o 478
Distributed ~ j3gs%" s
Eidgendssische Technische Hochschule Ziirich u

AT
i et en
Swiss Federal Institute of Technology Zurich ComPUt’ng ‘?‘ O\ BT

Reproduction and Behaviour of Local
and Non-local Distribution

Bachelor’s Thesis

Fabian Auf der Maur

auffabia@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Prof. Dr. Roger Wattenhofer
Yuyi Wang, Ye Wang

June 14, 2021

Acknowledgements

I would like to thank firstly the Distributed Computing Group at ETH under
Professor Wattenhofer and to my two supervisors for introducing me to this
worthwhile and exciting, but also challenging topic. My thanks go also to my
supervisors Yuyi Wang and Ye Wang for helping me with this subject.
Additionally, I'd like to thank Tamas Krivachy for explaining to me the set-up
and background of the here used Fritz distribution.

Another thanks go to my family for their support and motivation. Furthermore,
I am grateful to my cat for not destroying my thesis by lying on the keyboard, it
really saved me hours of work.

Abstract

Quantum distributions cannot be reproduced classically. This sentence has al-
ready been proven with a neural network in [1] to be true, leading to the question
of how else can such a distribution been reproduced by a computer. In order to
achieve that, we have implemented a way of quantum calculation in the code.
This way the computer just has to figure out what he has to use as a basis for
the quantum distribution in order to reproduce it. Thanks to this successfully
implemented ansatz, we could not just reproduce a quantum distribution, but
also observe the circumstance that different basis can lead to the exact same
distribution.

Furthermore, we have used a neural network (a modified version from [1]) to
approximate a reduced quantum distribution, which is known to be on the brink
of being nonlocal. After we have successfully reproduced this distribution, we
investigated its proximity to the nonlocal area. By introducing some noise we
could show how close this distribution is on the border and that already a small
part of noise can set it into the nonlocal area and thus cannot be reproduced by
a neural network. Furthermore, we have observed that a small network can ap-
proximate the distribution much better than a big network, even when we added
noise to the original distribution. Lastly, we have tested the robustness of this
dispersion by adding some complete random noise and let this new distribution
being reproduced by the neural network. Doing this, we have observed that the
neural network can approximate the dispersion, consisting of random noise, well
and thus is local. Following that, only the above introduced specific noise can
stir the distribution to the nonlocal area.

i

Contents

Acknowledgements i
Abstract ii
1 Introduction 1
1.1 Motivation. 1
1.2 Related Work 2

2 Background 3
2.1 Quantum Distribution Calculation 3
2.1.1 Fritz Distribution 3

2.1.2 LLL Distribution 4

2.2 Neural Network, 5

3 Implementation and Reproduction of the Fritz Distribution 8
3.1 Quantum Calculation by Python 8
3.1.1 Condition of Alice, Bob and Charlie 8

3.1.2 Calculation of a Measurement 9

3.1.3 Setting up the Distribution 10

3.2 Reproduction 11
3.3 Training Python to do Quantum Math by Himself 14

4 Reproduction and Investigation of the LLL Distribution 16
4.1 Noise at the Input oL 17
4.2 Random Noise 20

5 Conclusion & Future Extensions 22
5.1 Conclusion. 22
5.2 Future Extensions, 23

i

CONTENTS v

5.2.1 Elaboration of the Random Noise for the LLL Distribution 24
5.2.2 Train The Computer To Perform Quantum Math 24
5.2.3 New Distributions and Networks 24

Bibliography 26

CHAPTER 1

Introduction

1.1 Motivation

With the further development of quantum computer and consequently with quan-
tum computation, cryptography and distributions, these fields are getting inter-
esting in different directions. From how to entangle several atoms up to the
implementation of a quantum algorithm, the area of current investigation in
these fields is great. In addition to current progress, more interesting benefits
of quantum physics in computer science has been developed and even more are
in the pipeline. Then no one can doubt that the next technological change will
include quantum computers and can bring us, not just in science, but also in the
daily routine several benefits.

One of these fields is the handling of quantum distributions. As every distribution
is a quantum dispersion build-up from different sources in a network and con-
tains all possible conditions these sources can have. However, contrary to classical
distribution, the quantum ones cannot be reproduced by classical sources using
hidden variables, similar to the Bell scenario. Even if we use a neural network in
order to learn a computer to reproduce such a distribution, it does, as proven in
[1], not work.

