setting up a new Jass game, the player
is given several options. S/he can create a private table which requires entering
a password to join or watch the game, and s/he can set the number of points
needed for winning, e.g. 1000 points. But most importantly, the user is given
the choice between the standard game mode and the fair game mode.

3.1 Fair Game Mode

Jass is considered partially a game of luck, as each starting hand of 9 random
cards determines the chance of winning the round. In order to eliminate this luck
factor, we created a fair game mode with the intention of allowing both teams
to start with same hands. This gives each team an equal opportunity and would
level the playing field, thus making the game fair.

Letting a player start with the same hand as an opposing player in a previous
round requires dealing the same cards again, i.e. repeating the round.

Definition 3.1 (Repeated Round). We say round 7’ repeats round 7 if both have
the same starting hands and round 7’ is played after round r. Round 7’ is called
the repeated round, whereas round r is called the original round. Together they
form a round pair (r, 7).

Thus, a fair game consists of only round pairs, i.e. every round is part of
a round pair. However, the team starting in a repeated round might have a
disadvantage, as an opposing player could remember the cards from the original
round. To balance this out, both teams must start in an equal number of original
rounds. In addition, before dealing the cards, the server randomly permutes the
suits to hide which rounds are repeated (Figure 3.1). Note that games remain
fair under suit permutation, as all four suits are equally strong prior to the trump
call, i.e. swapping any two suits in a set of starting hands doesn’t change the

4

3. EXTENSIONS TO THE WEBAPP 5

P)
(7”“‘L e DINOD

(AN | #

0, || unvey onm % J"’7 KONIG
Mﬂo
-~ \QJ"7 KONIG . 3 a@ 9

3 B

{7"\\‘L l“ DINOY 9@ D‘s SS:‘ C

é

Figure 3.1: An original and its repeated hand. Note that the values are the same,
just the suits are permuted.

game dynamic and outcome. Further, we can permute the order of the games
under the restriction that each team starts in the same number of original rounds.
In practice, when a new fair game with n rounds is started, the server calculates
a random valid sequence d of original and repeated rounds.

0 if round 7 is an original round
d = [z1,x9,...,2,] where x; = _ ,
t if round ¢ repeats round ¢

This sequence is then used throughout the game to decide which cards to deal
to the players.

Example 3.2. Assume a fair game with 12 rounds was started. Hence, there
will be 6 original and 6 repeated rounds, 3 of each for both teams. The server
then calculates a random valid sequence d, e.g. [0, 0, 2, 0, 0, 5, 4, 0, 8, 1, 0,
11]. In this example, the first two rounds are original rounds and played with
randomly distributed cards. Then, round 3 repeats round 2, and the server deals
the same cards as in round 2 to the players. But in order to make it harder to
recognize a repeated hand, the suits are randomly permuted. Rounds 4 and 5
are again original rounds, whereas round 6 repeats round 5. The game continues
until all 12 rounds have been played. Finally, the team with more points wins.

3.2 Replay Mode

A logged in user has access to all of his/her previously played games and is given
the possibility to replay them. When a game is replayed, the server first fetches
all the relevant information about that game from the database and then displays
it to the user, including every card in each players hand. Then, s/he can play
through the game card by card by choosing one of the four following actions (refer
to Figure 3.2).

3. EXTENSIONS TO THE WEBAPP 6

Fair Game
Round 1 % of 12

» repeated in round 8 «

< r

]

Figure 3.2: Actions in the replay mode.

1. Play the next card: Places the next card that was played in that game
from its hand onto the table.

2. Play the previous card: Removes the previously played card from the
table and puts it back into the respective hand.

3. Move the slider: Allows the user to jump to any played card of the
current round. Plays/removes all cards up to that point.

4. Switch to a different round: Removes all cards on the table and from
the hands, and loads the newly selected round.

Furthermore, if the replayed game was a fair game, the user can directly
switch between an original and a repeated round, and also sees the difference of
points made when starting in those rounds compared to the other team.

Definition 3.3 (Round point advantage). The round point advantage RPA(r1)
of round 71 that forms a round pair with round ry is defined as the difference of
their starting team points.

By Definition 3.3, it follows that

RPA(T’Q) = —RPA(T’l) (3.1)

for every round pair (71, r2). The round point advantage (from now on RPA)
reveals the better playing team in repeated rounds. In general, the replay mode
enables users to analyse their plays, identify potential mistakes and discover
better strategies.

CHAPTER 4

Evaluation

As of this writing, over 130 Jass games have been played on the WebApp. In this
section, we will analyse the performance of the Al and evaluate the fair game
mode.

