
Distributed

 Computing

Enhancing Graph Neural Networks
with Boosting

Bachelor’s Thesis

Nikolas Schäfer

nikolass@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Lukas Faber, Karolis Martinkus
Prof. Dr. Roger Wattenhofer

June 22, 2021

Acknowledgements

I would like to thank my supervisors Lukas Faber and Karolis Martinkus for their
continuous support and the opportunity to work on this project.

i

Abstract

In practice, Graph Neural Networks can often only benefit to a small extent from
the informative advantage they have compared to their individual components,
edges and features. For instance, in some classification problems, Graph Neural
Networks even tend to be outperformed by either edge models or feature mod-
els [1]. To tackle this lack of performance, this thesis suggests using the ensemble
learner boosting on current benchmark datasets and hereby seeks to establish an
alternative to using only Graph Neural Networks. Therefore, this thesis applies
state-of-the-art boosting algorithms to Graph Neural Networks and investigates
their performance compared to the exclusive use of Graph Neural Networks.
We find that boosting Graph Neural Networks offers a small advantage over
Graph Neural Networks without boosting, depending on the used architecture
and dataset. In some cases, however, they do not represent a considerable im-
provement.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Theoretical Background 2

2.1 Graph Neural Networks . 2

2.2 Graph Neural Networks as a Combination of Edges and Node Fea-
tures . 3

2.3 Boosting . 6

2.3.1 Binary Classification - AdaBoost 6

2.3.2 Multi-Class Classification - SAMME and SAMME.R . . . 9

3 Methodology 13

3.1 Graph Neural Networks with Boosting 13

3.2 Experiments . 14

4 Main Results 15

5 Conclusion 20

Bibliography 21

iii

Chapter 1

Introduction

Graphs play a central role in representing and abstracting many scientific, soci-
etal, and mathematical phenomena and thus help to understand many of the as-
sociated complex interrelations, such as social networks or structures of chemical
molecules. The abstraction of these problems to a more structural and mathe-
matical level not only eases the visualization for humans but especially enables
computers to work with such problems.
Consequently, it is reasonable to assume that deep learning models specialized in
graph learning can achieve promising results [2]. Nevertheless, being a relatively
new research topic, Graph Neural Networks are still not fully and perfectly devel-
oped. One could separate the two building blocks of Graph Neural Networks and
graphs - nodes and edges - into two single learning algorithms, one learning only
from the node information and the other one only from the edge information.
Graph Neural Networks then do not have immense advantages over the combi-
nation of their parts [1]. Hence, ways need to be found, so that Graph Neural
Networks can benefit more from having both features and edge information. In
this regard, this thesis applies different configurations of boosting algorithms with
the aim to improve the performance of Graph Neural Networks on node and graph
classification, especially to create a clear advantage to using the combination of
feature and edge only models. In this thesis, we show that certain Graph Neural
Network architectures can be improved on some datasets. Yet, the difference is
rather small and, under consideration of the computational cost and the time
required, does not always make sense. This thesis is structured as follows: In
the first chapter the theoretical background of this thesis is presented together
with an explanation of the theory behind Graph Neural Networks and boosting
algorithms. After that, we dive into boosting Graph Neural Networks and the
conducted experiments and finish with an evaluation of the main results.

1

Chapter 2

Theoretical Background

2.1 Graph Neural Networks

In this first part, based on the related literature, the fundamental principles of
Graph Neural Networks will be discussed. A Graph Neural Network (GNN) is a
type of artificial neural network that has become a prominent research topic in
the past years. What makes it interesting is the ability to learn from graph data.
Graph data are datasets using graphs to display interconnected information. A
graph in a mathematical sense is a collection of nodes that are interconnected by
edges. These nodes can be understood as data points with a specific informa-
tional content revealing properties of the node. The edges, one the other hand,
advertise a relation of some sort between the linked nodes. For example, in a
graph representing a social network, edges could indicate friendships between
people, represented by nodes, that contain information such as a profile picture,
age, etc.. Both parts - nodes and edges - contain relevant information for the
learning process: Each node has a feature vector which can be seen as infor-
mation about itself and edges connecting the node to other nodes, meaning the
node can also obtain information about his neighbor. The feature vector of each
node is converted into an embedding and in several rounds of message passing
to each direct neighbor knowledge about the entire graph is expanded to each
node. As a result of the training, the GNN can classify nodes and graphs based
on information of the nodes’ features and their edges [2].
In general, there are three types of classifications a GNN can make. First, node
classification which is the most commonly used type. As the name suggests, node
classifications try to predict labels of single nodes, e.g. if a user (node) in a social
network is a bot [2]. The second type of GNN classification is graph classification
where the GNN learns to classify entire graphs. In practice, graph classification is
used for example for property prediction based on molecular graph structures [2].
The third type is relation prediction. In this form of classification, the existence
and nature of edges are predicted. This of often used for content recommendation
in online platforms [2]. In this thesis, however, we focus on the usage of GNNs
for node classification and graph classification datasets only.

