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Abstract

In this thesis we implement virus spreading behaviour in social graphs based on
the SIR Model. We show that reducing the number of social contacts as well
as reducing infection risks in meetings can help to flatten the infection curve.
Further we found that using limited vaccination resources, say less than 25%
of the total population can be vaccinated, vulnerable individuals can be better
protected by a vaccination campaign aimed at individuals with high numbers of
social contacts or high infectiousness rather than vaccinating the most vulnerable
directly.

To our surprise we found that forming small, highly connected communi-
ties within the population does not seem to have big impacts on the infection
dynamics if the average degree is kept constant.
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Chapter 1

Introduction

During the Covid-19 pandemic probably every government in the world had to
find some answers to questions like: How can we protect our population? Which
measures are effective, which are not? How should we select individuals for
our vaccination campaigns? Can the population reduce overall infectiousness by
forming smaller communities within the population?

We try to answer questions like these based on simulations in our simplified
model for a general viral disease. To this end we apply the SIR-Model of infection
spreading to social network graphs. Different methods for infection spreading and
recovering as well as different types of social graphs are explained in Chapter
2 and compared in Chapter 4. Further we will explore different vaccination
strategies based on the objective of minimizing infections to the most vulnerable
individuals. In the case of limited vaccination resources (less than 25% of the
population can be vaccinated) we found that there are better strategies than to
vaccinate the most vulnerable individuals directly.

We found that both reducing the number of social contacts as well as mini-
mizing the risk of infection during a social meeting have huge effects on the rate
at which the infection spreads. Those measures can even lead to extermination
of the disease before every individual in the fixed-size population gets infected.

1.1 Related Work

The basis of our work was done already in 1927 by Kermack and McKendrick [1]
when they first proposed the SIR-Model. A lot of work has been done based on
this model, for example [2], [3] and [4]. Where [4] focuses on analytical solutions
to the differential equations, [3] on the specific application regarding the measles
vaccination and [2] on public health. All these differ from our work by the fact
that we consider the social structures instead of the random mixing in the general
model.

Application of the SIR-Model to graphs is for example done in [5] and [6].
Apart from other things the latter has a focus on the adjacency matrix of the
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1. Introduction 2

network and its eigenvalues, a topic that we did not consider in our work.

In [7] the concept of evolving Erdős–Rényi random graphs in combination
with SIR was explored, in contrast to our work where graphs were fixed during
simulation.

Not only viral infections of humans are considered as [8] shows epidemic
spreading in cattle trade networks. An interesting alternative problem was treated
in [9] where the spreading of information instead of viral infections in a graph
was modeled by SIR. The goal was to locate the source of the information based
only on knowledge of the graph topology and which individuals are infected at
one arbitrary time-step. The extension to locate multiple sources was worked on
in [10].

A lot of work was done regarding SIR-Models specific to the Covid-19 pan-
demic. For example [11], [12] and [13]. Where the first two, apart from other
questions, look into the effect of viral detection tests not being 100% accurate.
The third models population size that changes in surges. The work by [11] also
claims to be able to match and predict actual data from the Covid-19 pandemic
in China. Also the turning point, where infection rates drop below 1 could be
accurately predicted. In our work we do not consider a specific viral infection
and therefore also do not try to predict or match real-world data.



Chapter 2

Model

Our model consists of two main parts, the graph, representing individuals and
their social contacts, and the SIR-Model. In this chapter we explain these two
parts as well as the different optional settings we used for some of the simulations.

We represent individuals in a fixed population of N individuals as nodes in
a graph. Edges between nodes represent social relations between the respective
individuals such as friends, work colleagues and family members. As we will see,
edges are weighted which represents some measure of closeness and infectiousness
between individuals. By assuming that infectiousness is not necessarily symmet-
ric between two individuals we end up with a symmetric directed graph i.e. every
directed edge has a corresponding directed edge in the opposing direction with
possibly a different weight.

An infectious viral disease is introduced via initial conditions to the graph
and the spreading of the virus is modeled by the application of the SIR-Model [1]
to the graph.

2.1 Graph

2.1.1 Topology

Three different random graph models were implemented to model social interac-
tions, Erdős–Rényi Graph, Small World Graph, and Community Graph.

