ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Graph Neural Networks in Finance

Semester Thesis

Kirill Meisser

kushakov@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Lukas Faber, Béni Egressy, P4l Andras Papp
Prof. Dr. Roger Wattenhofer

January 11, 2021

Distributed
Computing

Abstract

Financial networks can find themselves in a fragile state and the 2007-2008 crisis
was a big proof of that. Many institutions went bankrupt and thousands of
people lost their jobs. In this thesis, we wanted to explore how default is formed,
how it propagates in a financial network and how one can save such a network in
the most efficient manner. To help us in this endeavour, we make use of GNNs
and create different models that can predict default and the severity of default of
actors in a financial network. The accuracy of these models is not as good as we
had desired, yet they still have predictive power and show that GNNs can and
do learn from financial networks.

Abstract

1 Introduction

2 Financial Network Model

Contents

2.1 Financial network as a weighted directed graph

2.2 Greatest Clearing Vector Algorithm (GA)

2.3 Default propagation and insolvency levels

3 Graph Neural Networks

3.1 Fundamentals

3.2 Message Passing oo

3.3 Convolutional Layers

4 Procedure and Results

4.1 Data generation Lo

4.2 First model: Binary prediction of default

4.3 Second model: Going deeper

4.4 Third model: Predicting the required bailout

4.5 Benchmark model: comparing the results

4.6 Further discussion on the regression task

5 Conclusion

Bibliography

i

\V)

N ot w W

10
10
10
11

12
12
13
14
15
17
18

19

20

CHAPTER 1

Introduction

In the past few years we have seen a rise in the deployment of Graph Neural Net-
works (GNNs) that have been used to successfully learn from graph-structured
problems. These problems can be encountered in many diverse fields such as
social networks, molecular chemistry and traffic prediction. In this thesis, we
leverage the power of GNNs and focus on financial networks. We tackle the
problem of default propagation in an interconnected network of financial institu-
tions and the best way to save such a network by bailing out key players. The
large number of relations and contracts in such a network makes this a difficult
problem, in particular one can show that it is NP-hard. A solution to such a
problem would help policymakers make the right decisions where the answer is
complex and requires many considerations.

1.1 Motivation

The financial system can find itself in times of trouble as can be witnessed
throughout history, with the latest example being the financial crisis of 2007-
2008. Where one of the big disruptions was the initial bankruptcy of Lehman
Brothers which caused an unforeseen market plummet and cascade of further
bankruptcies. Ultimately, the crisis wiped out many financial institutions.

During these times the Federal Reserve had difficult decisions to make. Like
who to bailout and who to leave behind? These decisions are made based on
a variety of factors where one of which is how effective the bailout will be in
restoring back the financial network and the economy. This area is where we want
to help find a solution by using graph theory and GNNs, so that policymakers
can make better decisions that benefit the system as a whole.

1. INTRODUCTION 2

1.2 Goal

In this thesis, we use GNNs and graph theory to train a model that can assign
bailouts to defaulted banks and institutions so that the biggest possible portion of
the network can be rescued. Such a system would try to avoid default propagation
that causes a domino-like effect where the whole financial system is dragged into
failure.

CHAPTER 2

Financial Network Model

2.1 Financial network as a weighted directed graph

Following L.C.G. Rogers and L. C. G. Rogers and L. A. M. Veraart [1]| we rep-
resent a financial network as a weighted directed graph. In this realisation the
nodes represent financial institutions (such as banks, investment firms etc.) and
each of them is assigned a unique ID. On the other hand the edges correspond
to the relations that the banks have. These are unpaid debts, otherwise known
as liabilities between banks. The amount of each transaction is represented as
a weight that is assigned to each edge and these values can be represented in a
matrix form called a liability matriz. Finally, each organization has its net assets
that are available to them. In case of debt these can be used to pay off loans.
We include this information as a node feature that is assigned to each of the
institutions in the network. An example of such a model is illustrated in fig. 2.1
with the values of the assets assigned in the table. Now that we have a rough
picture of how a financial network looks like, we can begin to formally define the
financial system as follows [1].

Definition 2.1 (Liabilities Matrix). The liabilities matrix is given by L € R"*"™
where the 7jth entry L;; represents the nominal liability of bank 7 to bank j. We
assume that L;; > 0 Vi, j and Ly = 0 V.

Definition 2.2 (Obligations). The total nominal obligations of bank i to all
other banks in the system are given by L; = Z?Zl L;; and L is the corresponding
vector of the total nominal obligations.