4.1 Performance of the Bots

In order to assess the performance of the bots, we will evaluate all games stored
in the database (see Chapter 2.3).

4.1.1 General Performance

Table 4.1 shows the number of games played by each team and player type as
well as their win rate and average point advantage. Overall, bot D achieved the
best performance and won over half of its games, whereas bot C was losing 3 out
of 5 games on average. As a team, the D bots won 31 of their 57 games (5 of
9 against two human players), giving them the second highest winning rate of
54%. On the other hand, the C bots lost 34 out of their 54 games as a team, thus
having a significantly smaller winning rate of 37%. In particular, they won only
once against a team of two human players while losing four times. The highest
win rate as well as the largest point advantage of 79.20 points was achieved by
human players who played alongside a D bot. One reason might be that they
faced a team of two C bots in the majority of their games, which are notably the
weakest players, and therefore often won by a high margin.

Overall, this evaluation mostly matches the results from Rimensberger [1].
In his experiments, a team of C bots had an almost identical win rate of 0.38
compared to the one shown in Table 4.1. The same applies to D bots with a 0.04
lower win rate of 0.5. Only human players had a notably higher win rate of 0.68.
However, this result includes games played against a pair of the much weaker A
and B bots (win rate of 0.0 resp. 0.2).

4. EVALUATION 8

Bot C Bot D Human Player
All games
Games Played 158 165 169
Overall Win Rate 0.40 0.57 0.52
Point Advantage -53.41 30.02 20.63
Games Played 54 57 34
As a team Win Rate 0.37 0.54 0.47
Point Advantage -77.72 8.02 -7.47
Games Played 50 51 -
With a human Win Rate 0.48 0.63 -
Point Advantage 0.9 79.20 -
Fair games
Games Played 126 122 124
Overall Win Rate 0.40 0.56 0.55
Point Advantage -67.43 36.49 32.62
Rounds Played 45 46 47
Decisive Rounds Win Rate 0.33 0.59 0.57
Average RPA -33.78 19.26 13.49

Table 4.1: Results from the games played on the WebApp. The first row shows
the performance of each player type independent of its team partner. The middle
row displays the results of two bots or two human players playing as a team. In
the third row, we see the outcome of human players playing alongside a bot. The
final two rows indicate their performance in fair games.

4. EVALUATION 9

4.1.2 Performance in Fair Games

Definition 4.1 (Decisive Round). A round pair including the round with the
highest RPA is called a decisive round pair and its rounds are the decisive rounds.

Decisive rounds usually determine the winner of a fair game. In fact, in 86%
of the games played, the winner of the decisive round pair has won the entire
game. To determine why bot C has the lowest win rate, we can analyse their
strategies in the decisive rounds.

In Table 4.1, we see the average RPA for each player type when being the
starting player in decisive rounds. As expected, bot C put in the weakest perfor-
mance with an average RPA of -33.78 points. Bot D outclassed human players
once more with an average RPA of 19.26 points compared to the latter’s 13.49
points. As both starting players have an equal hand in decisive round pairs,
we can compare their trump calls to determine which one lead to winning the
round. Figure 4.1 shows that in 39% of the time, both players chose the same
call. Surprisingly though, 33% of all decisive round pairs were won by the player
who decided to shove when the other player did not. And in fact, bot D made
the shoving call in 19 out of the 46 decisive rounds and won 15 of them (see
Figure 4.2a), implying that its partner most likely had a better starting hand in
those rounds. On the flip side, bot C lost most decisive rounds after not shoving,
as shown in Figure 4.2b.

We can conclude that shoving often resulted in a high RPA and therefore a
decisive round. Unlike bot C, human players and bot D regularly let their partner
decide the trump call when starting with a weak hand. This ability to deal with
poor starting hands was a decisive factor in many games and might be one reason
for the performance difference.

4.2 Fair Game Mode Evaluation

Fair games should turn out to be closer on average, as they are more balanced.
Figure 4.3 compares the distribution of the point advantage from the winning
team in both fair and standard games. And in fact, fair games tend to be sig-
nificantly more hard-fought, as half of them were won by a margin smaller than
66 points. On the flip side, in standard games, the median of the winner’s point
advantage was 91 points, an increase of 38% compared to the fair game mode.
However, many fair games (33%) still ended up having a clear winner, i.e. a point
advantage of over 120 points. Nevertheless, this does not contradict the game’s
fairness, as if two teams of different strength play a balanced game, the better
team is likely to win by a high margin. In the standard game mode on the other
hand, the weaker team could open with better starting hands, giving it a fighting
chance.