• Erdős–Rényi Graph

This is an Erdős–Rényi G(n, p) model [14]. It is implemented with prob-
ability p and number of nodes n. An example topology with N (we use N
instead of n) set to 20 and p = 0.65 is displayed in Figure 2.1.

• Small World Graph

This topology is a Watts–Strogatz graph [15] based on the implementation
from networkx [16]. To create a Small World Graph the N nodes are placed
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2. Model 4

Figure 2.1: Erdös–Rényi Graph

Figure 2.2: Small World Graph

in a circle. Each node is then connected to k of its nearest neighbours,
where k is an even integer. Afterwards each edge is deleted and replaced
with an edge to an uniformly random selected other node with probability
p. In Figure 2.2 an example is displayed with N = 20, k = 4 and p = 0.15.

We did use Small World Graphs mostly in combination with the following
Community Graph.

• Community Graph

The Community Graph is a two leveled version of the other topologies.
Similar types of graphs are featured for instance in [17]. In the first level
a Small World Graph is created with the number of nodes equal to the
desired number of communities c. Each of this first level nodes is replaced
by an Erdős–Rényi Graph with the number of nodes equal toN/c in order to
create the second level. When N/c is not an integer, one of the communities
has fewer nodes so that the total number of nodes is still N . When two level
one nodes were directly by the connected Small World Graph we create
multiple connections between the two corresponding communities. The
number of those new connections is proportional to the number of nodes in
the communities.
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Figure 2.3: Community Graph, each community contains 20 nodes

2.1.2 Edge Weights

Since we want to use the edge weights to calculate infection probabilities between
neighbouring nodes (see Section 2.2.2) two methods are implemented to generate
the edge weights.

• Poisson

Each edge weight is independently selected from a Poisson distribution with
parameter λ. This method obviously yields edge weights that can lie outside
the interval [0, 1] which can be problematic for further probability calcula-
tions. To circumvent this issue normalization can be applied optionally in
a way that yields incoming weights that sum to 1 per node.

• Gauss-Sigmoid

Each edge weight is independently selected from a Gauss distribution before
being fed through a sigmoid function to get values in [0, 1]. For most
simulations we used a normal distribution (σ = 1, µ = 0), but other settings
are possible.

2.2 SIR Model

The SIR Model divides the total population of N individuals into three distinct
groups, Susceptible, Infected and Recovered. Those groups are referenced by
their first letters, S, I and R hence also the model name. The size of these
groups, i.e. the number of individuals belonging to them, is represented by a
non-negative integer which we will reference as |S| ,|I| and |R| respectively.

A healthy individual starts in S. Upon infection it is moved to I and after
recovering moved to R. It is assumed that once an individual recovers it is
immune and can not be infected a second or third time. This is a reasonable
assumption for many viral infections like chickenpox [18].
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In contrast to the usual model, we look at SIR in discrete time-steps where
one time-step roughly corresponds to one day. Additionally the graph based
approach allows to distinguish individuals from each other, meaning we know in
which of the three groups each individual is at any time-step. However, the basic
continuous SIR-Model is essentially equivalent to the one we use with a fully
connected graph.

The infection and recovery processes are described in detail in the following
subsections.

2.2.1 Virus Initialization

Before the first time-step starts we randomly infect a number of individuals to
kick-start the whole infection process. By default this number is set to 10. This
loosely corresponds to some infected individuals entering a population, maybe
from a foreign country. However, in our model we do not consider any other
external factors like additional immigration or any additional external infections
once the simulation has started.

2.2.2 Infection

The transition from being susceptible to being infected is calculated by the so
called SI-Method (S to I Method) as depicted by the left arrow in Figure 2.4.
We developed five different SI-Methods which are explained here. For any given
simulation only one of these methods is used. In Section 4.1 we compare the
different methods.

• Threshold Stay-Ok

For this and the second method we assume that a viral infection crosses
an edge from an infected individual j to a susceptible individual i with
probability wji. Here wji is the edge weight from node j to node i.

We can calculate the probability of individual i not getting infected, also
known as staying ok, hence the method name, in the following way:

pi =
∏

infected neighbour j

b · (1− wji) (2.1)

where b is a fixed base infection probability in (0, 1]. Individual i gets
infected in this time-step when pi is smaller than a fixed threshold.

