
Distributed

 Computing

Development of a decentralised
communication framework for an

online Tichu game
Semester Thesis

Ian Boschung

boian@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Lukas Faber

Prof. Dr. Roger Wattenhofer

January 7, 2021

Abstract

The problem of common online card game sites, including Tichu, is the need
for a central server with full knowledge to relay all communication between the
different players. This poses substantial challenges to a server when many games
are played at the same time and increases the cost associated with running such
a service. This thesis tries to develop a solution to this problem by taking a de-
centralised approach: The server connects four players who then play the game
with only very little communication through the server. Following the develop-
ment of a computer Tichu agent in a previous thesis, it should also be possible
to substitute players with a computer agent.

i

Contents

Abstract i

1 Introduction 1

2 Previous work 2

2.1 Tichu AI . 2

2.2 Jass Web UI . 2

3 High-level architecture 3

3.1 Connection to the AI agent . 3

3.2 Connections between programs 3

3.3 Communication during game . 4

4 Implementation 5

4.1 Tichu node library . 5

4.1.1 Motivation . 5

4.1.2 TichuState class . 5

4.1.3 Action classes . 7

4.1.4 Combination class . 7

4.2 Peer2Peer communication . 9

4.2.1 Signaling . 9

4.2.2 Card Trades . 9

4.3 Changes to AI interface . 11

5 User interface 12

6 Conclusion 14

6.1 Future work . 14

Bibliography 15

ii

Chapter 1

Introduction

During the Covid pandemic, many online card game sites have seen a substantial
increase in activity. In some cases, this led to overloaded servers that could not
deal with the increased traffic. Usually these websites are built around a central
server which performs all computations and relays the playing information be-
tween the different players/clients. To make a more scalable system, this project
aims towards an architecture, where the player clients communicate directly with
each other without relaying through the central server. The central server solely
serves as entry point to the game table and as card shuffling instance.

The game implemented in this project is Tichu, a four-player card game
with incomplete information. We decided to use it in this project because a) a
satisfying implementation is not already available and b) ETH Zürich recently
developed a deep learning agent for this game that was missing a scalable user
interface.

1

Chapter 2

Previous work

2.1 Tichu AI

The Tichu agent used in this project was developed at ETH in [1]. It uses
reinforcement learning to train a neural network model on the game. As it
doesn’t calculate any future moves or doesn’t take into account the probability
of players still having certain cards, there are some limitations on the agents
strategic abilities to play well. An improvement of the agents playing skills is not
part of this work and will be investigated in other thesis. Moreover, the agent
lacks an interface for human players. As an additional goal of this thesis, an
intuitive user friendly interface shall be developed.

2.2 Jass Web UI

The User Interface of the Tichu Website is taken in big parts of the ETH Jass
AI project ([2][3]), which is itself based on the result of a Zühlke competition [4].
The main changes between the user interface of Jass and Tichu are

• There can be up to 14 cards on the table.

• Players have more than nine cards on their hand.

• Players need to trade cards with the other players in the beginning of each
round.

• Multiple cards can be played at the same time.

• New symbols for Tichu and pass actions.

2

Chapter 3

High-level architecture

3.1 Connection to the AI agent

One challenge in this project is the combination of human players and the Tichu
AI. For the website, we are obliged to use the JavaScript language, as this is
the only available one. On the other hand, the Tichu AI uses the tensorflow
library and is written in python. For this reason, there needs to be some form of
communication between these two entities. We facilitate the interaction of these
components by separating the central server from the AI part and implementing a
separate Tichu AI server. This program uses websockets to communicate with the
other players and behaves mostly the same way as the Tichu frontend javascript
application.