4. EVALUATION

10

liwinner’s trump call

o 03-

)

£

=

5

s 02-

3

| I .
[
A g\% et oS

\ O x OQ&\ x
e o

Figure 4.1: Comparison of the two trump calls in decisive round pairs. Either
both are the same (equal call), only one player decided to shove (shoving if that
player won, else not shoving) or both players didn’t shove, but chose a different

trump (other).

Inequal call
15 Ioshoving 15
loother
IEnot shoving
45 10 - 10 -
3
O
I 57
i 0 |
¢ 5 ¢ 5
Q\‘&Se > oo QQ\@S%
X\&‘@\ ‘3&@
(a) Winning (b) Losing

Figure 4.2: Trump calls made by each player type when (a) winning or (b) losing
a decisive round pair.

4. EVALUATION 11

—— Fair Game
6-107% - —— Standard Game
\ --- Median (Fair Game)
! --- Median (Standard Game)
-§ 4-1073 -
B
21073 - I
0 - | | : : | | | | | |

|
0 50 100 150 200 250 300 350 40
Point Advantage

Figure 4.3: Point advantage distribution in fair games and standard games.

4.2.1 User Study

One might argue that repeated hands can easily be recognized despite permuting
the suits, which could give the second team that plays a hand an advantage.
Even though the overall game would still be fair, as both teams start in the same
number of repeated rounds, it might favour more skilled players. Therefore, we
started a user study where players were asked to fill out a form about their expe-
rience with the fair game mode (see Appendix A for details). Most importantly,
we wanted to discover which players, if any, would recognize repeated hands and
could take advantage of it.

Most players (87%) weren’t able to recognize any repeated hands (Figure 4.4).
Out of the 6 players who did, only 2 were stating that this knowledge gave them
an advantage. Interestingly, those two players assessed themselves as professional
(5) respectively very good (4) Jass players, whereas the other four players rated
themselves at lower levels (2, 3, 3 and 4). Figure 4.5 shows higher level players
gaining more advantage in the fair game mode. However, only 1 out of 5 profes-
sional Jass players could recognize any repeated hands, so more data would be
needed in order to verify this tendency. On the other hand, many players thought
that this knowledge could give them an advantage in further games. When asked,
17.4% were sure about the future advantage, whereas the majority of 54.3% an-
swered “Maybe”. 3 out of 4 players who played multiple games and submitted
the form changed their opinion on the potential future advantage. After the first
game, all four players answered “Maybe”. But, after the succeeding games, they
switched to a “No”, suggesting that they came to the conclusion that it’s too
difficult to recognize hands and thereby gain an advantage.

4. EVALUATION 12

15 -
I None
luNot sure
z InA little
E 10 - IoA ot
5
3
3
Q0
E 5- l
]
Z I
O I

Jass level

Figure 4.4: Number of recognized hands in one fair game according to players of
different Jass levels.

12 -
I0None
10 - |IINot sure
I00ne hand
8 - (lEMultiple hands

Number of answers
(@)
|

4,
2,
o I L
1 2 3 4 5
Jass level

Figure 4.5: Gained advantage by recognizing repeated hands in one fair game
according to players of different Jass levels.

CHAPTER 5

Conclusion

The feedback on the WebApp was mostly positive. Users have mentioned the
strength of D bots, reflecting our evaluation of their performance - even having a
positive win rate against a team of two human players. On the other hand, bot C
didn’t perform as well as the other player types, but could win games nonetheless.
One of its weaknesses seemed to be choosing the most optimal trump call. As a
matter of fact, multiple players have stated that bot C made incomprehensible
and confusing trump calls.

In this thesis, we have introduced a new fair game mode to eliminate the luck
factor in Jass and allowing users to play a fair and more balanced game. Actually,
most games on the Jass server were played in this mode, resulting in a sufficient
amount of data to analyse the fairness and its consequences. We discovered that
fair games tend to be closer than standard Jass games, implying that the fair
game mode functions as intended. In addition, we learned in a user study that
most players could neither recognize repeated hands nor gain an advantage from
that.

For a future version of the Jass server, we would only consider bot D for play-
ing against and/or alongside human players, as they offer the greatest challenge.
In addition, we want to implement a user management system such that players
can create an account which facilitates keeping track of their games. This would
also allow for a ranked mode in which players can compete in a tournament-
style setting against each other. Such a ranking might attract more skillful Jass
player leading to the possibility of evaluating the agents in a more competitive
environment.