Nevertheless, if we want to reproduce such a given distribution by a computer,
then we have to use another ansatz. In this thesis, we used the idea of teaching
the computer how to perform a quantum calculation, which is necessary in order
to calculate such a dispersion. Due to this ansatz, the computer must only figure
out the different conditions, which the sources in the network have used for the
calculation of the quantum distribution.

In order to implement this ansatz, we firstly used the fact that these conditions
are linked together. After we have figured out these connections between these
conditions, we used several loops and recursion to firstly reduce the remaining
possible conditions and then figure out a final possible combination and arrange-
ment of these conditions.

Additionally, we observed another distribution, which is on the brink of being
local and can thus be reproduced by a classical neural network. In order to show
the distributions proximity to the border between locality and nonlocality, we

1. INTRODUCTION 2

implement two different kinds of noises. With the first kind of noise we can stir
this distribution towards the nonlocal area, where it cannot be approximated well
by the neural network. This can be viewed in Figure 4.3 and Figure 4.5, where
both the target distribution and the reproduced distribution with and without
noise are shown.

With the other kind of noise we have shown that the distribution is quite robust,
meaning that it is not easy to set this dispersion in the nonlocal area, even though
this distribution is near the border between locality and nonlocality. This have
we observed by adding complete random noise to the distribution, which does
not set this distribution, contrary to the previous kind of noise, in the nonlocal
part.

1.2 Related Work

The idea of reproducing a quantum distribution was already investigated in the
paper from Krivachy [1]. In this paper, they have observed the behaviour of
different quantum distributions, which are known or even proven to be non-local.
By introducing two different kinds of noises, one at the source and one at the
detector, they have set these distributions in the area of locality.

In order to show the locality /nonlocality, they used a neural network, based on
so-called hidden variables, which try to reproduce a given distribution. If it can
be reproduced by the machine afterwards, then this dispersion is local, otherwise,
it is non-local and thus a quantum distribution. After the non-local distribution
consists of around 22 per cent of noise, the distribution can be reproduced by the
neural network and is therefore local.

In this paper, they used different distributions for the purpose of testing out
their method under several circumstances. Due to this noise, which is mainly
one single continuous parameter in the range between zero and one, the authors
of this paper can observe these distributions not just in the local and non-local
area, but also in the transition between these two fields.

As a start, we were able to use the corresponding code ([2]|) of this paper. Based
on this we started to investigate these distributions, mainly focused on the Fritz
([3]) distribution. In this bachelor thesis we used a different ansatz without a
neural network, in order to successfully reproduce also the non-local part of this
distribution (without any noise). Additionally, we modified their neural network
in order to reproduce the classical Lovasz-Local-Lemma distribution ([4]). Fur-
thermore, we implemented different kind of noises, but contrary to the paper
from Krivachy, we used it to set the LLL distribution in the nonlocal area.

CHAPTER 2

Background

2.1 Quantum Distribution Calculation

In order to understand a given quantum network, we observed the possible out-
puts of such a network and their corresponding probability. By summarising all
combinations of the different possible outputs, we got a distribution, which can
be a classical or a quantum ones. Here we observed possible distribution in the
so-called ’triangle’ network (Figure 2.1), which is the simplest tripartite topol-
ogy. This triangle scenario has been proven in [3| to be the smallest network, in
which a non-classical correlation exists. Even though it is a simple scenario, the
numerically and theoretically complexity should not be underestimated.

In this network, we use the binary or quaternary outputs of each of the three par-
ties, leading to 8, respective 64 possible states. Each of these states has its own,
specific probability, which then can be concentrated in a probability distribution.
The resulting distribution has been later used to be reproduced by the machine.
If you are interested in the here used quantum computation (set up, calculation
and background), please read [5].

2.1.1 Fritz Distribution

One of these distribution is introduced by Fritz [3]. It is based on the Bell scenario
([6]), modified for the triangle scenario and its non-classicality is therefore well
understood. Here we want Alice and Bob to share one of the four Bell states, i.e.,
|Uap) = %(|OO) + |11)). Charlie meanwhile share with Alice either a classically
correlated state, i.e. |[¥uc) = %(|OO> + |11)), or a maximally entangled state
(like the Bell states). It does not depend which one is used, nor which Bell state
is used.