• Probabilistic Stay-Ok

Here pi is calculated as in 2.1. Individual i is then infected with probability
1− pi.
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• Neighbour Count

In this method we count the infected neighbours of a susceptible individual.
If this number is larger than a set threshold the individual gets infected in
this time-step, otherwise it stays susceptible. This implies that edge weights
are ignored in this method.

• Edge Sum

This method is similar to Neighbour Count but instead of counting the
infected neighbours we sum over the edge weights. A susceptible individual
i is infected if the sum over its incoming edge weights wji is larger than a
given threshold.

• Sigmoid Edge Sum

For a susceptible individual i we compute the same sum over its edge weighs
as for the Edge Sum method. This sum is then mapped to the interval [0, 1]
by the function

pi = 1− sigmoid(si − c) (2.2)

Where si is the edge weight sum of individual i and c is a correction constant
which is by default set to 5. Individual i gets infected with probability pi.

2.2.3 Recovery

The transition from I to R is calculated by the IR-Method as shown by the right
arrow in Figure 2.4. Three different IR-Methods were implemented of which we
mostly used the last one (Poisson). As with the infection methods, only one of
these was used in any simulation.

• Fixed Threshold

In this model every infected individual is recovered after being infected for
a fixed number of time-steps. This threshold is the same for all individuals.

• Probabilistic

Each infected individual will recover with probability pr at any time-step.

• Poisson

As in the Fixed Threshold model individuals recover based on the number
of days of being infected. However, here the threshold is independently
selected from a Poisson distribution for each individual.
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Figure 2.4: Group membership and transition functions

2.2.4 Super Spreader

We implemented so called Super Spreaders, individuals that have a significantly
higher infectiousness. In a real world scenario these Super Spreaders can be
individuals that refuse to follow health regulations like wearing face masks or
individuals that for some reason are just by their biology more infectious.

We select super spreading individuals uniformly at random from the total
population based on a constant ratio. For example with a ratio of 0.2 and a
population of N = 100 we would select 20 individuals as Super Spreaders. The
desired effect of increasing the infectiousness is achieved by changing the outgoing
edge weights of Super Spreaders depending on the selected edge weight method,
both of which are described in Section 2.1.2.

• If the Poisson Method is used:

Outgoing edge weights of Super Spreaders are multiplied by a constant
factor.

• If the Gauss-Sigmoid Method is used:

Outgoing edge weights of Super Spreader are calculated by adding a con-
stant term f to the values from the Gaussian distribution before applying
the sigmoid function as seen in equation 2.3:

w = sigmoid(G+ f) (2.3)

where G is a Gaussian random variable and w is the edge weight. This is
equivalent to selecting edge weights for Super Spreaders from N (µ+ f, σ2)
instead of N (µ, σ2) before applying the sigmoid function.

2.2.5 Very Vulnerable individuals (VVI)

As a model for individuals with a high vulnerability to the infection we imple-
mented the group of very vulnerable individuals. We select|V V I| individuals from
the total population based on a constant ratio. Individuals are ranked by their
degree (lowest to highest), the top |V V I| individuals are selected to be the very
vulnerable individuals. This resembles our assumption that elderly people are
often VVIs and also often have less social contacts than an average individual.
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This also gets reinforced since most VVIs probably know that they are vulnerable
and try to minimize social contacts to protect themselves.

VVIs behave just like any other individual, the only difference is that we value
an infection of a VVI as being worse than an infection of a normal individual.
This plays a central role in the evaluation of different vaccination strategies.

2.2.6 Vaccination

Vaccination was implemented as an optional setting. We modeled vaccination
by moving some percentage of individuals from S to R before starting the first
time-step. The selection of the individuals to vaccinate is done by four different
strategies. The total number of individuals to vaccinate is denoted by|V |, which is
always strictly smaller than N . This represents a situation where only a limited
quantity of vaccinations is available. Independent of the chosen strategy we
assume that the vaccine provides perfect and lifelong protection from the virus.

As we will further discuss in Sections 4.7 and 4.8 all vaccination strategies are
compared in terms of how well they can reduce the total number of VVIs that
get infected. Furthermore, strategies will be measured in their ability to protect
the general public as well. The first and second strategy serve as baselines for
those comparisons.

The goal of comparing these strategies is to see whether finding crucial points
in the network is better at protecting VVIs than vaccinating them directly.