Definition 2.3 (Relative Liabilities Matrix). Let L be a liabilities matrix and

L the corresponding vector of total nominal obligations. The relative liabilities
matriz II € R™*" is defined by

Lij/L; ,if Li >0
Ty =
“ 0 , otherwise

Definition 2.4 (Net Assets). We denote by e; > 0 the net assets of bank i from
sources ouside the banking system. The corresponding vector of net assets is
denoted by e.

2. FINANCIAL NETWORK MODEL 4

Node ID | Assets
0 1.1
1 0.8
2 0.5

Figure 2.1: Simple example of a financial network

Definition 2.5 (Financial System). We can formally define the financial system
as a quadruple (L, e, «, 5) where L is the liabilities matrix, e are the net assets
and «a, 8 € (0, 1] are two constants which represent the fraction of the face value
of net assets realized on liquidation and the fraction of the face value of inter-bank
assets realized on liquidation respectively. The first one takes into consideration
that the abrupt sell-off of assets will cause that only a fraction « of assets can be
recovered. While g takes into consideration that early repayment of obligations
to the bank in question may not be received in full because of an underlying
discount.

Now that we have the main definitions out of the way we are going to introduce
the clearing vector. A clearing vector determines payments between banks in the
system by assuming some rules. These were originally proposed by Eisenberg
and Noe [2] and are:

1. Limited liabilities: Each node can not pay more than its available cash flow.

2. Priority of debt claims over equity: Paying off the liabilities L;; has priority
over everything else, even if the net assets e; have to be used for that.

3. Proportionality: In case of default, the defaulting bank pays all claimant
banks in proportion to the size of their nominal claims on the assets of the
defaulting bank.

Given these we can define the clearing vector as follows.

Definition 2.6 (Clearing Vector). A clearing vector for the financial system
(L,e,a, B) is a vector L* € [0, L] such that

L* = &(L%)

2. FINANCIAL NETWORK MODEL 5

where @ is a function defined by

O(L); = L cif Li <ei+ Y5 Lymji
ae; + 8 zyzl Limj; , else

The clearing vector can be interpreted as the cash that each bank has available
to pay out to other banks. For example L] represents the cash that bank 7 has
available to pay out to others. Thus the sum e; + Z?:l L;Trji represents the
value of the total assets the bank i has at its disposal. If this value exceeds
L;, then bank i is able to meet its obligations and is solvent. Otherwise, if this
condition is not met then the bank is in default and it must use its assets to pay
off its debt. Once the bank finds itself in default it must sell-off its assets and
recall the obligations its owed from others. This process causes losses which were
considered by including « and § in the model, these losses amount to

(I1—a)ei+(1-5) ZL;W]@'
j=1

this demonstrates how default can actually cause additional losses.

2.2 Greatest Clearing Vector Algorithm (GA)

In order to calculate the resulting bank values and the insolvency sets we will be
using the Greatest Clearing Vector Algorithm which was also developed by L. C.
G. Rogers and L. A. M. Veraart [1]. This algorithm is defined as follows.

Definition 2.7 (Greatest Clearing Vector Algorithm (GA)). For a financial sys-
A(H)

;) as follows (we use

tem (L, e, o, B) the GA algorithm constructs a sequence (
all the definitions as before).

1. Set p= O,Ag.o) =L and 1 = 2.

2. For all nodes 4, compute oW = 2?21 A§M)ﬂji +e —L;

i

3. Define & == {1 <i < n: UZ-(M) < 0} the set containing all indices of

insolvent banks, and Yj ={1<i<n: UZ-(“) > 0}, the set containing all
indices of solvent banks.

4. If fj = j;ﬁp terminate the algorithm.

5. Otherwise, set
AV =L vje.st

2. FINANCIAL NETWORK MODEL 6

and determine the remaining clearing payments by finding the unique so-
lution to the system of linear equations

xi:aeﬁ—ﬁ{ Z Ejﬂji—i- Z ZL‘j?TjZ'} V’L'Eflj_

jest jest

and setting
AP =y, Vie g}

6. Set u — 4+ 1 and go back to step 2.
When the algorithm has terminated, the vector A is a clearing vector.

We call fj the accumulative level-pu insolvency set and Yj the accumulative
level-p solvency set. Where the accumulative insolvency set increases in size at
every iteration and has the following interpretation.

