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Abstract

Ethereum uses a permissionless blockchain to enable applications without central
intermediaries. However, the advent of decentralized finance (DeFi) has led to
various new attacks which are being launched on a global scale. Bots continuously
scan pending transactions and employ different tactics to profitably frontrun
them. A common type of frontrunning is the so-called sandwich attack. In this
work, we present a large-scale analysis of sandwich attacks for a time period
of twelve months. We found that during this time there were at least 480’276
attacks leading to an accumulated profit of 64’217 ETH (189’311’716 USD). We
also show that miners have recently begun to play a more active role in these
value extractions which drastically changes the patterns we observe for sandwich
attacks. Splitting up frontrunnable trades can be a valid mitigation strategy. We
show how traders could have saved 30’525 ETH (89’987’700 USD) by releasing
multiple smaller swaps instead of one large trade. A public tool to check whether
a transaction is susceptible to sandwich attacks and to find a suitable order split
was released on www.DeFi-Sandwi.ch.
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Chapter 1

Introduction

Ethereum is a permissionless peer-to-peer network based on blockchain technol-
ogy. Its support of smart contracts has led to the emergence of decentralized
finance (DeFi), a set of finance-focused protocols that enable users to take out
loans [1], or exchange tokens [2] without any intermediaries involved. As there is
no strict legal framework surrounding these services, practices emerged that are
prevented in the traditional financial system by regulation, but can happen freely
on Ethereum. Specifically, traces of frontrunning can nowadays be found in most
blocks that are added to the Ethereum blockchain. This was first described by
Daian et al. in 2019 [3]. While DeFi started off as a democratization of finance,
it has become a platform with considerable information asymmetries where a
small number of players extract large values from unsuspecting victims. In this
context, Ethereum is often compared to a dark forest [4] where bots continuously
scour pending transactions and look for ways to attack them. In recent months,
miners have started to act as predators themselves and began actively reordering
transactions to extract additional value. These new developments were fueled by
a project called Flashbots [5] which allows users to submit suggestions for block
compositions directly to miners. While researchers are discussing whether miner
extractable value (MEV) is boon or bane for the stability of the Ethereum net-
work [6, 3], unsuspicious DeFi users lose millions of dollars every month because
their transactions are getting frontrun. This problem will remain even after the
Ethereum network switches to a proof of stake consensus mechanism.

Possible cryptography-based defenses and new implementations for DeFi infras-
tructure to mitigate this issue are being discussed [7], but far away from intro-
duction or even mainstream adoption. Current solutions mostly revolve around
private mempools where users pay a fee to submit transactions directly to a miner
[8, 9]. This can however cost hundreds of dollars and drastically contravenes the
idea of decentralization and trustlessness that Ethereum is based on.

In this work, we focus on so-called sandwich attacks happening on decentral-
ized exchanges. We first analyze the strategies of attackers and show how DeFi
users are impacted. We describe why the recent developments require a different
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1. Introduction 2

analysis approach than chosen in related work, and present results that go far
beyond what was known so far. We then show how users can prevent sandwich
attacks by splitting vulnerable transactions into multiple trades. This mitigation
strategy can be used on the current DeFi infrastructure and does not require
any technical knowledge, personal contacts, or trust in miners. We describe
the functionalities of www.DeFi-Sandwi.ch - a tool that informs traders whether
their transaction is susceptible to sandwich attacks and suggests a suitable order
split. Finally, we present the insights from a user perception survey we conducted
among Ethereum users regarding sandwich attacks.

We hope that our work helps to enlighten the dark forest and combat the current
information asymmetry in the DeFi world. Our publicly available tool should em-
power crypto enthusiasts to use existing DeFi services without the risk of falling
victim to a frontrunning predator.

www.DeFi-Sandwi.ch


Chapter 2

Background

This chapter provides an overview of the important concepts related to our work.

2.1 Automated Market Maker (AMM)

A decentralized exchange (DEX) allows users to trade tokens without the need
of a central intermediary. While exchanges in traditional financial markets are
typically based on order books, most decentralized exchanges in Ethereum are
implemented as automated market makers. These exchanges maintain liquidity
pools of two assets and enable users to swap one for the other.