• Uniformly Random

Individuals are selected uniformly at random from the total population.

• VVI - Baseline

Individuals are selected uniformly at random from the group of VVIs. As
mentioned above, this strategy only serves as a baseline to be able to com-
pare the other strategies against. Obviously if the ratio of vaccinated indi-
viduals is higher or equal to the ratio of VVIs this strategy yields perfect
results in the sense that no VVI will be infected.

• Highest Edge-Sum

The individuals are ranked by their outgoing edge weight sum (highest to
lowest), the top |V | individuals are selected for vaccination. This has the
goal to vaccinate individuals that are very infectious, such as Super Spread-
ers, and/or have many social contacts. Realizing this in a real world setting
would require good knowledge of the infectiousness and social contacts of
every individual.
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• Highest Degree

In this vaccination strategy the individuals are ranked by their degree (high-
est to lowest), the top |V | individuals are selected for vaccination. As the
Highest Edge-Sum strategy this one also requires good knowledge about
social contacts of individuals. With this strategy we aim to cut as many
infection paths as possible.



Chapter 3

Experimental Setup

In this chapter we explain how a simulation is carried out.

3.1 Simulation

Every simulation consists of multiple runs, by default we did a total of 100 runs, in
groups of 10 runs that happen on the exact same topology. During one simulation
all the values of the different settings discussed in the model Chapter 2 are fixed.
We chose this approach in order to obtain a better statistical representation of
the infection dynamics compared to a single run.

Each run is terminated when |I| becomes 0 or after a fixed number of time-
steps. |I| = 0 corresponds to the infection being exterminated in the population.

Unless stated otherwise, we use the following default settings: N = 300 in-
dividuals, 10 communities (when a Community Graph is used), Gauss-Sigmoid
weights, Poisson recovery and Probabilistic Stay-Ok as infection method. The
number of initial infections is 10 and by default VVIs, super spreaders and vac-
cinations are not used in our simulations.

A repository with the python code that was used as well as the figures can
be found in [19].

11



3. Experimental Setup 12

3.2 Figure Interpretation

Our main analysis tool of the simulations is the SIR-Plot. Figure 3.1 shows a
generic example of such a plot. The horizontal axis show time-steps ranging from
0 to about 130 in this example while the vertical axis represents individual counts
with values from 0 to 300, which is our default total population N . The exact
numbers however, are rarely important as we will analyze the plots qualitatively.

Yellow curves show the number of susceptible |S|, red the number of infected
|I| and green the number of recovered |R| individuals. Each curve is the result
from one single run. The blue dotted curves represent the respective average
values of |S|, |I| and |R| over all runs.

Figure 3.1: A generic SIR-Plot



Chapter 4

Results

4.1 SI-Method Comparison

As a first result we discuss how the different SI-Methods presented in Section 2.2.2
compare to each other under otherwise equal conditions. For this setting we use
a community graph with 300 individuals in 10 communities.

Figures 4.1 through 4.5 show a progression through different values for the
given methods. All plots are at the same scale, showing about 90 time-steps.

Figure 4.1: SI-Method Threshold Stay-OK with base infection probability 0.3,
0.4, 0.5 and 0.6 respectively

Figure 4.2: SI-Method Probabilistic Stay-Ok with base infection probability 0.02,
0.05, 0.08 and 0.11 respectively

13
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Figure 4.3: SI-Method Neighbour Count with threshold 3.5, 3.0, 2.5 and 2.0
respectively

Figure 4.4: SI-Method Edge-Sum with threshold 1.8, 1.4, 1.0 and 0.6 respectively

Figure 4.5: SI-Method Sigmoid Edge Sum with correction term 6.0, 5.0, 4.0 and
3.0 respectively
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All methods show similar behaviours for extreme (very low or very high)
values. This can be observed by comparing the right most and left most plots from
each Figure, which do not show a lot of differences. However, in the respective
medium ranges the dynamics are quite different. The three methods which use
a threshold , Threshold Stay-OK, Neighbour Count and Edge Sum, show clear
discrete levels in the S and R curves while the other methods create continuous
distributions.