The purpose of this connection is straightforward. Alice and Bob first measure
the system they share in the computational state (|0),|1)). Depending on the
random binary outcome, Alice measures either in the |®() or in the |®;) basis.
Parallel to Alice, Bob measures according to his outcome which Charlie, in the

2. BACKGROUND 4

Figure 2.1: Triangle network configuration, where later A, B and C are named
as Alice, Bob and Charlie

|©) or |01) basis. The outcome of both measurements is announced by Alice and
Bob as their total output. Charlie measures his state, similarly to Alice and Bob,
in the {]0), |1)}-basis and announce it as his output. Due to this measurement,
Charlie is aware of the measurement setting Alice and Bob used.

Overall, each of the three parties can have four different outputs, leading to 64
various combinations. Nevertheless, not all of the 64 combinations are possible. If
Alice or Bob (or both) are currently not measuring in the same base as Charlie,
then this combination of states is illegal and have thus a probability of zero.
Finally, every single combination with its own probability to reach can be put
together in a probability distribution p(Alice, Bob, Charlie).

In conclusion, such a possible distribution can be viewed in Figure 3.1. As seen in
the dispersion, just a few possible combinations of states of Alice, Bob and Charlie
have a probability higher than zero. For the entire calculation of a possible
distribution, please read section 3.1.

2.1.2 LLL Distribution

The LLL distribution was introduced in [4]| and is based on the Lovéasz-Local-
Lemma, which was proven in |7]. The idea behind this lemma is to find condi-
tions under which one kind of output events in a probability space can get rid of
them simultaneously. This kind of output is called “bad events” and is defined as
the output “0”.

2. BACKGROUND 5

This distribution is known to be local, but close to the border of the nonlocal
area. Still, it can be reproduced by classical sources, even so, a pretty small
amount of specific noise can steer it in the nonlocal field, which will be proven
in section 4.1. This distribution is also set in the triangle configuration, but it
does not use quaternary outputs of the three parties as in the Fritz distribution.
Instead, it uses binary outputs and is thus just a 2-by-2-by-2 distribution, which
is set up in the following way:

Each of the parties Alice and Bob have the output value a(X, Z) = X, b(Y, Z) =
Y with X,Y € {0,1}. The variable Z is here meaningless, but because of the
fact that in triangle configuration exists distributions where a and b depends
of Z, we left it here for consistency. Meanwhile Charlie’s output is defined by
(X, Y)=1-X)1-Y).

The probability of the possible values of X and Y are similarly. For X =Y =0
is the probability P(X = 0) = P(Y =0) = _1%‘/5 and for X =Y =11t is
PX=1)=PY =1)= 377‘/5 Overall, this leads to the following probability
distribution p(Alice, Bob, Charlie):

p(0,0,0)
p(1,0,0) = 0.

p(0,0,1) = 0.381966 p(0,1,0) = 0.236068 p(0,1,1)

- 0
236068 p(1,0,1) =0 p(1,1,0) =0.145898 p(1,1,1)

0
(2.1)

This distribution is normalised, thus the sum over all probabilities leads to one.
Due to the eponymous Lovasz-Local-Lemma, another equation, called symmetric
probabilities, must be hold. According to it must p(0,0,1) = 0.381966 be equal
to the addition of p(1,0,0) = 0.236068 and p(1,1,0) = 0.145898, which is here
satisfied to.

2.2 Neural Network

Since the first idea of connecting adjustable points together (|8]), neural networks
are getting a successful tool for solving a great variety of issues in recent years.
The idea behind a neural network is quite intuitive. It consists of an input layer,
where it pre-process the incoming data, some hidden layers and an output layer.
Each of the layers can consist of several adjustable points, which are connected
to his neighbour layers, as it can be viewed in Figure 2.2. These points have
a special activation function, which can be modified in order to customise the
neural network.

For training the neural network, we gave it some samples consisting of an input
and an output. The neural network will now use these samples to adjust their
points until it can reproduce the corresponding output from an input. Addition-
ally, we gave the neural network some validation samples, so it can check if it is
on the right way. Furthermore, we can test it with some test samples, so we see

2. BACKGROUND 6

Input layer | Hidden layers ¢ Output layer

Tnput 1 (et / \ /
S eliee
v N\ VAN

T
Input 2 ‘N‘~“

W/

>0,
<7 WY
.\“A“” A’h

\ [N
% NN

Figure 2.2: A sample neural network with the input layer, some hidden layers
and the output layer. The number of layers and even the connection between the
layers can be customised so that it can tackle the given problem best. While the
output layers are mainly for merging the values from the neural network into the
final output value type and the input layers are for preparing the data, the main
training part is placed by the hidden layers in the middle section.

how well the neural network perform. Finally, if the neural network has learned
enough, we can use it to predict the corresponding output from any input.