2.1.1 Constant Product AMM

The largest decentralized exchange in Ethereum, Uniswap, is built as a constant
product AMM [2]: Users are able to swap tokens in the liquidity pool if the
product of the two reserves, r1 and r2, is the same before and after the swap. Most
AMMs also charge a fee for executing trades (currently 0.3% of the input amount
on Uniswap). This fee stays in the asset pool and is eventually distributed to the
liquidity providers as incentive to provide liquidity. If a user swaps an amount a
on Uniswap, the output amount is hence calculated using the formula

a · 0.997 · r2
r1 + 0.997 · a

.

Since the reserves of a liquidity pool can change between the signing of a transac-
tion and its execution, the users are not guaranteed to trade at a specific market
price. They can therefore choose the maximum relative price increase they are
willing to accept. In the Uniswap interface, this slippage rate is specified as a
percentage value and then transformed to a minimum output amount. If the
received output is smaller than the specified minimum, the swap is reverted. In
this case, users keep their tokens but must pay the Ethereum gas fee.

3



2. Background 4

Uniswap is currently the largest decentralized exchange in Ethereum with al-
most 2bn USD locked in liquidity pools and 1bn USD of daily trade volume
on average [10]. Other popular exchanges like SushiSwap and PancakeSwap are
forks of Uniswap and the described concepts also apply to them with some small
adaptions.

2.2 Frontrunning

In Ethereum, a signed transaction is sent to miners who are incentivized to in-
clude it in the blockchain. It is not clear in advance who is going to mine the
next block and a transaction is typically broadcasted to the whole network. Nodes
store these pending transactions locally in the mempool. The time it takes for
a transaction to be included in a block depends on the chosen gas price and the
available block space.
Whoever has access to an Ethereum node can inspect transactions in the mem-
pool. If a pending transaction TV fulfills some criteria, an attacker can broadcast
a new transaction TA1 with a slightly higher gas price. If a miner orders trans-
actions strictly according to the gas price, the attacker’s transaction TA1 will be
executed before transaction TV . Frontrunning has been studied in traditional
markets for decades [11]. In Ethereum, it was for the first time extensively doc-
umented by Daian et al. in 2019 [3]. They observed that bots not only create
new transactions based on mempool activity but also engage in gas price bidding
wars with each other for preferable block placements.

2.2.1 Miner Extractable Value (MEV)

Several papers have described how frontrunning and backrunning can be used
to generate a profit [12, 13, 14, 7, 3]. Examples range from replay attacks over
arbitrage to sophisticated attack schemes related to collectibles and ICOs. All
profits achieved through frontrunning attacks depend on the transaction order
in a block. Since miners have full control over how they arrange transactions,
profit through frontrunning is considered miner extractable value (MEV). This
term refers to the value that miners can generate by adding new transactions
to a block or favorably ordering pending transactions [3]. There is a current
discussion between experts whether the existence of MEV is a risk for consensus
layer security [3], or fundamental for keeping the Ethereum network decentralized
[6].

2.2.2 Sandwich Attacks

As discussed in chapter 2.1.1, a swap on a decentralized exchange can lead to
significant boosts of an asset’s market price. Attackers continuously monitor the
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mempool to find a transaction TV which entails large price differences. They then
release a frontrunning transaction TA1 to buy the given asset, and a backrunning
transaction TA2 to sell it for an increased price. The attacker’s cost consists of
the Ethereum transaction fees (dependent on the gas price), as well as the swap
fee (0.3% on Uniswap).

The price increase is limited by the chosen slippage rate of TV . If the market
price increases too much before the victim transaction is executed, its slippage
detection will be triggered and the transaction will fail. In this case, the attack
will not be profitable. More formally: Let v be the amount of asset t1 to be
swapped in TV , and m the minimum amount of asset t2 to be received (deter-
mined by the expected output and the slippage tolerance). Let x be the amount
of t1 swapped in TA1. We assume that no other swap took place in the pool since
TV was created and that r1 and r2 represent the original liquidity reserves in the
pool. The victim transaction will succeed on Uniswap if

v · 0.997 · (r2 − x·0.997·r2
r1+0.997·x)

(r1 + x) + 0.997 · v
≥ m.

We solve this for x with equality to find the maximum input amount for the
frontrunning transaction TA1, such that TV does not fail. The result can be
written in compact form as

maxInputA1(r1, r2, v,m) =
5.01505 · 10−7 · t√

m
− 1.0015r1 − 0.4985v

with

t =
√

9000000r21m+ 3976036000000r1r2v − 5964054000r1mv + 988053892081mv2.