13

[1]

2]

3]

4]

[5]

[6]

7]

8]

19]

[10]

[11]

[12]

Bibliography

N. Rimensberger, “Developing a jass ai,” in Distributed Computing Group,
Computer Engineering and Networks Laboratory, ETH Zirich, Aug. 2020.

S. Ceven, “Swisslos: No online-jass for gambler from liechtenstein,”
Jan. 2021. [Online|. Available: https://www.casinoonline.de/nachrichten/
swisslos-online-jass-nicht-mehr-in-liechtenstein-50550

R. Nacheva, “Principles of user interface design: Important rules that every
designer should follow,” in Final conference - Science in the Service of Society
- 2015, 10 2015.

F. Liischer, A. Herzog, and J. Akeret, “Jass challenge,” Jun. 2017. [Online].
Available: https://github.com/webplatformz/challenge

“Express: fast, unopinionated, minimalist web framework for node.js,” 2021.
[Online|. Available: https://expressjs.com

S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-
performance network programs,” in IEEE Internet Computing, vol. 14, no. 6,
2010, pp. 80-83.

“React: a javascript library for building user interfaces,” 2021. [Ounline].
Available: https://reactjs.org

I. Fette and A. Melnikov, “The websocket protocol,” in Internet Requests for
Comments 6455, Dec. 2011.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” in arXww:1707.065847, Jul. 2017.

D. Whitehouse, E. Powley, and P. Cowling, “Determinization and informa-
tion set monte carlo tree search for the card game dou di zhu,” in 2011 IEEE
Conference on Computational Intelligence and Games, CIG 2011, Oct. 2011.

D. Chamberlin, “Sql,” in Encyclopedia of Database Systems, L. LIU and
M. T. OZSU, Eds. Boston, MA: Springer US, 2009, pp. 2753-2760.
[Online|. Available: https://doi.org/10.1007/978-0-387-39940-9 1091

“Phpmyadmin: Bringing mysql to the web,” 2021. [Online|. Available:
https://www.phpmyadmin.net

14

https://www.casinoonline.de/nachrichten/swisslos-online-jass-nicht-mehr-in-liechtenstein-50550
https://www.casinoonline.de/nachrichten/swisslos-online-jass-nicht-mehr-in-liechtenstein-50550
https://github.com/webplatformz/challenge
https://expressjs.com
https://reactjs.org
https://doi.org/10.1007/978-0-387-39940-9_1091
https://www.phpmyadmin.net

APPENDIX A

User Study

To evaluate the fair game mode, players were asked to fill out a form with the
following questions after playing a fair game.

1. Where you able to recognize any repeated hands?

2. Do you think that knowledge gave you an advantage?

3. Do you think that will give you an advantage in future games, as you know
better how it works?

4. On a scale from 1 (Beginner) to 5 (Professional), how would you rate your
Jass level?

Table A.1 and Table A.2 show the answers of all 46 players who submitted
the form.

A-1

USER STUDY

A-2

Recognized Hands

Advantage

Future Advantage

Level

1 Maybe No No 3
2 No No Yes. Definitely 4
3 No No Maybe 5
4 No Maybe Yes. Definitely 1
5 No No Maybe 3
6 No Maybe Maybe 3
7 No Maybe Maybe 3
8 Maybe No Yes. Definitely 4
9 No Maybe Maybe 3
10 No No Maybe 4
11 No No No 4
12 No No Maybe)
13 No No No)
14 No Maybe Maybe 2
15 No No Maybe 3
16 No No No 3
17 No No Maybe 2
18 No No Maybe 2
19 No No No 2
20 No No Maybe 3
21 No No Yes. Definitely 4
22 Maybe No No 2
23 No No Maybe 2
24 One hand No No 3
25 One hand No Yes. Definitely 4
26 Maybe Maybe No 3
27 One hand No No 2
28 Maybe No Maybe 3
29 No No Maybe 4
30 No No Maybe 4

Table A.1: Result of the user study (first 30 answers).

USER STUDY

Recognized Hands Advantage Future Advantage Level
31 No No Maybe 3
32 Maybe Yes. A little Maybe 4
33 No No Maybe 4
34 No No No)
35 Multiple hands Yes. A lot Yes. Definitely 5
36 Maybe Yes. A little Yes. Definitely 4
37 No No Maybe 4
38 No No No 4
39 No No No 4
40 Maybe Maybe Maybe 3
41 Maybe Maybe Maybe 3
42 Multiple hands No Maybe 3
43 Multiple hands Yes. A little Maybe 4
44 No Maybe Yes. Definitely 3
45 No No Maybe 4
46 No No No 3

Table A.2: Result of the user study (remaining 16 answers).

A-3