As for our needs, we took the neural network from Krivachy [2] and modified it
for our purpose. It is still a classical neural network and not like in [9] or general
in [10] a quantum one. The “feedforward” neural network is based on three hid-
den sources, which are like in a directed acyclic graph connected together. While
the input (three hidden variables) consist of uniformly drawn random numbers,
the outputs are the conditional probabilities. This output is computed with a
Monte Carlo approximation, in order to describe a joint probability distribution,
which leads us to the reproduced quantum distribution.

Due to the fact that not just the input is restricted, but also the whole neural
network, it will only be able to reconstruct local models. This limiting archi-
tecture is built upon only three not fully connected part, where each of them
consists of several layers of magnitude equal to four. For the reproduction of the
LLL distribution we only used one “Dense” layer per part, which used a “tanh”
activation function. Together with a “Lambda” layer, for the pre-processing of
the input data, and a final “Dense” layer, which used a “softmax” activation func-
tion, we just had 66 trainable parameters in the neural network.

As an optimizer we implemented a large variety of several different ones, like

2. BACKGROUND 7

Parameter: 0.0
['eEO: 0.0 ' '001: 0.381966 ' '010: 0.236068 ' '011: 0.0 ']
['100: 0.236068 ' '101: 0.0 ' '110: 0.145898 ' '111: 0.0 ']

Round 1 of 1, with model triangle and LLL distribution of param v = 0.8. Normalization (sum): 1

10000/10000 [====] - 26s 3ms/step - loss: 8.2605e-05 - val_loss: 9.780%9e-06
10/10 [====] - 0s 1ms/step - loss: 8.6516e-06

Loss (with test samples): 8.65161382535006%9e-06
Distance calculated: 0.01684553017065297
Distribution: LLL, normalization (sum): 1

Parameter: 0.0

['0O0: 0.0048685 ' '001: 0.3853791 ' '010: O 0.0013936 ']
['100: 0.2423987 ' '101: 0.0013948 ' '110: 0.1423513 ' '111: 0.0 ']
Distance: 0.01684553017065297

Figure 2.3: A sample training session of a single iteration. In the upper part of the
picture is the target distribution, which the neural network tried to reproduce in a
single training iteration with the below-mentioned configuration. At the bottom
is the approximated distribution with, according to the target dispersion, the
discrepancy. Additionally is the final loss value from the training, validation
and test section and the current value of the parameter (please read section 4.1)
visible.

“FTRL”, “RMSprop”, “Adam”, “Adadelta” and so on. For the loss function, we
have implemented as well a huge selection of options, reaching from the standard
“mean squared error” function up to particular loss functions as “Log-Cosh er-
ror” or the “Kullback-Leibler divergence”. Further the implemented loss function
“Euclidean distance” is used at the end of the neural network for the visualisa-
tion of the discrepancy between the predicted and the target distribution, rather
than using it as a loss function. Such a training procedure with input and the
predicted output can be viewed in Figure 2.3

Here we founded the best configuration for the optimizer and loss function to be
the combination of “Log — Cosh error’” and the “adam’-optimizer with a learn-
ing rate of 0.01. With a batch size of 6,000 and 10,000 training, 1,000 validation
and ten test samples we got a discrepancy (“Euclidean distance”) of down to 0.005
for the LLL distribution, which satisfied our goal of a maximum distance of 0.01.

CHAPTER 3

Implementation and
Reproduction of the Fritz
Distribution

3.1 Quantum Calculation by Python

As mentioned in the introduction, no classical attempts based on hidden variables
can reproduce a given quantum distribution. Thus, we have to use a different
ansatz in which we trained the computer to calculate quantum computations,
which are the foundation for a quantum dispersion. In a first step, we wanted to
calculate a Fritz distribution (see subsection 2.1.1) by using defined conditions
for Alice, Bob and Charlie.

First of all, we had to implement the whole calculation for quantum computa-
tion, namely for a joint measurement of two basis. Here, these basis are built
up from the three Pauli matrices. Having done that we can set up the four con-
ditions of Alice, Bob and Charlie, according to the previously mentioned setup
(subsection 2.1.1) of the Fritz distribution. Following these rules, we started the
calculations of the probabilities according to every possible arrangement of these
conditions, which is the foundation of our dispersion. Having done that, we wrote
all of the 42 possible dispositions in a 4-by-4-by-4 tensor. In that way we receive
our nonlocal Fritz distribution, which is based on the by us defined conditions of
the three parties.