The maxInputA1 leads to the largest possible price delta before and after the
victim transaction. It is not necessarily the ideal input amount, as the swap
fees could potentially exceed the generated revenue if very extreme values for
slippage tolerance and reserve amounts are chosen. For all practical purposes,
the calculations shown above will however represent the most profitable input
amount for TA1.

2.2.3 Flashbots

Miners play a central role in the process of MEV extraction, as the name implies.
However, permissionless blockchain technology is built on the fundamental idea
of decentralization. Flashbots is an independent organization that wants to cre-
ate an ecosystem for MEV extraction [5]. Instead of miners having full control
over transaction orders in blocks, they propose a system where bots (“searchers”)
can submit suggestions for transaction orderings (“bundles”). Miners then either



2. Background 6

choose one of the submitted bundles as transaction order or create their own.
Searchers incentivize miners to include their bundle by sharing part of the profit
with them. This turns MEV extraction from a central process into an open
market where bots continuously search for the most lucrative way to assemble a
block with pending mempool transactions. Miners have no obligation to consider
Flashbots bundles. They can order transactions by descending gas prices, as it
was done for years. But miner revenue has increased by 6.5% on average when
the submitted bundles were considered, according to data published by Flashbots
[15]. This offers a natural incentive for miners to become part of the network.
The project was launched at the beginning of January 2021 and by mid-April
2021, more than 85% of the Ethereum hashrate was using Flashbots [15]. This
drastically changes the way MEV is extracted and has a large impact on sandwich
attacks, as we illustrate in chapter 3.2.2.



Chapter 3

Analyzing Sandwich Attacks

In the following, we describe how we scanned the Ethereum blockchain for sand-
wich attacks, and talk about the insights we got from analyzing them. Our anal-
ysis starts at block number 9’976’964 (May 1, 2020) and ends at block number
12’344’944 (April 30, 2021).

3.1 Methodology

We run our own Ethereum node to get access to the block history. A modified
geth client is used to export all transaction receipts where a swap event was
triggered by a smart contract of a decentralized exchange. After pre-processing
these receipts, we scan our data for two transactions TA1 and TA2 that comprise a
sandwich attack. The presence of a victim transaction TV is optional. We apply
the following heuristics to identify a sandwich attack:

1. TA1 and TA2 are included in the same block and in this order.

2. TA1 and TA2 have different transaction hashes.

3. TA1 and TA2 swap assets in the same liquidity pool, but in opposite direc-
tions. The input amount for the swap in TA2 is equal to the output amount
of the swap in TA1.

4. Every transaction TA2 is mapped to exactly one transaction TA1.

A sandwich attack can be successful, even if TA1 and TA2 are placed in different
blocks. However, attackers want TA1 and TA2 to be included in one block, as
additional swaps in the same pool could endanger their profit. Heuristic 1 allows
us to find a lower bound of all sandwich attacks.
Heuristic 2 is necessary because two swaps fulfilling the given heuristics could
potentially be made in the same transaction. This would not constitute a valid
sandwich attack.

7



3. Analyzing Sandwich Attacks 8

Sandwich attacks can still be profitable, if the input amount of TA2 differs from
the output amount of TA1 (and thus violates heuristic 3). However, as this heuris-
tic is our primary way to detect sandwich attacks (see section 3.1.1), we exclude
imperfect attacks in our analysis. A rational attacker is incentivized to sell back
all tokens in TA2 which were received in TA1, as the price for this asset might de-
crease in the future. Holding small quantities of different tokens is not desirable
because moving them will require users to pay a fixed transaction fee.
In rare cases, we were able to find two identical backrunning transactions. To pre-
vent double-counting revenues, we excluded these transactions from our analysis
by applying heuristic 4.

3.1.1 Comparision to Related Work

We have seen similar heuristics in work published by Qin et al. [12], as well as
Torres and Statee [14]. Our methodology however differs in some fundamental
aspects: First, we do not require the presence of a victim transaction TV . Two
transactions fulfilling the criteria above are considered a sandwich attack (al-
though not a profitable one), even if none of the surrounded transactions do any
swaps in the same pool. We especially want to include sandwich attacks where a
potential victim transaction failed to execute because it was attacked by multiple
bots.