Definition 2.8 (Accumulative Level-y Insolvency Set). An accumulative level-
1 insolvency set is a set of nodes that contains the IDs of the banks that are
insolvent once all the banks in the accumulative level-(pu — 1) insolvent set have

defaulted.

From the accumulative level-p insolvency set we can then derive the level-p
insolvency set which we will then use to categorize banks in respect to the severity
of their default. We define these sets as follows.

Definition 2.9 (Level-y Insolvency Set). A level-u insolvency set is a set of
nodes that contains only the IDs of the banks that become insolvent once all the
level-(1 — 1) banks have defaulted. That is we can compute the set as

Iu=IFN I

In addition to the insolvency sets we further define the bank value.

Definition 2.10 (Bank Value). The bank value is calculated by taking the assets
of the bank, summing up the liabilities that others are capable of paying towards
the bank in question and subtracting the loans that need to be payed out. In
other words we can write it as:

V=I"L+te—L

where L is the clearing vector that we have calculated by using the GA algorithm.
We get the bank value of bank ¢ by taking the ith value of the vector and we
know if it is in default if V; < 0 or solvent if V; > 0.

2. FINANCIAL NETWORK MODEL 7
2.3 Default propagation and insolvency levels

Having introduced the GA algorithm we can now calculate the insolvency sets of a
given financial network. With it we can see how severely default propagation can
damage the financial network and how deep the consequences can become when
leaving the system be as is. In the following we will see two simple examples of
hypothetical financial networks and the devastating effects of default propagation
in action. For both examples we will be assuming a = 1 and § = 1, meaning
that we do not consider additional losses in case of a default. In figure 2.2 we can
observe a small example of a financial network (G1) with 3 banks. In this case we
can witness how the bank with /D 1 has too many loans and becomes insolvent
with its bank value equal to -2 at the beginning. This insolvency means that
bank 0 will only receive a fraction of the money it was due. In fact, because bank
1 has L; = 5 and the obligation towards bank 0 is 2 units of money, bank 0 will
only receive % of Lj. Where L; represents the cash that bank 1 has available to
pay out others and is found by performing the GA algorithm. By not receiving all
the money bank 0 was due, it too finds itself in a position of insolvency because
of bank 1. To see the defaults more clearly we can write down the mathematical
expressions for the bank values as

Vo=e9+ Limo+ Lomogo — Lo =0+25-04+1-0-2=-1.0

Vi=ey+ Lomo1 + Lomo1 — L1 =1+1-05+1-1-5=-25
Vo =eg+ Limia+ Lomga — Lo =104+1-0.5+25-0.6 —1=11.0

where we can simplify it further by writing the bank values in the vector form

~1.0
Vo, = |25 (2.1)
11.0

As we can see the first two elements are negative, this indicates the insolvency
of banks 0 and 1. Since bank 1 becomes insolvent without the influence of others,
we call it level-0 insolvent. On the other hand, the default of bank 0 is dependent
on whether or not bank 1 is solvent, thus per definition it is level-1 insolvent. It
is curious to note that we could save this network entirely by bailing out bank 1
with 2.5 units of money.

The second example network (G2) can be seen in figure 2.3. In this case bank
0 is a level-0 insolvent bank. Not being able to pay its liabilities in full it drags
in bank 1 which becomes a level-1 insolvent bank. Now, bank 1 also does not
manage to pay off all its debts and causes the default of bank 2 which now finds
itself in the level-2 insolvency set. The final bank value vector that we obtain is:

2. FINANCIAL NETWORK MODEL 8

—-2.0
—1.25
—1.25
106.0

Vg, = (2.2)

In this case it is also good to note that by injecting bank 0 with only 2.0 units
of money we can save all three banks.

2. FINANCIAL NETWORK MODEL 9

Node ID | Assets
0 0
1 1
2 10

Figure 2.2: Simple example graph G; where we have node 1 belonging to the
level-0 insolvency set and node 0 belonging to level-1 insolvency set.

Node ID | Assets
0 1
1 2
2 3
3 100

Figure 2.3: Example graph G2 where node 0 is the first to go insolvent, followed
by node 1 (level-1 insolvent) and node 2 (level-2 insolvent)

CHAPTER 3

Graph Neural Networks

In this chapter we are going to take a quick tour around graph neural networks,
the heart of this thesis. We are going to look at the basis of these models, what
the principles are that make them work and finally we introduce NEConv our
custom convolutional layer.