3.2 Connections between programs

During a game of Tichu, the following three different programs are in play: The
main server where users willing to play find each other, the frontend browser
application and the server hosting the computer Tichu agent. They all have
different connections with each other as shown in Fig. 3.1

To start a game, a user initiates a connection with the central server. After
choosing a name, the user can either join an existing table or create a new one.
As soon as a player joins a table, all players at that table receive the name and
team of the new player. Upon joining, the new player is responsible for opening a
connection with all other peers that are already at the table. The clients connect
to each other using the webRTC standard [5] that is available in all modern
browsers. In cases where a direct connection is not possible because of strict
firewall or NAT configurations, we host a TURN server that relays messages
between peers. This is expected to happen for about 20% of all connections [6].
If a group wants to play with bot players, the server initiates a connection to
the AI server for each bot needed and sends the necessary information to each
player. One difference to a normal player is that the AI server never initiates a

3

3. High-level architecture 4

main server

User 1

User 2

User 3 AI Server

we
bso

cke
t

w
eb

R
T
C

webRTC

we
bR
TC

webSocket

webSo
cket

webSocket

webSocket

Figure 3.1: All communication channels between the different programs, in this
example a Tichu game with three users and one computer player. Arrows indicate
which instance initiates the connection.

connection.

3.3 Communication during game

During the game, the four players or bots exchange actions. All actions are sent to
every player except the Trade actions, which are only communicated between the
two affected players. Every player also keeps his connection with the server open.
At the beginning of each round, the server shuffles the 56 cards and distributes
them among the players and at the end of each round, every player sends the
new point total to the server.

The problem of distributing cards between multiple players was first discussed
by Shamir, Rivesta and Adleman in a chapter about Mental Poker[7] and since
then multiple approaches to this problem have been developed. Such a solution
could be implemented, but would go beyond the scope of this work. Here, we
still rely on a central entity to generate a random permutation of all cards and
distribute these cards to the players.

Chapter 4

Implementation

4.1 Tichu node library

4.1.1 Motivation

In order to make code reusable, we took the decision to write a javascript library
that fully encapsulates the Tichu logic. Javascript is the dominant web scripting
language, so this library can directly be used by the browser frontend. To reuse
this code in the python application, we use the js2py library that is able to
translate it to native python code.

The library also sends the actions to the other players. To keep this part
flexible, the actual send function can be passed to the library on creation of a
new game.

The advantage of such a library is that it could be replaced by a library with
the same interface but for another card game, e.g. Jass. The overall website
structure could remain the same with only some adaptions to the user interface.

4.1.2 TichuState class

The TichuState class saves all information associated with one round of Tichu.
A Tichu game can be in different states. Depending on the state, players have
different actions available to them that modify the state. The possible state
and action combinations can be seen in Fig. 4.1. The game always starts at
the CARDS8 state where every player only sees 8 cards and needs to decide
whether to announce a grand Tichu or not. After every player has decided, the
game advances to the CARDS_FULL state. After trading cards, the player who
posesses the Mahjong transitions to the MY_TURN state and all other players
to the WAITING state. During play, three players are always in the WAITING
state and one player is either in the MY_TURN or in one of the two special
states.

5

4. Implementation 6

CARDS8start

CARDS_FULL

BEFORE_TRADE

MY_TURN

WAITING

WISH

DRAGON

4x
T
ichu

4x
T
ichu all

tra
de
s

all trades

play, pass

other player plays

ot
he
r
pl
ay
-

er
s
pl
ay

play mahjong

wi
sh
ca
rd
ran

k

others pass on dragon

gift dragon

Figure 4.1: State diagram of one round of Tichu.

4. Implementation 7

4.1.3 Action classes

There exists a corresponding python class for every action available to a player.
Actions can be serialized to the JSON format to send them between players and
can be applied to a state. If an action is applied to a state, it performs additional
checks to see if the action is valid and changes the Tichu-state according to the
games rules.

4.1.4 Combination class

Card combinations are the most important part of Tichu and similar to the ones
found in Poker: Players can play single cards, pair, triple, straight, full house
and consecutive pairs. In addition there are two especially powerful combination
called bombs.