Both related publications have some additional requirements for TA1 and TA2:
In the analysis by Torres and Statee, the liquidity for the two swaps must be
provided by the same address, while Qin et al. require that TA1 and TA2 are
either signed by the same account or sent to the same smart contract. We found
successful attacks where none of these heuristics apply. This can be traced back
to increasingly sophisticated attack mechanisms and a growing network of proxy
contracts. We thus match frontrunning and backrunning transactions only if the
output amount of the former is equal to the input amount of the latter. In the
mentioned related studies, the requirements for similarity were less strict and the
two amounts were allowed to differ by 1% and 10% respectively.

Torres and Statee additionally require that the gas price of the victim trans-
action lies between the gas prices of TA1 and TA2. This heuristic does not make
sense in today’s context, as we see a lot of attacks executed in collaboration with
miners. These transactions typically have a a very low gas price (compare sec-
tion 3.2.2) and do not fulfill the given criteria. While Qin et al. did not set any
restrictions for gas prices, they limited their analysis to only 71 different tokens.
Our analysis doesn’t have any comparable restrictions.
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3.2 Empirical Results

In the given period, we analyzed 2’367’980 blocks using the heuristics above. In
total, we discovered 480’276 sandwich attacks. Most attack transactions (93.26%)
in this dataset were sent to a proxy contract instead of a router offered by the
exchange. This allows attackers to check whether the respective liquidity pools
still hold the expected amount of tokens before executing the swap. If this is not
the case and an attack would not be profitable, the swap can easily be cancelled.
In total, we found 964 different proxy contracts that received at least one attack
transaction. Attackers appear to switch their proxies frequently, as a contract
is only in use for two weeks on average (90’913 blocks). The most active proxy
contract (0x0000..0084) processed 51’475 of the attack transactions we discovered
(5.36%). For the sandwich attacks we investigated, the destination address of
the frontrunning and the backrunning transaction differed in 2.95% of the cases.
Overall, the sandwich attacks we discovered made use of 5387 different ERC-20
tokens. In 94.77% of attacks, ETH served as input token for the frontrunning
as well as the victim transaction. In 3.55% of attacks, the input token for the
frontrunning transaction was one of four well-known stable coins (Tether, USDC,
BUSD, or DAI).

3.2.1 Profitability

To make statements about the profitability of attacks, we focus on transactions
where at least one of the two involved tokens is ETH (which is the case for 96.28%
of attacks). This allows us to calculate gas prices directly and sum up the ac-
cumulated profit in Ether. We use the reserves in the liquidity pools before the
attack to find the conversion rate between different tokens. The accumulated
profit over time can be seen in 3.1. The profit started increasing rapidly in July
2020. This coincides with the total number of sandwich attacks we are observing.
Although the number of attacks stayed high through fall 2020, the profitability
of the individual attacks decreased, most probably because of increased competi-
tion. The surge of profit at the beginning of 2021 could be connected to attackers
collaborating with miners which is explained in more detail in section 3.2.2. In
total, attackers earned 64’217 ETH (189’311’716 USD) in the given timespan.
This also includes unprofitable attacks which constitute 18.14% of all attacks.
If unprofitable attacks were excluded, the profit would amass to 73’337 ETH
(216’197’476 USD).

To estimate the effectiveness of the attacks, we investigated the subset of prof-
itable attacks where there was exactly one victim transaction, and where this
victim transaction was sent to the router of either Uniswap V2 or Sushiswap.
For this selection (226’905 attacks), it was possible to compute the slippage tol-
erance set by users. These calculations are based on the assumption that the

https://etherscan.io/address/0x000000000000084e91743124a982076c59f10084


3. Analyzing Sandwich Attacks 10

Figure 3.1: The number of sandwich attacks we observed and the profit attackers
accumulate over time.

reserves in the liquidity pools were the same when the transaction was created
and before the first attack transaction was executed. Figure 3.2 shows how the
selected slippage rates are distributed. Especially the share of transactions with a
slippage tolerance of more than 10% is notable. The official Uniswap V2 interface
suggests values between 0.1% and 1%. Our analysis showed that attackers al-
most always achieve the maximum possible profit, i.e. they choose an ideal input
amount for the buy transaction and push the price to its limit. The minimum
output and the actual output of the victim transaction differed by less than 1%
on average. This also includes all cases where an attacker could not achieve the
maximum profit due to a lack of funds.