3.1 Fundamentals

Graph neural networks (GNNs) are machine learning models that manage to
model graph dependencies by using message passing between neighboring nodes
and due to this property they have risen in popularity in the recent years [3].

In GNNs we have two types of features: node features h! and edge features e,

node features as the name suggests are assigned to nodes of the graph while edge
features are assigned to edges. The node features initially describe the properties
of the corresponding node they are linked to, but as we apply convolutional layers
with message passing these node representations change and begin to contain in-
formation about the features of the neighboring nodes. These convolutions allow
us to then perform different predictions such as: node classification /regression,
graph classification /regression and link prediction.

3.2 Message Passing
The message passing paradigm is the backbone of GNNs and can be decom-
posed into two processing steps. The two steps are an edge-wise and a node-wise

computation that is made every round, it looks as follows:

e Edge-wise:

e Node-wise:

3. GRAPH NEURAL NETWORKS 11

In the above equations, € is the set of edges contained in the graph. Then ¢
is the message function which is defined on each edge. It generates a message by
combining the edge feature with the features of its incident nodes. Meanwhile,
1 is an update function defined on each node which is used to update the states.
It uses the past node features and combines them with the aggregation of the
neighbor messages in the reduce function p.

In other words, messages m,(gt) are generated on each edge and take into con-

sideration the features of the neighboring nodes and edges. The nodes then
aggregate these messages into a single representation and combine it with their

own node representation to form newly updated node features hq(fﬂ).

3.3 Convolutional Layers

Now that we have familiarized ourselves with the fundamentals and the message
passing paradigm we can proceed to take a look at the different convolutional
layers that were developed in the past literature which we found to be adapt to
the problem we were trying to solve. In addition we introduce a convolutional
layer that was specially developed for this thesis.

We began by using the NNConv [4] layer since it is one of the few layers
that accounted for edge features and was a good place to start our experiments.
We then switched to GraphConv [5] and SAGEConv [6] to see whether we could
improve the predictive performance. While these two models are more complex,
they only consider node features and thus ignore the information that is contained
in the edges of our financial network. To this end we propose a new convolutional
layer called NEConv which considers both node and edge features while being
more complex and adapt than NNConv for the problem we were trying to solve.

Definition 3.1 (NEConv).

hj*f(li) = aggregate({F F(concat(e;j, h;)), VjeN(i)})

Wit = o(W - concat(h, hj\';(li)))

The NEConv layer takes into consideration both the node features h;- of the
neighbors and the features of the incoming edges e;; of a given node . It then
propagates them through a feed-forward network (FF) and after an aggregation
stores the representation in hﬁ(li). Finally, hﬁé) is concatenated with the node’s
own representation hf and is sent through a linear layer W and an optional non
linearity o.

The idea behind NEConv is that by using both types of features we have
more information at our disposal and the network would be able to learn better
from it.

CHAPTER 4

Procedure and Results

Before tackling the main goal of optimizing the bailout strategy given a financial
network, we tried to solve less demanding problems. In this chapter we are going
to look at the different prediction models we devised for these problems, how we
generated the training and test data and finally how we trained and evaluated
these models.

4.1 Data generation

In order to train and test any machine learning model we need access to data.
Yet, for various reasons obtaining real-world data is not possible and thus we re-
sorted to synthetic datasets. To do this we wrote a graph generator that generates
random financial networks given the number of desired samples and parameters «
and §. To generate connected graphs, we start with a randomly chosen spanning
tree, to which we randomly add edges with uniform probability. In the implemen-
tation of the generator we decided to always add two anti-parallel edges between
two nodes, which would indicate that both banks have a liability towards the
other. One could argue that this must not always be the case and that is correct.
We can solve this issue by setting the weight (loan) to zero for the desired edge,
in doing so we can also represent one-way relations and maintain our two-way
edge representation. The two-way edge representation is important to us because
it enables us to have good message passing across the network, where every node
can receive messages from its direct neighbors.

Now that we know how we generate the graph structure it is time to assign
node features, edge weights and labels to have a complete data sample. We
assign the node features and edge weights uniformly at random for each sample
in order to represent random financial networks. Finally, we label each of the
nodes depending on the task we want to accomplish, for example by using the
clearing vector algorithm.