The Combination class encapsules all information needed to store and com-
pare these card combinations. It also includes a function that calculates a com-
bination from a set of cards. To do this efficiently, we use the framework of a
finite automaton that processes the sequence of cards and has accepting states
for all valid combinations. To simplify the automaton, we preprocess the input
two times. In a first step the cards are sorted in ascending order of their rank.
Because order doesn’t matter in a Tichu combination, this doesn’t change the
result of our automaton. Because the combinations are all also valid if shifted by
a certain number, e.g. a street from 2 to 6 and a street from 3 to 7, we input not
the rank of the actual cards, but the difference between every two adjacent cards
to the automaton. Our input alphabet then consists of the following symbols:

• 0: Two cards with the same rank.

• 1: Next cards rank is one higher than the previous card.

• 2: Next cards rank is two higher than the previous card (only used in the
automaton with the phoenix).

• x: Next card is anything except the 0 or 1 higher.

It is very easy to construct a nondeterministic finite automaton by introducing
one path for each combination as seen in Fig. 4.2. Using the subset construction
algorithm this NFA can be simplified to less states and a DFA Fig. 4.3.

In Tichu there is also one special card called the Phoenix that acts as a joker:
It can replace any other card in a combination. If played as a single card, it
takes the value one half higher than the card played before. The Problem with
this automaton is that it doesn’t take into account the possibility of the phoenix
replacing one card. To solve this problem, we built a second automaton that

4. Implementation 8

/

The FSM being simulated is displayed in the form of a transition graph. The nodes representing the current states of the FSM are colored in .

start

pair2

0
trio2

0

bomb20

full2

0

pairs2

0

straight2

1

trio3

bomb4

full5

pairs4
pairs3 1

straight5_

1

0

bomb3
0

full3
0

full3_
x,1

1

straight3
1

0

full4
x,1

0

0

0

straight41 1

 What's next?
This is just the beginning! If you like learning about and playing with FSMs and regexes, check out these other Web apps:

Regular Expressions Gym (http://ivanzuzak.info/noam/webapps/regex_simplifier/) - A Web app that simplifies your regular expressions by detecting and removing sub-
expressions that generate the same strings.
FSM2Regex (http://ivanzuzak.info/noam/webapps/fsm2regex/) - A Web app that converts finite-state machines to regular expressions and regular expressions to finite-
state machines.
Regexper (http://www.regexper.com/) - A Web app that displays regular expressions as railroad diagrams.
Grammophone (http://mdaines.github.com/grammophone/) - A Web app for analyzing and transforming context-free grammars, e.g. for generating strings from a
grammar and computing SLR/LR/LALR parsing tables.
Debuggex (http://www.debuggex.com/) - A Web app that is a visual regular expression debugger, tester, and helper.

 Feedback
Love the application, hate it, found a bug, or have a feature idea? I'd love to hear about it! Please send your feedback via the noam project issues page on GitHub
(https://github.com/izuzak/noam/issues).

FSM simulator is a demo of using noam (https://github.com/izuzak/noam), a JavaScript library for working with finite-state machines,
grammars and regular expressions.

Created by Ivan Zuzak (http://ivanzuzak.info) and Vedrana Jankovic (http://vedri.ca). Built with Noam (https://github.com/izuzak/noam),
Bootstrap (http://twitter.github.com/bootstrap/), Viz.js (https://github.com/mdaines/viz.js), and jQuery (http://jquery.com/).

Code available on GitHub (https://github.com/izuzak/noam/tree/master/webapps/fsm_simulator) and licensed under Apache License v2.0
(http://www.apache.org/licenses/LICENSE-2.0).

Figure 4.2: Nondeterministic finite automaton to decide if a sequence of cards is
a valid combination

/

start

pair2trio2bomb2full2pairs2

0

straight2

1 trio3bomb3full3

0

full3pairs3

1

full3_x

bomb40

full4

x,1

full5

straight5_

1

full4pairs4

0

pairs31 pairs4
1

straight3

1

0

0

0

0

straight41 1

 What's next?
This is just the beginning! If you like learning about and playing with FSMs and regexes, check out these other Web apps:

Regular Expressions Gym (http://ivanzuzak.info/noam/webapps/regex_simplifier/) - A Web app that simplifies your regular expressions by
detecting and removing sub-expressions that generate the same strings.
FSM2Regex (http://ivanzuzak.info/noam/webapps/fsm2regex/) - A Web app that converts finite-state machines to regular expressions and regular
expressions to finite-state machines.
Regexper (http://www.regexper.com/) - A Web app that displays regular expressions as railroad diagrams.
Grammophone (http://mdaines.github.com/grammophone/) - A Web app for analyzing and transforming context-free grammars, e.g. for
generating strings from a grammar and computing SLR/LR/LALR parsing tables.
Debuggex (http://www.debuggex.com/) - A Web app that is a visual regular expression debugger, tester, and helper.