The most profitable attack with a single victim transaction occurred on Feb
17, 2021 on Uniswap V2: In this transaction (0xea1f..7a1c), a trader swapped
304 ETH for Union Protocol Governance Token (UNN). The allowed price slip-
page was set to a staggering 13%. A known sandwich bot released the respective
frontrunning (0x87b5..66d6) and backrunning (0xf493..4054) transactions. They
used 140 Ether in the frontrunning transaction and received 179.17 Ether from
the backrunning transaction. The bot thus netted a profit of 39.17 ETH (100’626
USD) in a single attack.
The ten most unprofitable attacks all happened on Dec 19, 2020, and seem to
stem from a misconfiguration of an attacker. They lost at least 219 ETH (645’612
USD) in less than 90 minutes. In the most unprofitable attack, the supposed vic-

https://etherscan.io/tx/0xea1f0d4b4e427671350db3c2c24d48bf06460eb08f901bc1b02e43221d1c7a1c
https://etherscan.io/tx/0x87b5d812c93001ec0d9f95c1922efed54b78b30e91805c09f86b1048e17c66d6
https://etherscan.io/tx/0xf493d8254568a7c89f4e2ad9e9fb5a7243374d3cd873dea3657e9b7d83be4054
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Figure 3.2: Distribution of the chosen slippage rates for all profitable attacks
where the victim was sent to a router contract.

tim swapped DFF for ETH. The attacker however swapped ETH for DFF in the
frontrunning transaction (0x8ffb..2e02) and DFF for ETH in the backrunning
transaction (0xa4c6..c192). This inversion of tokens led to a degraded market
price and a loss of 23.67 ETH (69’779 USD).
Unprofitable attacks can often be traced back to an unfavorable transaction or-
dering or to a failed victim transactions. The latter can happen if multiple bots
attack a victim transaction which pushes the price over the accepted slippage
tolerance. In 37.62% of unprofitable attacks, there was no successful swap in the
respective pool between TA1 and TA2. There have also been several attacks on
sandwich bots that extract value from them by adjusting the transfer behavior
of tokens [16, 17]

3.2.2 Active Reordering by Miners

Miners have full control over the transaction order in a given block. They can
thus decide to exclude transactions, or even launch attacks themselves. If a ra-
tional miner does not actively reorder transactions, the order is given by the
descending gas prices. If miners include private transactions, they can choose
an arbitrary gas price for these transactions. Qin et al. monitored the mempool
and found several examples of miners trying to disguise private transactions by
setting a realistic gas price [12]. However, typically miners choose a gas price of
1 Gwei or less for private transactions.

https://etherscan.io/tx/0x8ffb78c104f294199dba6fcff4bc6ccbe93c0ffab2e35286dfe835c5e5e82e02
https://etherscan.io/tx/0xa4c6c5b0f0abd942a84041797d6d0a0ccce1d5dad68842fc63aa3ad71951c192
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We consider a sandwich attack to be in collaboration with a miner if the gas prices
of the frontrunning and backrunning transactions are both at most 1 Gwei. There
was a surge of such attacks since the beginning of 2021. This timing coincides
with the release of the Flashbots project (see chapter 2.2.3). Instead of broad-
casting transactions publicly and hoping that they will be included in the right
order, attackers can use this tool to get more control over the block in which
their attack should take place.

Table 3.1 shows the observed changes ever since miners started actively reorder-
ing transactions to extract additional value. If attackers find a susceptible victim

Property Nov Dec Jan Feb Mar Apr
Total Attacks 52K 60K 48K 51K 76K 84K
Gas Price ≤ 1 Gwei 0% 0% 5% 5% 6% 36%
Average Distance TA1, TA2 39.6 37.9 33.7 33.5 31.8 13.9
One Victim Transaction 83% 84% 86% 87% 90% 97%
Profitable Attacks 78% 76% 67% 80% 84% 92%

Table 3.1: Implications of active reordering by miners

transaction, they typically include TA1, TV , and TA2 in three contiguous block
positions. This leads to a relative increase of attacks where there is exactly one
swap transaction between TA1 and TA2. It also leads to an increase in profitability.

It is to be expected that in the future most – if not all – sandwich attacks
are executed in collaboration with miners. With a system such as Flashbots in
place, the block positions of publicly broadcast attack transactions become some-
what arbitrary. Attackers even face the risk of miners purposefully ordering their
publicly broadcasted transactions unfavorably. Considering the rapid increase in
DeFi activity and the associated surge of MEV opportunities, miners are incen-
tivized to actively reorder the transactions in their blocks. Daian [6] even argues
that this process is fundamental to keep the Ethereum network secure in the
future.