Interestingly the number of discrete levels in Figures 4.1, 4.3 and 4.4 seem to
be similar and about 10. In order to verify whether this is related to the number
of communities being 10, we did some further simulations. Figure 4.6 shows the
effect that changing the number of communities has on the number of discrete
levels for the Threshold Stay-Ok case. We observe a strong correspondence be-
tween those two numbers since there are 4 levels in the left graph and 19 in the
right one. In Figure 4.7 we can see that in Erdős–Rényi Graphs there are only
two discrete levels, one where everyone gets infected and one where almost no
one gets infected during a run.

We therefore conclude that the discrete levels are caused by the thresholding
SI-Methods which are discrete functions by design. However, the number of
levels is determined by the number of communities and each level corresponds
to a certain number of communities being infected more or less completely while
other communities are left largely unharmed.

Figure 4.6: SI-Method Threshold Stay-Ok with 4 respectively 20 communities

Figure 4.7: SI-Method Threshold Stay-Ok on Erdős–Rényi Graphs with base
infection probabilities 0.41, 0.43, 0.48 and 0.55
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4.2 IR-Method Comparison

In this subsection we compare the three IR-Methods described in Section 2.2.3.
Figure 4.8 shows a progression through three different threshold values of the
Fixed Threshold method. Very similar plots are created by the Poisson method
in Figure 4.9 for three different values of λ. The main difference is only visible at
the first 20 time-steps. Figure 4.11 displays a closeup on this region of the plots
with a threshold of 12 and a λ value of 12 of the corresponding methods. The
Fixed Threshold method has a discontinuity in the |R| curve at the 12th time-step
because all of the initially infected individuals recover at this exact moment. This
also leads to a sharp drop in the |I| curve. The Poisson method provides smooth
curves, which is our main reason to use this method by default.

The SIR-plots corresponding to the Probabilistic method are displayed in
Figure 4.10 for four different values of p. This method behaves similar to the
Poisson method when set to the correct range of values.

Figure 4.8: IR-Method Fixed Threshold with recovery time of 5, 12 and 20 time-
steps

Figure 4.9: IR-Method Poisson with λ set to 5, 12 and 20 respectively
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Figure 4.10: IR-Method Probabilistic with p set to 0.15, 0.1 and 0.05 respectively

Figure 4.11: Closeup of the Fixed Threshold (left) and Poisson comparison plots
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4.3 Graph Type Comparison

In this section we compare the effect of the graph type on the infection dynamics.
To that end we create Erdős–Rényi, Community, and Small World Graphs with
similar average degrees. Figure 4.12 shows the resulting plots. Plots in the same
column correspond roughly to the same average degree. It is hard to spot large
differences between the three graph types which is surprising since the topologies
are quite different. The Erdős–Rényi and Small World plots however display a
smaller variance in all three curves for higher degrees (right) than the correspond-
ing Community Graph plots. This is explained by the fact that for higher degrees
Erdős–Rényi as well as Small World becomes more and more a fully connected
graph where statistical variance should decline due to homogeneity. Whereas the
communities in the Community Graph are still only sparsely connected to each
other, which can lead to more variance between simulation runs depending on
how much communities are reached.

For the Small World Graph we only display plots with rewiring probability
p = 0.2 because changes in this factor did not yield large changes on the SIR
curves.

From a practical standpoint this implies that forming small communities
within the population does not slow down infection spreading as long as the
average number of social contacts are kept constant. The reduction of this aver-
age degree however does have a strong impact on infection dynamics as we will
see again in Section 4.5.
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Figure 4.12: Community Graph plots in the first row, Erdős–Rényi Graph plots
below and Small Wolrd Graph plots at the bottom, from left to right with average
degree of about 2, 4, 6 and 14
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4.4 Weight Methods

As our last basic setting comparison we explore the differences in the two weight-
ing methods described in subsection 2.1.2. For the Gauss method we only focus
on the impact of changing the standard deviation σ, since the effect of changing
the mean is related to Super Spreaders. In Figure 4.13 we can see that changing
σ does only have small effects on the SIR curves. A larger standard deviation
leads to weights close to 1 and 0 while less weights are close to 0.5 However,
the larger amount of weights close to 0 seem to be able to overpower the larger
number of weights close to 1 and lead to an overall reduction of infectiousness,
which can be observed by the slight rise of the yellow |S| curve from the left to
the right image.