Concretely these three steps, beginning with the possible conditions, looks like:

3.1.1 Condition of Alice, Bob and Charlie

Alice, Bob and Charlie each have two different parameters, while each of them
has two possible states. Concluding they have four possible conditions, which
can be written in a 1-by-4 matrix. Alice’s and Bob’s first parameter specify the
basis, which they use for the measurement (|®)/|0)), and the second parameter
define the outcome |0)/|1). Charlie’s parameters meanwhile consist only of the

3. IMPLEMENTATION AND REPRODUCTION OF THE FRITZ DISTRIBUTION 9

by Alice and Bob used measurement basis. Thus they are the same ones, but can
be in a different arrangement as by Alice’s and Bob’s first parameter.

Therefore for example, the 1-by-4 matrices of Alice, Bob and Charlie can look
like the following;:

X +Y,0 X, 1 X-Y, X
_ X-v1 | vo | x+vy
Alice = X—Y.0 Bob = X.0 Charlie = X-vy (3.1)
X+Y,1 Y1 X+Y,X

The "X’ and ’Y’ represent the Pauli matrices, which are used for the joint mea-
surement

Note that it does not depend on which condition stands at which position in the
matrix, only the above mentioned “rules” must be followed.

3.1.2 Calculation of a Measurement

The outcome of the probability p(z) through a (joint) measurement can be cal-
culated with:
p(x) = (VM) = tr(|¥) (V| M) (3:2)

While here is W one of the four bell states, written as a density vector, like:

1
~00)+111) 1 [0

v

V2 AR
1

The measurement operator M consists here of two components. One of them
is the measurement operator (M,) defined by Alice’s first parameter (see in the
previous section), whereas the other one (Mp) is defined by Bob’s first param-
eter. If for example the Pauli matrix X’ is used, then we first compute the

. . - -1\ . 1
corresponding eigenvectors €] = < 1) /€9 = 1
The two measurement operators are then calculated by the outer product of each
of the eigenvectors. This two matrices must satisfy the norm: 1 = My + M;.
Depending on the outcome, “0” or “1” (second parameter of Alice and Bob), we
take one of the matrices as our measurement operator M4:

1/1 1 1/1 -1
Mao=3 (1 1) Mar=3 (—1 1)
Together with the other measurement operator (which can be in another ba-
sis), the measurement operator M is then calculated by the outer product (or

Kronecker product).
M =Mjs® Mg (3.3)

3. IMPLEMENTATION AND REPRODUCTION OF THE FRITZ DISTRIBUTION 10

Overall, the probability of a single state is computed like:

1
1 o] 1
p(z) = tr(|¥) (Y| M) = ”(ﬁ 0|2 (1 00 1)Ma1y®Mpgo1y)
1

3.1.3 Setting up the Distribution

In the end, a distribution is set up by the probability of each possible state. So
here, it would consist of 43 = 64 possible states, where each of them has a certain
(normalised) probability to get to this specific state (like the state 210’ has the
probability a and the state 032’ has the probability b).

The probability is calculated by the above-mentioned measurement, where the
measurement operator is chosen by the current conditions of Alice, Bob and Char-
lie. For example below we used the example states mentioned in Equation 3.1,
likewise for the example distribution in Figure 3.1

Example 1, state ’210’:
-Charlie has the condition ’0’, so his parameters are X’ and 'X — Y.
-Alice has the condition '2’, so her parameters are X’ and 0.
-Bob has the condition '1’, so his parameters are ‘X — Y’ and 1.
This probability is unequal to zero because the parameters Alice and Bob use are
the given states from Charlie. So for the measurement, the first measurement
operator M4 is Mx o and the second one is Mp = Mx_y 1. So their probability
is computed now by:

p(z) = (V|M4y @ Mp|¥) /4 (3.4)

The ’/4’ comes from the four possible conditions Charlie can have (each with a
equal probability).

Example 1, state ’032’:

-Charlie has the condition ’2’, so his parameters are 'Y’ and X — Y.

-Alice has the condition ’0’, so her parameters are X’ and 1.

-Bob has the condition ’3’, so his parameters are X + Y’ and 1.

This probability is equal to zero, as Alice and Bob use parameters which are not
in the given conditions from Charlie. Only when Alice has as her first parameter
'Y’ and Bob has ‘X — Y” too is this state possible and thus the probability is
higher then zero.