3.2.3 Unused Opportunities For Sandwich Attacks

Whether a sandwich attack generates positive revenue depends on the slippage
tolerance and the input amount of the victim transaction, as well as the sizes of
the respective liquidity pools. The details for this calculation were highlighted in
chapter 2.2.2. To determine the hit rate of attackers, we investigated all swaps
that occurred in the given timeframe and checked whether they could have been
sandwich attacked. As we need to determine the slippage tolerance set by users,
we again focus on transactions that were sent directly to the Uniswap V2 or the
Sushiswap router. There were 17’644’672 such swaps in the given time frame.
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Figure 3.3: Ratio of profitable sandwich opportunities that were used by attack-
ers, considering only transactions sent to a router contract with ETH as input
token.

Most bots however only execute attacks where ETH serves as input token, so we
focus our analysis on the 9’003’759 swaps where this was the case. The cost of an
attack depends on the gas price and the gas used. While miners do not have to
pay for gas if they execute an attack themselves, they forgo income they would
have received by including other transactions. In the following, we consider a
swap a missed sandwich attack opportunity, if the potential revenue is larger
than the gas cost it would take to attack it.
In total we found 3’612’343 swaps with ETH as input token that could have
been profitably attacked. Figure 3.3 shows how the share of unused sandwich
opportunities declined over time. A similar trend can be seen when only consid-
ering swaps that would have returned more than 1 ETH in revenue. The largest
missed opportunity for a sandwich attack was transaction (0x71c9..979b) where
724 ETH (2’134’352 USD) could have been extracted with a successful sandwich
attack.

There are several reasons why opportunities for sandwich attacks remain un-
used: If a frontrunnable transaction only spends a few seconds in the mempool,
bots do not have enough time to generate and transmit the respective attack
transactions. Some frontrunnable transactions are never broadcasted publicly
and instead created by the miners or sent to them using a private channel [5, 8].
Opportunities for sandwich attacks can also remain unused because of unfavor-

https://etherscan.io/tx/0x71c9b9d5b063ca17368ece18a7939c159b09c079c047581d0c6e6dff6814979b
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able transaction orderings or a lack of funds on the side of the attacker. Most
notably, attackers today almost exclusively focus on swaps with ETH as input
token. We found that 52.35% of attackable swaps have a different token as input.
An attacker who does not hold the respective token would need to do at least
one more swap which would reduce the profitability of the attack.



Chapter 4

Order Splits as Mitigation
Strategy

A sandwich attack is only possible if the difference in market price before and
after the swap is large enough to compensate for transaction and exchange fees.
One basic mitigation strategy is hence to split up an order into multiple smaller
parts. These split orders each lead to a smaller change in price. This approach
has been explored in traditional financial markets for multiple decades [18]. In
this chapter, we examine the application of order splitting in the context of
decentralized exchanges and show how the strategy can prevent large losses for
traders.

4.1 Theory

In an ideal order split, the input amount and slippage tolerance of a swap must
be chosen such that there is no way to generate a profitable sandwich attack. We
assume that only transactions of one trader and one attacker are being broad-
cast. Additionally, we assume that, if a large swap is split into multiple sequential
transactions, each of these is included in the blockchain before the next one is
being broadcast. The number of split orders must be kept as low as possible –
not only because of the constant transaction fee which needs to be paid for every
transaction, but also because the exchange fee stays in the pool after every swap
and changes the market price for the worse.

We now illustrate how to find the ideal input amounts for the split orders. The
following calculations are based on the notions we introduced in chapter 2.2.2.
There we illustrated how the ideal input of an attacker, maxInputA1 , is calcu-
lated based on the input and minimum output amount of a victim transaction, v
and m, as well as the sizes of the liquidity pools, r1 and r2. The reserves and the
accepted slippage rate are now considered given. The minimum output amount
m thus solely depends on v and will be written as minOutputv(v). If the attacker

15
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executes and ideal attack, the output amounts of the two attack transactions for
victim input v are calculated as follows:

outputA1(v) =
maxInputA1(v) · 0.997 · r2
r1 + 0.997 ·maxInputA1(v)

outputA2(v) =
outputA1(v) · 0.997 · (r1 +maxInputA1(v) + v)

(r2 − outputA1(v)−minOutputv(v)) + 0.997 · outputA1(v)