12

4. PROCEDURE AND RESULTS 13

4.2 First model: Binary prediction of default

To begin getting to know GNNs and how they work we started to build a model
that given the financial network, the loans and the assets would predict whether
the bank is in default or not. Thus in this task we are only concerned with a
binary classification. The classes being: insolvent (0) or solvent (1). For this
task we are going to utilize a two dimensional node feature space that includes
the assets and the outgoing liabilities of bank 4, that means that we can write
the features for each node as follows:

hO =

i [assets of bank i , outgoing liabilities of bank z]

As for the edge features we are just going to use the weights (loans) that are
assigned to each edge. Furthermore we are going to use the NNConv convolu-
tional layer as our model, where for the aggregation function we will take the
sum of the incoming messages, for the mapping fo we are going to use a linear
transformation and finally a readout layer to transform the two dimensional node
representations into a one dimensional output.

For our training and test data we use the previously discussed data generator.
We train our model on 1000 generated graphs which all contain banks that reach
level-3 insolvency, we do this by filtering them out during generation and storing
them in a dataset. As for our test set we use another 50 graphs that again all
contain banks that reach level-3 insolvency. All that is left to do now is train the
model, we do this for 30 epochs and use binary cross entropy as our loss function.
Finally we evaluate the performance by looking at the accuracy per insolvency
level, Table 4.1 shows the results. Here we can notice how we achieve outstanding
performance for level-0 insolvent banks and the solvent banks (shown as level -1
in the table). As for the higher-level insolvent banks we can see a noticeable
deterioration of performance as we go higher. This was to be expected since we
are using only one NNConv layer, in such a configuration each node considers
only the information from his direct neighbors. In order to be able to predict
higher level insolvencies in a more accurate manner we need to add layers. This
is exactly what we are going to do in the next step.

Level | Total Number of Samples | Total Correct Predictions | Total Incorrect Predictions | Accuracy
0 659 658 1 0.998
1 282 197 85 0.699
2 87 32 55 0.368
3 53 26 27 0.491
-1 877 838 39 0.956

Table 4.1: Performance of the one layer NNConv model using 50 evaluation

graphs

4. PROCEDURE AND RESULTS 14

4.3 Second model: Going deeper

In the last section we have built a classifier that categorizes banks into two classes:
solvent and insolvent ones. We have seen how the model manages to predict well
the level-0 insolvency or solvency of a given bank. Now what we want to achieve is
a better performance in the higher level insolvencies and we hoped to accomplish
that by adding more NNConv layers on top of the existing model. Precisely we
attempted models with two to four NNConv layers and different architectural
variations of these. In the end we found the best results to be achieved with
three NNConv layers where the first two layers are exactly the same and share
weights, while the third layer is a new one where on top of it we have a readout
layer that converts the outputs to a single dimension so that we can perform
classification.

In order to combat class imbalance between the solvent banks (of which there
are much more) and the different levels of insolvent banks, we implemented a
weighted binary cross entropy function so that every level has its corresponding
weight assigned to it and thus its contribution appropriately considered. The
weights for the different levels were calculated empirically by considering the
proportion of the total number of nodes that the corresponding level represents
and then taking the inverse of it. In other words we can write the weights in a
vector as so:

w:[wo w1 Wy W3 w,l]

1 1 1 1 1
= level O nodes) (level 1 nodes (level 2 nodes) (le'uel 3 nodes) (level —1 nodes
total nodes total nodes total nodes total nodes total nodes

~[25 60 19.0 37.0 8.0]

Where we have assigned a higher weight to the solvent banks because else the
class of the insolvent banks was too dominant and the model started predicting
only zeros.

Having setup our model we then train it on a data set of 3000 graphs that all
contain banks with level-3 insolvency for five epochs. To evaluate our model we
will again be using the same 50 graphs that were used before for the first model
and in Table 4.2 you can see the corresponding accuracies for each level like
before. By looking at these new results we can definitely see a big improvement
for the higher level insolvencies, yet we can also witness some significant decline
in performance of the solvent bank prediction. This may be likely due to the fact
that the information regarding this is lost after propagating through 3 NNConv
layers. Overall, we can say that adding more layers gave us a good performance
bump which was to be expected given the deeper nature of this network.