3. IMPLEMENTATION AND REPRODUCTION OF THE FRITZ DISTRIBUTION 11

Figure 3.1: Possible distribution, where the state 210’ refers to states: Alice =
'2’, Bob = ’1’, Charlie = ’0’

3.2 Reproduction

After we calculated from the given conditions of Alice, Bob and Charlie a quan-
tum distribution, we wanted now to let the machine do the opposite. Doing so
and in order to reproduce the given distribution, we gave a quantum dispersion
to the machine and let it find out the possible conditions. This turned out to
be more challenging than it seemed at first. Even though the 'rules’ (from sec-
tion 3.1) of how these conditions must be adjusted in order to get the target
distribution are clear and simple to implement, they are closely linked to each
other. Meaning that, whenever we changed a condition while trying out to re-
produce a single given probability of a specific state, it changed more or less the
whole distribution. This happens due to the fact that a single condition from for
example Charlie influence the distribution in 16 states.

Further problem was that changing different conditions could lead to the same
result. Therefore, if you want to swap for example the output of the measurement
operator of Alice’s first and fourth condition in order to change a specific proba-
bility, then you probably can do the same with two of Bob’s conditions, leading
to the same result. The same effect can be seen in Figure 3.5, where different
conditions lead to the same distribution. This leads to the problem that you
never know if the just swapped conditions are a progress in the right direction or
not.

So a simply recursion or loop can not be successful. If we would have done that,
we would have to record every single change the program had done, in order to
know which changes are not yet tried out. In addition, testing out every possible
combination in a simple loop would take too long, because of the huge amount (up
to 6 % 10%) of possible combinations. This number can be increased significantly

3. IMPLEMENTATION AND REPRODUCTION OF THE FRITZ DISTRIBUTION 12

—
o
o
=
co
[
(=)
ol
co
o

.01830583
.10669417
.10669417 .10669417
.01830583
.01830583 -
.10669417 .01830583
.10669417 .10669417

.01830583 O.
.10669417
.01830583

.10669417

o 0 0 0 0 0O 0060 oo o
o 0O 0 0 00 00 o o o
o O 0 0 O 0 0o o o o

8.
8.
0.
B

0

0.
8.
8.
0.
0.

Figure 3.2: The high percentage of states with a probability equal to zero can be
seen in this distribution directly.

if were using additionally measurement operators among to the yet used Pauli
matrices and their addition/subtraction. Already a doubling of the measurement
operators would lead to an 18-times greater number of possible combinations,
impossible to try out every assembly of conditions.

For the purpose of resolving this problem, we started looking at how the condi-
tions of the three parties are connected to which one. Meaning that we wanted to
know which combination of conditions has a probability equal to zero and which
one has not. Due to the fact that just a quarter of all probabilities in the distri-
bution are not equal to zero, we got a close overview of the linked conditions of
Alice, Bob and Charlie. Only when each measurement operator of Alice and Bob
is on the same basis as Charlie’s measurement operators, it leads to a probability
unequal to zero. This is only the case in 16 out of 64 different conditions, as it
can be seen in Figure 3.2.

Thanks to that, we can reduce the possible conditions for the target distribu-
tion significantly (down to around 3 x 10°). As next, we just have to test every
measurement basis, which Alice, Bob or Charlie can have used for the calcula-
tions. There are still hundred thousand of possibilities on which basis each of
them have been used and how they can be arranged. However, several different
arrangements lead to the same distribution and some basis lead to values that
are completely different from the distribution. Knowing that we can sort out the
majority of different basis and look just at a 'few’ disposals.

Finally, out of around 50 different arrangements possibilities, we only have to
figure out the correct one. This is just a small number which we have to try
out. In order to increase the speed and efficiency of the program, we used a short
recursion and some loops, where we continually observed every point of this dis-
tribution. If one point has another probability as in the target distribution, we
started looking at the conditions of Alice, Bob and Charlie and swapped them,
until we found better arrangements for these conditions. In the end, this leads
us to a possible legal order of conditions for Alice, Bob and Charlie in order to

3. IMPLEMENTATION AND REPRODUCTION OF THE FRITZ DISTRIBUTION 13

Figure 3.3: Target conditions for Figure 3.4: By the program founded
Alice, Bob and Charlie. conditions for Alice, Bob and Charlie.