A sandwich attack can only be profitable if the inequality below holds. As all
parts of the formula only depend on parameter v, a ternary search can be used
to solve it with equality for v.

outputA2(v)−maxInputA1(v)− transactionFees ≥ 0

The transaction fees are calculated as a product of the gas price and the gas
used. The latter depends on the number of executed computations during an
attack and hence also on the sophistication of the proxy contracts. If the attack
is executed by an independent bot, the gas price is usually very similar to the
one of the victim transaction. If the attack is however launched in collaboration
with a miner, the gas price can be set to 0. To hedge against all kinds of attacks,
it makes sense to disregard transaction fees entirely when solving the equation
for v.
The result, maxInputV , constitutes the largest possible input amount, such that
the swap cannot be exploited by a sandwich attack. The input amount of the
first split order, v1, is thus max(v,maxInputV ). If v1 ≤ v, the same calculations
is done again with updated reserve amounts r′1 and r′2. This process needs to be
repeated until v1 + v2 + ...vn = v. With a simulation of these n split orders, it is
then possible to determine whether the decreased token output and the increased
transaction cost can compensate for the potential losses induced by a sandwich
attack.

4.2 Backtesting

We tested whether order splitting is a valid mitigation strategy by checking if it
could have prevented the sandwich attacks we discovered. To establish a lower
bound it was assumed that attackers only pay exchange fees and no transaction
fees. The slippage rate for the split orders was set equal to the original swap.
In total, we considered 226’905 profitable sandwich attacks where the victim
transaction was sent directly to the router of an exchange. The analysis showed
that 160’347 (70.67%) of the given attacks could have been prevented if a suitable
order split had been used. In these transactions alone, traders lost 42’504 ETH
(125’301’792 USD). Applying the order split strategy would have saved them
30’525 ETH (89’987’700 USD). This is enough of a reason to make the order
split technology available for the community.
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Figure 4.1: Screenshot of www.DeFi-Sandwi.ch

4.3 Implementing a Web Interface

We built a tool, publicly available on www.DeFi-Sandwi.ch, that automatically
checks whether a trade on Uniswap V2 can potentially be sandwich attacked. If
this is the case, a suitable order split is suggested.

4.3.1 Functionalities

Users can choose the assets to be swapped from a predefined list or insert smart
contract addresses of any ERC-20 tokens. If the respective trading pair exists
on Uniswap, the contents of the liquidity pools are displayed. Users can also
specify their own token pools; a functionality that allows for experimentation
independent of the current Ethereum state. For their transaction, users need
to specify the desired input amount, the slippage tolerance, and the gas price.
According to the notions described in chapter 2.2.2, the tool generates an ideal
sandwich attack and shows the potential profit of the attacker, as well as the
losses of a trader. If a profitable sandwich attack is possible, a suitable order
split is suggested, according to the calculations in 4.1. The respective savings are
also calculated.
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4.3.2 Architecture

The tool is built with Javascript and HTML/CSS. Almost all logic is implemented
client-side which allows users to inspect the code and hence has an educative
component. The backend is implemented using Express.js and mainly serves as
a gateway to the Ethereum network. The respective connection is established by
using the web3.js and Infura APIs. In the backend we also monitor how the tool
is being utilized.

4.3.3 User Monitoring

We combine our own monitoring data with Google Analytics to better understand
the usage of our tool. The daily activity varies drastically, and while we saw up
to 100 unique users on some days, there were no users at all on other days.
Most visitors are from the United States, Turkey, Switzerland, Australia, and
China. Our data suggests that the tool is indeed used to verify that specific
swaps cannot be attacked. We have however not found any traces of these trades
or the suggested order splits in the actual blockchain.

4.3.4 User Feedback

We gathered feedback for the tool by posting it on several social networks and
in discussion groups, as well as through our survey surrounding user perception
(see chapter 5). All responses were positive and most suggestions for improve-
ments revolved around additional features or design changes. It also confirmed
that there was no product with similar functionalities available. Based on this
feedback, we already made changes to the tool which include a simplification of
design, and the inclusion of additional explanations.



Chapter 5

User Perception of Sandwich
Attacks

To fully comprehend sandwich attacks, it is not enough to analyze block receipts;
the human factor plays an important role as well. We thus initiated a survey to
understand how users perceive these kinds of attacks and what mitigation strate-
gies are used. Despite considerable effort, it was difficult to find traders who were
aware of sandwich attacks and willing to fill out a survey. This again illustrates
the large information gap in this area. We thus decided to focus the survey on
experts of the Ethereum community. It is an indicator for future research in
that domain and an opportunity to set this work and the developed tool into
perspective.