 Feedback
Love the application, hate it, found a bug, or have a feature idea? I'd love to hear about it! Please send your feedback via the noam project issues
page on GitHub (https://github.com/izuzak/noam/issues).

Figure 4.3: Simplified Deterministic automaton with less states

4. Implementation 9

assumes it can repair a combination with a phoenix. This automaton uses a new
symbol in the input alphabet: 2 for a difference in rank of two. This transition
is needed when the phoenix replaces a card in a street. When combined with
the previous DFA this leads to the complete automaton in Fig. 4.4 that can
recognize all possible combinations. If the phoenix is available, the start state is
the phoenix state, otherwise the nophoenix state. This can be thought of as an
additional phoenix/nophoenix transition after the real start state.

To know which value the phoenix finally takes we maintain a list with all
possible phoenix values. Some transitions add one or two additional values to
this list (marked in red in Fig. 4.4). Also if the automaton ends in a state marked
in red a phoenix value needs to added to the list. Which value to add is a function
of the last rank processed and the current rank processed.

4.2 Peer2Peer communication

4.2.1 Signaling

To establish a webRTC connection with a peer, a browser first submits a stun
request to a special stun server. The stun server responds with a list of possible
ip and port pairs that may be used for a connection. From this, the browser
creates an ICE candidate that needs to be sent to the other peer via a existing
connection, a process called signaling. In this project, the central Tichu server
is also used to transmit the signaling data. The peer receiving the ICE offer can
use this information to try and open a connection to the other peer.

4.2.2 Card Trades

In Tichu, each player has to trade one card with each other player before playing
cards on the table. During the real game, all players must choose their cards
and put them face down on the table. Only when all players have decided what
card to trade can they look at the cards received from the others. This is more
difficult in a decentralized game, because there is no place one can "deposit" a
card face down. The solution to this problem is a so called commitment scheme.
The simple protocol we used in this project uses the properties of hash functions
that it is difficult to find another input with that results in the same hash and
the hash function is not reversible. Instead of putting a card face-down on the
table, the player generates a random number and concatenates it with the card
he wants to trade away. He applies a hash function to this string and sends the
result to the other player. After all players have decided on the cards to trade,
the verifying phase begins: Each player sends the value of the card he traded and
the random string he used to generate the hash. The player receiving the card

4. Implementation 10

F
ig
ur
e
4.
4:

C
om

pl
et
e
D
FA

in
cl
ud

in
g
th
e
sp
ec
ia
lp

ho
en

ix
ca
rd
.
T
ra
ns
it
io
ns

m
ar
ke
d
in

re
d
ad

d
a
po

ss
ib
le

ph
oe
ni
x
va
lu
e,

st
at
es

in
re
d
if
th
e
au

to
m
at
on

en
ds

in
it
.

4. Implementation 11

can do the same hash calculation and compare the results: If they are equal, the
other player didn’t change his card value.

4.3 Changes to AI interface

A big part of the processing done in the previous Tichu Bot implementation
was rewritten in javascript and moved to the Tichu library. This allowed us to
avoid code duplication and have all Tichu-related logic in one place, but it also
introduces some AI-specific parts to the library. The decision process of an AI
action is as follows: The Tichu library calculates the state vector for the AI.
This vector is used as an input to the neural network that gives a probability
distribution for all Tichu actions. The AI server then chooses the highest rated
possible action and uses the Tichu library to convert the index of this action to
an instance of a action class.