2

2. Theoretical Background 3

Knowing the idea and coarse structure of GNNs, we will now dive into how they
work specifically.
The defining property of GNNs is the so-called “neural message passing” [2]. This
means that node features - here referred to as messages in the form of vectors
- are passed between the nodes and iteratively updated using a neural network.
In the beginning, each node has a feature vector which is then translated into an
embedding. This embedding corresponding to the node is then updated in several
rounds of the algorithm according to the aggregated embeddings of the neighbor-
ing nodes. The basis of the algorithm is an aggregation function and an update
function. The aggregation function collects the embeddings of the neighbors and
the update function computes a new embedding from the aggregated embeddings
of the neighbors and the old embedding, i.e. from the last iteration. The output
of the final layer is the resulting embedding after K iterations of the algorithm.
In the course of the iterations, every node obtains more information about the
full graph since in the first iteration the new embedding is combined from the
embeddings of the direct neighbors, in the second iteration, from the neighbors
and neighbors’ neighbors, and so on. This way, the nodes end up receiving an
embedding unique to the graph and the node information [2]. For instance, the
embeddings encode structural information, as well as feature-based information.
Structural information is specific to the graph, for example after some iterations
of message passing, the embedding could encode information about the degree
of the k − hop nodes, whereas feature-based information could be the properties
encoded by an embedding that contain information about the neighboring nodes.
From a mathematical perspective the purest form of neural message passing is [2]:

h(k)
u = σ

(
W(k)

selfh
(k−1)
u + W(k)

neigh

∑
v∈N (u)

h(k−1)
v + b(k)

)
(2.1)

where W is a trainable parameter matrix, σ is a non-linear activation function,
and b is a bias term that is also often omitted in the definition [2]. Originating
from this basic definition of a GNN message-passing protocol, many different
GNN architectures can be designed, for example by applying a convolutional
layer.
The next section introduces the background of this thesis and treats the question
as to why boosting GNNs could be beneficial.

2.2 Graph Neural Networks as a Combination of Edges
and Node Features

Graphs consist of nodes and edges, i. e. they result from a combination of nodes
and edges. This fact - transferred to GNNs - means that they can be seen as a
combination of node only and edge only models, thus it is also possible to train
only on edges or only on nodes. In this context, the term node is replaced by

2. Theoretical Background 4

feature as the nodes contain an information structure that is similar to classi-
cal machine learning features. Faber et al. [1] investigate if “prominent GNN
problems use both features and edges [. . .] and to what extent a dataset can be
solved with only features or edges” and therefore suggest dividing the training
processes of GNNs into training with only features and training only with the
information of the graph’s edges. In the focus of the analysis stands the question
“how well GNNs exploit the combination of features and edges” [1]. This raises
the question, whether a GNN is the sum of its parts, or more concretely, how,
after training only edges and features separately, the combined solvable set of
both, meaning the set of nodes that the two models can learn added together,
is related to the solvable subset of a GNN [1]. The single models - feature-only,
edge-only, and GNN itself - are described in the next sections.

The architecture of the feature-only model entirely renounces the graph struc-
ture of the dataset and by doing so, focuses on training with the features of the
nodes. This is implemented by storing the node features in a node×feature ma-
trix. Then a multilayer perceptron is trained using this resulting feature matrix.
This corresponds to training a simple artificial neural network with the belonging
weight matrices and nonlinear activation functions. Alternatively, any machine
learning algorithm can be used for the feature-only model under the condition
that it takes a sample× feature matrix as input [1].
In contrast to the feature-only model, the edge-only model takes advantage of
the graph propagation properties of a GNN. That is to say, the neural message
passing - as explained in the section before - is preserved. However, the node
features are replaced by all-one vectors. Any other initialization of the embed-
dings is conceivable as well, but “all-ones” ensures neutrality and flexibility in the
training process [1].
As a measurement of the predictive quality of the different models, this thesis
suggests to use the solvable set, similar to Faber et al. [1]. Another measurement
would be the averaged accuracy of each model. However, this approach lacks
consistency and, moreover, misrepresents the solution through a false influence
of the number of classes a dataset has, since the accuracy of a model should never
be worse than random guessing (acc > 1