Figure 3.5: While either the defined conditions (Figure 3.3) and the founded
conditions (Figure 3.4) are different, they both lead to the exactly same distri-
bution. This distribution is shown here, where the different states (for exam-
ple '132’) are written together with their probability (p(Alice = 1, Bob = 3,
Charlie = 2) = 0.106694174).

reproduce the given distribution.

In conclusion, we can reproduce the given quantum distribution. Due to the fact
that, as above mentioned, several different measurement operators leads to the
same result, we can use different conditions for computing the same distribution.
This can be seen in Figure 3.5, where the parties and their different conditions
for calculating the distribution are not the same ones as the ones founded by the
program.

3. IMPLEMENTATION AND REPRODUCTION OF THE FRITZ DISTRIBUTION 14

Figure 3.6: The input string consists of two randomly chosen measurement op-
erators. The first three signs specify the first measurement operator, meaning
that here ['Y’ '+’ ’X’| refers to the measurement operator based on the addition
of the Pauli matrix “Y” and “X”. Similar refers the fifth, sixth and seventh (['Y’
"N’ 'N’|) characters, while "N’ stands for an unused place, to the second measure-
ment operator, which is here based on the “Y” matrix. Lastly, the remaining two
signs specify the output of the two measurement operator. In order to give the
neural network a standardized input string, we have to preprocess it, which leads
to the next string in the image. Finally, the output consists of a single float,
representing the probability from the joint measurement of the two basis.

Based on this fact and not having any additional information’s about the used
conditions of Alice, Bob and Charlie, it is impossible to discover the exactly used
conditions and their arrangements for this distribution. However, this is some-
what meaningless, then our goal was to reproduce a given distribution, which we
successfully managed.

3.3 Training Python to do Quantum Math by Himself

In the previous section, we have implemented with several lines of codes the cal-
culation for quantum computations, in order to calculate a quantum distribution.
From now on we want that the machine can do it by itself, without any kind of
nearly hard-coded implementation. In order to achieve this goal, we set up a
neural network with the purpose of learning the quantum calculation of a joint
measurement.

As an input, we just used the basis of the measurement operator, which is im-
plemented here as a short string. The neural network accepts input data just in
some predefined types, so we have to compile the input string into a tokenized
string, where each character is replaced with a specific number, which is shown
in the middle string in Figure 3.6. The target output itself is then a single float,
which is, according to the input measurement operators, the corresponding prob-
ability of the joint measurement calculation. An example of an input and the
corresponding output can be seen in Figure 3.6.

For the auxiliary functions we implemented a huge variety. As an optimizer
there is a great selection consisting amongst other the “Adam”, “Nadam”, “FTRL”,
“SGD” or the “RMSprop”. The “FTRL” is a optimization algorithm, which suits
best for models with large and sparse feature spaces, whereas the focus of the
“Adam” algorithm lies more on deep neural networks.

3. IMPLEMENTATION AND REPRODUCTION OF THE FRITZ DISTRIBUTION 15

Figure 3.7: On the left side of the tabular are the correct
output probabilities, while on the right side are the pre-
dicted values written. As we can see, the neural networks
prediction stands in no relation to the correct values.

Concerning the loss function, we have started with simple “mean squared error”,
“mean absolute error” or the “mean absolute percentage error” functions, contin-
uing up to particular functions as the “Log-Cosh error” or the “Kullback-Leibler
divergence”. While the “mean squared error” evaluate higher distances more than
smaller ones, the “Log-Cosh error” has the advantage of not being strongly af-
fected by occasional wildly incorrect prediction.

Only for the metrics we have used either a standard one, namely the “accuracy
class” or no one. As a model, we have tried out several possible combinations of
different layers, like “Dense”, “Dropout”, “BatchNormalization” or “Embedding”
layer. A varying width of the neural network (number of (trainable) points per a
single layer) have we tested too, leading to eight up to several thousands trainable
parameters.

When it comes down to the training procedure of the neural network, the prob-
lem appeared. Even though the neural network seems to learn from the given
samples, he just does not learn right enough to give useful predictions. Even
with enough time (until the loss is not getting smaller anymore), it can not give
accurate predictions, as it can be seen in Figure 3.7. It seems that the neural
network does not use the input data as it should, because with random input
and output we got the same useless predictions. Due to lack of time, we could
not have tackled this issue, but it can be considered for a future improvement.