Figure 4.14 shows the effect of changing the value of the Poisson parameter λ
from 1 in the left plot to 20 in the right one. The impact of this change is bigger
than the one observed in the Gauss method above. It is interesting that there is
such a big increase of infectiousness even though normalization is applied.

As both methods yield similar results we conclude that selecting just one
of them (Gauss-Sigmoid) as default for the other simulations was a justified
assumption.
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Figure 4.13: Gauss-Sigmoid weight method with standard deviation σ set to 1
(left) and 20

Figure 4.14: Poisson weight method with λ set to 1 (left) and 20
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4.5 Flatten the Curve

In this section we explore whether we can replicate the concept of flattening
the curve in our model and which settings have a great impact on this effect.
The expression flatten the curve refers to the idea to reduce the maximum peak
value in the I curve as much as possible. Any health care system has a limited
capacity and applying flattening of the curve aims to not overwhelm this capacity.
As the curve gets flatter the total number of individuals that got infected does
not necessarily decrease but the number of infected individuals at any given time
should get lower.

We explore two strategies with the goal to achieve a flattening of the curve.
Reducing the base infection probability and reducing the average degree. These
strategies correspond to making social meetings safer and reducing the number
of different social contacts.

As Figure 4.15 shows, reducing the base infection probability (b in 2.1) can
to some extend flatten the curve. However, the rising S curve in the two right
most images show that lowering this value too much leads to some individuals
not being infected at all instead of being infected at a slower time rate. Of course
this is a good thing for all individuals but it is not the effect we were trying to
reproduce. In a real world scenario this reduction of the base infection probability
could be achieved by wearing face masks, frequent washing of hands or keeping
physical distance during a meeting.

In the progression of plots in Figure 4.16 the average node degree is reduced
from left to right. To some extend flattening of the curve can be observed,
however the S curve starts to rise quite soon and stops the flattening process.
Again, this is a good thing to happen for the population.

We have seen that we can flatten the curve to some extent but could not
achieve the ideal flattening behaviour. Nevertheless we observed that both re-
ducing the infection risk during a meeting and reducing the number of social
contacts have great potential to reduce infection spreading through the popula-
tion.
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Figure 4.15: Flatten the Curve by reducing base infection probability from left
to right: 0.18, 0.1, 0.05 and 0.025 respectively.

Figure 4.16: Flatten the Curve by reducing the average degree, from left to right:
30, 10, 6 and 4.
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4.6 Super Spreaders in Community Graphs

The effect of Super Spreaders largely depends on two factors: The ratio of Super
Spreaders (SSR) in the total population and the Super Spreader factor (SSF).

Figure 4.17 shows the effect of these two factors. From left to right the SSF
is increased and takes values 0.0, 2.0 and 9.5. From top to bottom the SSR
increases and takes values 0.2, 0.4 and 0.6.

We observe that the S and R curves approach a constant value for high SSF.
Changes from 2.0 to 9.5 in the SSF result in diminishing changes of the respective
curves. Our explanation for this observation is: At some SSR value every Super
Spreader reaches an infectiousness such that he almost instantly infects every of
its susceptible neighbours. An even higher SSR does not lead to an increase in
this infectiousness.

Figure 4.17: Effects of Super Spreaders in a Community Graph
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4.7 Vaccination in Community Graphs

As described in Subsection 2.2.5 some individuals, which we refer to as VVIs,
are more prone to suffer from an infection than others, maybe even with fatal
consequences. In this section we compare our vaccination strategies based on the
goal to protect as many VVIs as possible with limited vaccination resources.

Of course every strategy that is called good by any means should perform
better than using the same number of vaccinations directly on the VVIs. This
will therefore be our main baseline comparison. Random vaccination is also
regarded largely as a baseline.

We did simulations on a Community Graph, 300 individuals in 10 commu-
nities with 40% VVIs and 10% Super Spreaders. Figure 4.18 shows the average
infection ratio on the last time-step of the simulation of VVIs for each strategy
over a spectrum of vaccination ratios. As we approach a vaccination ratio of 0.4
the baseline curve drops to 0 since almost every VVI is getting vaccinated. For
vaccination ratios below 0.25 both the Edge Sum as well as the Degree strategies
outperform the baseline. Random vaccination performs poorly over the whole
spectrum.