With a comprehension question at the start, it was verified that the participants
had a correct understanding of how sandwich attacks worked. In total, there
were valid responses by 13 people. Six of them self-identified as researchers, four
as developers, and three as investors.
Most participants (77%) have been personally sandwich-attacked or know some-
body who has been attacked. This is, however, not how they became aware of
the topic: All participants learned about it by reading research publications or
posts on Twitter. One person also mentioned using Sandwiched.wtf [19] to check
whether transactions from their account have been attacked.
While almost all participants agree that DeFi users can be negatively impacted
by sandwich attacks, a clear minority considers the attacks immoral (see Fig-
ure 5.1). Two people even brought up the point that sandwich bots should not
be considered attackers. One participant wrote: “The use of the word ‘attack’
frames the discussion in a way that leaves no room for differing opinions, and in
my opinion shows a lack of understanding about the ethics of markets.”

The participants were asked to estimate different data points which we collected
in this study. For the number of sandwich attacks per day, the answers vary
across the whole spectrum of options without any clear favorites: While some
believe that less than 500 attacks occur per day, others suspected it was more

19
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Figure 5.1: Responses given by survey participants about statements concerning
the impact of sandwich attacks.

than 50’000. In April 2021, there were on average 2’803 sandwich attacks per
day.
The guesses also differ for the average daily profit, which was 430 ETH in April
2021. The responses of the participants are again evenly distributed across all
options from 50 ETH to 10’000 ETH. The probability that a profitable victim
transaction is attacked was estimated to be at least 60% by all participants but
one. This is an overestimation compared to the numbers we present in chapter
3.2.3, even if only swaps with ETH as input token are considered. However, we
do not know the ratio of transactions that were included by miners without be-
ing broadcasted publicly, so it is not possible to have a definitive answers for this
question.

When the participants were asked about how they had tried to prevent sandwich
attacks, more than half of them mentioned consciously setting a low slippage rate.
Two people said they had used private transaction pools to submit their trades.
We also asked them about mitigation strategies they were aware of but had not
tried: Six people mentioned submitting transactions via Flashbots. The technical
barrier for this seems to be high though. One person mentioned mistX [20], a
decentralized exchange that runs entirely on the Flashbots network, as a possi-
ble way to prevent sandwich attacks without having to deal with technical details.

Overall, the survey shows how even experts are unsure about the actual im-
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pact and frequency of sandwich attacks. The most effective mitigation strategies
present high technical barriers, and most participants agree that the attacks can
negatively impact DeFi users and the Ethereum network.



Chapter 6

Conclusion and Future Work

We used block analysis to investigate sandwich attacks on decentralized exchanges
in Ethereum. Compared to related work, we apply heuristics better suited for
the current DeFi environment and present more recent and extensive data. To
our knowledge, it is the first time that the strategy of attackers and the impact of
active reordering by miners is systematically documented. We established order
splitting as a mitigation strategy in a theoretical framework, verified its effective-
ness using backtesting, and created a public tool that suggests ideal order splits
for given trades. Our user study showed the large information gaps surrounding
sandwich attacks and confirmed the need for continued research in that area.

There are various ways our data analysis can be expanded. The Ethereum plat-
form and the DeFi ecosystem are undergoing rapid changes. Extending the block
analysis for a longer time period will reveal how sandwich attacks are influ-
enced by different factors, like Ethereum’s switch to proof of stake, the release of
Uniswap V3, or the continuous proliferation of the Flashbots project. The pre-
liminary results of this study were met with a lot of interest when shared privately
with Ethereum experts, so we want to make them available in a concise form for
the community. A possible extension of the historical data analysis could be the
creation of a live feed of sandwich attacks happening in the Ethereum network.
The tool we built is a research prototype and there are several possibilities to
make it more user-friendly. Apart from improving the design, it could be ex-
tended by including multiple exchanges, or functionality that lets users directly
sign and broadcast the suggested order split transactions.
A future research project will revolve around the user perception of sandwich
attacks. For this purpose, we will adapt and extend our survey with more partic-
ipants. We will also conduct in-depth interviews to better understand the human
perspective on sandwich attacks. In general, we hope that with our work we were
able to contribute to the ongoing and important MEV research.
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