CHAPTER 4

Reproduction and Investigation
of the LLL Distribution

The LLL distribution (subsection 2.1.2) is known to be in the local area and
thus calculable with hidden variables. Accordingly, we used the given neural net-
work for the reproduction of this dispersion. We modified this neural network in
terms of size and add several auxiliary functions, like additional optimizer and
loss functions, which can be read in section 2.2. These changes were necessary
to customise the neural network for our needs and to achieve acceptable results.
In order to evaluate how good the neural network’s prediction of the dispersion
is, we look at the distance between the predicted distribution and the target ones,
which we manually computed according to subsection 2.1.2. We have chosen as
a first step a target maximum discrepancy of 0.01, which is calculated by the
“Euclidean distance” d(predicted, target) = \/Zi’b’c(p(a,b, c¢) — t(a,b,c)). This
can already be achieved with a pretty restricted network consisting of 66 train-
able parameters, which are split up into three different layers, each representing
a hidden variable.

As common with neural networks, after a certain point they like to tend using
huge amounts of new samples in order to reach just a little better approximation
of the target distribution. Here we found this point at a pretty sparse neural
network. With just 66 trainable parameters, 10,000 samples, 1,000 validation
samples and around ten minutes on a high-end PC we already achieved pretty
accurate reproductions of this distribution. With a calculated discrepancy of
down to 0.004, we cannot just say that this reproduction is, without doubt, local,
but also we observed that this approximation is quite accurate and satisfied our
goal of a maximum distance of 0.01.

In order to achieve such a small distance, we let the neural network training
several times the same setup and used the shortest distance, which was founded
by these attempts, as the final discrepancy between the target and predicted dis-
persion. We did this since the output distribution of the neural network is not
every time the same, nor the founded distances according to it. This difference
between several attempts can be seen in Figure 4.1.

16

4. REPRODUCTION AND INVESTIGATION OF THE LLL DISTRIBUTION 17

Distance between target distribution and the computed distribution

0.014 .

0.012 4

0.010 .

0.008 4

0.006 §

0.004 4

Figure 4.1: The discrepancy between the predicted distribution of the neural
network and the target dispersion can reach, due to the behaviour of a neural
network, different values with the same starting point. That’s why we let the
neural network training the same set up several, here 20 times, in order to find
and use the shortest distance, which is here represented by the blue point.

After we have tested this dispersion, we started to introduce noise. We imple-
mented two kinds of noises for the purpose of testing the robustness and local-
ity /nonlocality of the distribution. In order to investigate the robustness of this
distribution, we added some small random noise, leading to a distribution, which
has slightly different values according to the LLL-distribution.

4.1 Noise at the Input

The LLL distribution is known to be on the brink of locality and nonlocality.
In order to show this, we implemented the first noise at the initial part of this
distribution’s set-up. This means concretely that we added this noise just at
the four points (p(a,b,c) = p(0,0,1) = p(0,1,0) = p(1,0,0) = p(1,1,0)), where
each of them already has a probability higher than zero and let the other four
points with their probabilities equal to zero. This kind of noise is set up by

4. REPRODUCTION AND INVESTIGATION OF THE LLL DISTRIBUTION 18

Figure 4.2: LLL distribution without any noise, used as a target distribution for
the neural network.

Figure 4.3: Predicted distribution by the neural network according to the target
distribution in Figure 4.2. The approximation of the neural network is pretty
good, the discrepancy between the target and the predicted distribution is with
0.00247621 quiet small and thus can this distribution be considered as local.

811: 8.8 ']

]

Figure 4.4: Target distribution, which is build up from the LLL distribution and
consisting around 84.7 per cent of noise.

Figure 4.5: Predicted distribution by the neural network according to the target
distribution in Figure 4.4. The approximation of the neural network is really
bad, the discrepancy between the target and the predicted distribution is with
0.44174192 way to large and thus is this distribution from above nonlocal.

adding a parameter n at the position p(0,0, 1), leading to a different probability
for this point, according to the value of the parameter. This parameter is a
single float, which change the probability of one single point. Furthermore, for
the reason of normalization and following the “Lovasz-Local-Lemma” (p(0,0,1) =
p(0,1,0) + p(1,1,0)), we had to adjust the remaining three chances. Concretely
these probabilities according to the parameter n looks now like:

—1++/5
2\[)2+n

~1++v5, 3-+5
5)5

p(1.0.0) = (CE0) L 228

p(1,1,0) = (3_2\/5)2 +on

p(0707 1) = (

p(O,l,O):()_n

4. REPRODUCTION AND INVESTIGATION OF THE LLL DISTRIBUTION 19

Distance between target distribution and the computed distribution

0.00