Figure 4.19 displays the ratio of all individuals that never got infected, mean-
ing they are either vaccinated or still susceptible at the end of the simulation.
The Edge Sum curve overlaps quite well with the Degree curve so that it has low
visibility on the plot.

While the baseline strategy outperforms all other strategies in protecting
VVIs on vaccination ratios above 0.25 it performs poorly in protecting other
individuals.

For both metrics, Edge Sum and Degree vaccination strategies are both highly
effective.
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Figure 4.18: VVI infection ratio in Community Graphs

Figure 4.19: Ratio of never infected individuals in Community Graphs
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4.8 Vaccination in Erdős–Rényi Graphs

The same simulation as in Section 4.7 was also run on a Erdős–Rényi Graph with
300 individuals and an average degree of about 12 which is almost twice as high
the average degree in Section 4.7. All other settings are the same.

Figure 4.20 displays the ability of a strategy to protect VVIs. Surprisingly
the baseline strategy which simply aims to directly vaccinate VVIs outperforms
all other strategies. We hypothesize that the high degree is responsible for the
poor performance of the strategies that proved to work well in this metric on
the Community Graph. With a high degree there are simply too many paths
over which an infection can spread. A look at Figure 4.21 shows that Edge Sum
vaccination and Degree vaccination have a better performance at protecting the
whole population than the baseline strategy.

In order to check our assumption we run the same simulation again with an
average degree similar to the one in subsection 4.7, about 6.4. Figure 4.22 and
Figure 4.23 display the corresponding results. As the good performance of the
Edge Sum and Degree strategies are back again our hypothesis seems to hold.

Figure 4.20: VVI infection ratio in Erdős–Rényi Graphs with high average degrees
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Figure 4.21: Ratio of never infected individuals in Erdős–Rényi Graphs with high
average degrees

Figure 4.22: VVI infection ratio in Erdős–Rényi Graphs with low average degrees
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Figure 4.23: Ratio of never infected individuals in Erdős–Rényi Graphs with low
average degrees



Chapter 5

Conclusion

We could replicate basic viral spreading behaviour in a realistic way with our
model. However, as we have seen in 4.5, replicating flattening of the curve or even
multiple infection waves like they occur in real viral pandemics such as Covid-19
is difficult and would probably require multiple different factors of influence to
change simultaneously.

Arguably our most interesting findings are the results from 4.7 and 4.8 where
we compare different vaccination strategies. As we have seen it can be more
effective to not vaccinate VVIs directly but to vaccinate individuals that are
likely to spread the virus through the population by having many social contacts
or being more infectious. As long as vaccination resources are limited, say less
than 25% of the total population can be vaccinated, these strategies not only
perform better in protecting VVIs but also provide good protection for the general
population. The Indonesian government decided to apply such strategies in their
Covid-19 vaccination campaign [20]. On the other hand the Swiss government
pursues the strategy to vaccinate VVIs first [21][only available in Swiss national
languages].

As we have seen in 4.8, the average degree, which corresponds to the number
of social contacts of an individual, has a big impact on the effectiveness of all
considered strategies. Governments around the world seem to understand this
concept in their struggle to fight the Covid-19 pandemic and still suggest to
reduce social contacts as much as possible. For example the Swiss government still
prohibits gatherings of more than five individuals [22] even though the vaccination
campaign has already started. Of course there might also be other reasons for
this.

5.1 Future Work

We can imagine multiple concepts being implemented as optional extensions to
our model. Both the addition of new individuals to the population through im-
migration or birth as well as temporal changes in the graph topology could be

30
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interesting changes to our work. The latter could for example represent short-
lived events with large participant numbers like sport events, concerts or demon-
strations. We propose that changes of this kind would allow to observe second
and third infection waves.

The SIR-Model could be expanded to an SIRD-Model which considers the
deceased individuals in a separate group. Also considering the concept that not
every individual is immune after recovery, as done in [23], could allow for more
complex infection dynamics.

A more realistic approach to vaccination could be implemented by reducing
the effectiveness of its protection against the virus. For example [24] shows the
effectiveness of a specific vaccine against Covid-19 being between 90% and 100%.

Tests for detecting an infection in an individual could be implemented, in-
dividuals that are tested positively could change their behaviour, for example
reducing their social contacts, in order to prevent the virus from spreading.
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