Chapter 5

User interface

The overall goal while designing the user interface was to have a slim and tidy
screen, yet being user-friendly and fully functional. For this reason we decided
to use icons instead of text on the most important buttons. For first-players
this increases the learning curve to use the site, but users should quickly get
accustomed to the most important functions. A mock up of the main playing is
shown in Fig. 5.1. To select cards, the user can click on each card he wants to
play before clicking on the play button.

12

5. User interface 13

7

1
4

2

3

5

6

Figure 5.1: The main Tichu user interface: (1) players handcards, (2) top com-
bination on table, (3) play and pass button, (4) play bombs or announce tichu,
display help window, (5) the player who is highest at the moment is highlighted
in green, (6) cards remaining on a players hand, (7) overall score.

Chapter 6

Conclusion

This project shows a possible approach to implement a multi-user card game by
choosing a decentralised architecture using the webRTC standard. This archi-
tecture is easily scalable yet economical, decreasing significantly the server load
in most situations. To guarantee connections in all cases, a TURN server is used
to forward messages when a direct connection is not possible. The bot players
are also scalable by hosting multiple instances of the AI server program on dif-
ferent servers and assigning them to different games. As an example, this thesis
implemented the well-known Tichu game using these concepts.

6.1 Future work

The implemented system lacks in resiliency: It is not possible to recover from
a connection failure or a lost message. Another drawback is that no cheat-
prevention mechanism is implemented except the simple commitment scheme
used in the card trading phase. A series of protocols have been proposed in [8] to
prevent different kinds of cheating attempts, e.g. the lockstep protocol to avoid
lookahead cheats. In case of a conflict, i.e. not all players having the same state,
a resolution can be achieved by assuming the majority is right. In a four player
game this signifies that if only one player wants to cheat, he can be identified
by the other three players working together. This approach does not work if an
entire team tries to cheat, because there would be a two against two situation.
In some situations, the central server could be included as an arbiter to further
reduce the possibilities for a team to cheat.

In terms of user-friendliness a user-management and ranking system would
improve long-term user experience and motivation.

14

Bibliography

[1] P. Müller, “Tichu bot,” Aug. 2020.

[2] J. L. Roman Flepp, “Developing a jass ai platform [confidential],” 2019.

[3] N. Rimensberger, “Developing a jass ai [confidential],” 2020.

[4] webplatformz, “Zühlke jass challenge,” https://github.com/webplatformz/
challenge, 2016.

[5] B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology overview
and signaling solution design and implementation,” in 2015 38th International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2015, pp. 1006–1009.

[6] P. Hancke, “What kind of turn server is being
used?” https://medium.com/the-making-of-whereby/
what-kind-of-turn-server-is-being-used-d67dbfc2ff5d, 2017.

[7] A. Shamir, R. L. Rivest, and L. M. Adleman, “Mental poker,” in The mathe-
matical gardner. Springer, 1981, pp. 37–43.

[8] N. E. Baughman, M. Liberatore, and B. N. Levine, “Cheat-proof playout for
centralized and peer-to-peer gaming,” IEEE/ACM Transactions On Network-
ing, vol. 15, no. 1, pp. 1–13, 2007.

15

https://github.com/webplatformz/challenge
https://github.com/webplatformz/challenge
https://medium.com/the-making-of-whereby/what-kind-of-turn-server-is-being-used-d67dbfc2ff5d
https://medium.com/the-making-of-whereby/what-kind-of-turn-server-is-being-used-d67dbfc2ff5d

	Abstract
	1 Introduction
	2 Previous work
	2.1 Tichu AI
	2.2 Jass Web UI

	3 High-level architecture
	3.1 Connection to the AI agent
	3.2 Connections between programs
	3.3 Communication during game

	4 Implementation
	4.1 Tichu node library
	4.1.1 Motivation
	4.1.2 TichuState class
	4.1.3 Action classes
	4.1.4 Combination class

	4.2 Peer2Peer communication
	4.2.1 Signaling
	4.2.2 Card Trades

	4.3 Changes to AI interface

	5 User interface
	6 Conclusion
	6.1 Future work

	Bibliography