4. PROCEDURE AND RESULTS 15
Level | Total Number of Samples | Total Correct Predictions | Total Incorrect Predictions | Accuracy
0 659 659 0 1.000
1 282 274 8 0.972
2 87 82 5 0.943
3 53 48 5 0.906
-1 877 653 224 0.745

Table 4.2: Performance of the three layer NNConv model using 50 evaluation
graphs

4.4 Third model: Predicting the required bailout

For this last completed model we change course and modify our problem into
a regression task. More precisely, we want to be able to predict how much
money each bank would need in order to avoid insolvency. That is, how big the
bailout has to be in order to elevate the bank’s value above zero and thus turn
it back operational. These values were calculated with the clearing algorithm
previously discussed in Chapter 2, where by using the obtained clearing vector
we can calculate the bank values of each node in the graph. Now for the banks
with a positive bank value the label is set to zero since these banks are solvent and
do not require any bailout. Meanwhile, for the banks with a negative bank value
(insolvent banks) the label is created by taking the bank value and multiplying
it by a minus. This positive number then represents the amount of money that
needs to be injected into the failing bank.

Up until now in the previous models we have always used NNConv layers and
at the beginning of this task an attempt was made to reuse the same architecture
as in the last section. Unfortunately, such a model performed underwhelmingly
and it was time to go back to the drawing board. After some thought we de-
cided to change the underlying NNConv layer in favor of the SAGEConv layer.
In contrast to NNConv where edge features and node features are considered,
SAGEConv utilizes only node features and omits the edge ones. Because of that
we needed to do some feature engineering and try to incorporate the data that
is present in the edges into additional node features that can then be used by
the SAGEConv based model. To do this we came up with different statistical
measures such as the mean, max and the median of the ingoing and outgoing
liabilities. These then formed the new 12 dimensional node representations.

Having our data in the right form we can begin to build our model and then
commence with the training. For our model we take the SAGEConv layer as
our main building block, but we modify it slightly by adding the sum operation
as an aggregate function option. Many configurations were experimented with
by varying the depth of the network, placing multi layer perceptrons (MLPs) in
between the layers, using residual connections and concatenating different types
of networks together. Two configurations performed the best in respect to the
others. The first one being the 4 layer deep SAGEConv model with single hidden

4. PROCEDURE AND RESULTS 16

Level | Total Number of Samples | MSE
0 403 0.0655
1 148 0.0886
2 58 0.0425
3 26 0.0381
-1 338 0.0065

Table 4.3: Performance of the 4-layer SAGEConv model evaluated on 25 graphs

layer MLPs in between the layers and at the output. Meanwhile, the second one
was built by concatenating different intermediate representations which were then
fed to another MLP. By intermediate representations we mean the convoluted
features which come out after each convolution with SAGEConv. Such a process
could be seen as inserting residual connections where we capture the data and
do not let it propagate further.

Now that we have the model we can begin training it. We use the same 3000
graph dataset as before but the node features and labels are modified in order
to adapt to the new architecture and regression problem. For our cost function
we use the mean squared error (MSE) as we want to penalize bigger deviations
more heavily than smaller ones. In addition we will be using the early stopping
mechanism, so that when the validation error stops decreasing or even begins to
increase we stop learning to avoid overfitting. In Table 4.3 and 4.4 we can see
the performance of the two respective models that were presented earlier. From
the tables we can see how their performance is very similar and that the MSE is
very small. Where the small MSE is largely due to the fact that the randomly
assigned assets and loans are also quite small, with the assets being distributed
uniformly at random between 0 and 1 and the loans being uniformly distributed
between 0 and 2. This can give a distorted view of the results and in fact by
checking with the fraction of variance unexplained (FVU) the given predictions
against the labels we have noticed that the predictions for insolvency levels higher
than 1 are not accurate and the FVU can go well above 1 which is very bad since
an FVU of 1 would imply that we constantly predict the mean of the variable.
In some instances the FVU climbs above 280 for level 2 predictions and 436 for
level 3 predictions. Yet, while the predictions for the higher levels are not reliable
the model manages to predict level-0 and level-1 insolvencies with a much better
degree of accuracy. The FVU stays below 0.1 for the level-0 insolvencies and
mostly below 0.5 for level-1 insolvencies with only two instances of it exceeding
an FVU of 1.

4. PROCEDURE AND RESULTS 17

Level | Total Number of Samples | MSE
0 403 0.0695
1 148 0.0857
2 58 0.0440
3 26 0.0368
-1 338 0.0067

Table 4.4: Performance of the concatenated 4-layer SAGEConv network evalu-
ated on 25 graphs

4.5 Benchmark model: comparing the results

To see how well our regression model really performs we decided to do a sanity
check and compare the results from the third model to a very basic one. In such
a basic model the label that we predict is done based on a simple computation.
For it we take the net assets of the bank, we add to it the incoming liabilities
from the other banks and subtract the liabilities the bank in question has towards
others. We can also write it in the mathematical form as:

n
h; =¢; —|—ZI/]'7T]'¢ — Ez
j=1

Where the definitions of the different variables are the same as discussed in
Chapter 2. Now that we have defined the model we can see how it performs
on the evaluation set. For this we take the same set of 25 graphs as in the last
section and calculate the MSE for the different levels of insolvency. The results
can be found in table 4.5. We can observe how big the MSE is for the lower
levels of insolvency and very small for the higher levels of insolvency. In addition
the model labels the solvent banks with a 100% accuracy. At a first glimpse
one might say that this model performs very well for solvent and higher level
insolvency banks but the truth is quite different. In reality the fact is that the
model does not consider at all the effects of default (e.g. fractional repayment
of liabilities upon failure) and the propagation of the latter. This causes the
big MSE values for the 0** and 1% levels. On the other hand, the very small
MSE values of the higher two insolvency levels are given by the fact that the
model assigns zero to all the banks that are above level-0 insolvency. This in
combination with the true labels being close to zero gets us a very small error
even though there is absolutely no predictive component to it.

In conclusion we can say that by comparing the benchmark model to the
previously trained GNN models from the last section, the latter fared much better
in fitting the first two insolvency levels. In contrast, the predictions for higher
level insolvencies were poor in both cases.

4. PROCEDURE AND RESULTS 18

Level | Total Number of Samples | MSE
0 403 1.4893
1 148 1.5027
2 58 0.0913
3 26 0.0018
-1 338 0.0000

Table 4.5: Performance of the basic regression evaluated on the same 25 graphs

4.6 Further discussion on the regression task

For the regression task in the last section many other countless attempts were
made to create a model with a superior predictive performance. We tried different
convolutional layers such as GraphConv and our own custom layer NEConv but
at the end to no avail. We hoped that by introducing edge features with NEConv
we would get a performance boost but that was not the case and strangely the
model that relied on SAGEConv fared much better in comparison to them. Later,
we then sought to combine different convolutional layers such as the NNConv and
SAGEConv by concatenating them and feeding them through an MLP but that
also ended up performing poorly and was in the same accuracy range as the
model with just NNConv layers. In conclusion we found it hard to beat the 4-
layer SAGEConv model but probably with more time and experimentation this
can be further improved.

CHAPTER 5

Conclusion

In this semester thesis we used GNNs to learn on financial networks. We trained
them on a randomly generated datasets which were labeled with the help of
the greatest clearing vector algorithm. Next, we selected three models that had
shown the best predictive capability and analyzed them. In these we reached
some initial success by predicting whether a bank is solvent or not. Additionally,
we managed to predict by how much a bank is insolvent with a decent accuracy
measure for the lower levels of insolvency. In both problems we found there to be
some limitations to the models. In the first case the accuracy for the solvent banks
had decreased and left for some more to be desired. While for the second case
the predictions for higher levels of insolvency produced unreliable results. Future
work could try to find new architectures and tweak existing ones. Furthermore,
the underlying convolutional layer can be potentially improved in many ways and
engineered to be more compatible to the problem.

19

Bibliography

[1] L. C. G. Rogers and L. A. M. Veraart, “Failure and rescue in an interbank
network,” MANAGEMENT SCIENCE, vol. 59, 2013.

[2] L. Eisenberg and T. Noe, “Systemic risk in financial systems,” MANAGE-
MENT SCIENCE, 2001.

[3] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
arXiw:1812.08434v4, 2019.

[4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” arXiv:1704.01212v2, 2017.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks,” arXwv:1609.02907v4, 2017.

[6] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” arXiv:1706.02216v4, 2018.

20

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goal

	2 Financial Network Model
	2.1 Financial network as a weighted directed graph
	2.2 Greatest Clearing Vector Algorithm (GA)
	2.3 Default propagation and insolvency levels

	3 Graph Neural Networks
	3.1 Fundamentals
	3.2 Message Passing
	3.3 Convolutional Layers

	4 Procedure and Results
	4.1 Data generation
	4.2 First model: Binary prediction of default
	4.3 Second model: Going deeper
	4.4 Third model: Predicting the required bailout
	4.5 Benchmark model: comparing the results
	4.6 Further discussion on the regression task

	5 Conclusion
	Bibliography