K , with K being the number of classes).
It is on that account, that a solvable set is used to measure the predictive power
of a model on a dataset. The solvable set is based on the actual correct predic-
tions following a null hypothesis of the Bernoulli Distribution of the K classes.
This means that we have an actual statement about the single correctly classified
nodes which are summarized as a mathematical set in the solvable set. Thus,
“for the universe of predictions of the dataset P , the solvable set of a model M
is:” [1]

S(M) = {p ∈ P |M solves p} (2.2)

Based on the analysis of this solvable set, it is then possible to evaluate if

2. Theoretical Background 5

a GNN is needed for a dataset. In particular, if neither features nor edges can
predict a majority of the nodes, it could be better to use a GNN.
Intuitively, GNNs combine these two structural components (nodes and edges)
of graphs into one end-to-end learning algorithm. They use information about
both, graph nodes and graph layout, to learn to make predictions on specific
graph properties. Hereby, the GNN can learn only from features or only from
edges, due to the flexibility of the algorithm. Thus, having information about
the single parts of the graph, in addition to the advantage of disposing of both of
them, leads to the hypothesis that GNNs’ solvable set is a superset of the solvable
set of features and edge models. Mathematically speaking, a GNN is effective if
the following expressions

|S(GNN) ∩ S(Feautres)|
S(Features)

(2.3)

|S(GNN) ∩ S(Edges)|
S(Edges)

(2.4)

have values close to one, whereby circumstances of a nonideal world must
be taken into account. This also raises the question about the GNN’s ability to
predict nodes correctly that neither of the single parts can which is described by
the following formula [1].

|S(GNN) ∩ U |
|U |

(2.5)

“where U is the set of "unsolved" nodes U = P /(S(Features) ∪ S(Edges))”
[1]. This measurement also comes in handy, when comparing boosted GNNs to
not boosted GNNs

Faber et al. [1] come to the conclusion that feature and edge models can solve
many datasets sufficiently well so that often a GNN is not needed. This applies
in particular to node classification. Also, GNNs perform better at predicting
features than edges, leaving room for improvement. In particular, for graph clas-
sification, GNNs do not always represent the combination of their parts, namely
feature and edge classification.
This thesis will now investigate if the performance of GNNs can be enhanced
by boosting them with edge-only models. The idea is to compensate weaknesses
of GNNs and close the existing gap to enhance GNNs to an end-to-end deep
learning model. The concept of boosting is explained in the following chapter.

2. Theoretical Background 6

2.3 Boosting

Boosting is based on the question of whether many weak learners can be boosted
(combined) to perform better or at least as good as one strong learner. A weak
learner is, generally speaking, a classifier that has an accuracy close to but greater
than random guessing. Having K classes, this means that the accuracy is acc =
1
K + e with e→ 0. A classifier with an accuracy close to 80 or 90 percent on the
contrary is considered a strong learner [3].

2.3.1 Binary Classification - AdaBoost

Boosting was first proposed by Freund and Schapire [3] as a sequential learner.
They introduced the so-called AdaBoost algorithm which is an application of
boosting on binary classification, exemplary so-called decision tree stumps which
are decision trees with a depth of one. These, by nature, have an accuracy of at
least 50 percent which in the case of two classes corresponds to being better than
random guessing. In order to have a detailed understanding of boosting before
starting to apply this algorithm on GNNs, it is essential to examine the roots of
boosting. AdaBoost is the classical boosting algorithm and will be explained in
detail in the next section.
The general idea behind boosting is to improve predictions by training several
weak learners, each of which compensates for the weaknesses of its predecessors.
This concept is based on the availability of a weak learner, called (weak) hy-
pothesis [3]. AdaBoost proceeds in iterative calls to the base learner hence is
trained several times with the same dataset. Generally, AdaBoost is not about
minimizing the training error, but rather about setting an upper bound on the
training error, for instance, the error is bounded by an exponentially decaying
function. Before beginning with the algorithm, a dataset D must be defined:
D = (Y1, x1), . . . (Yn, xn) with responses Yi ∈ Y and xi ∈ X ∀ i = 1, . . . , n.
In literature, X and Y are defined as the domain set and the label (infinite)
set respectively and D is the set of data that can be sampled from Y and X .
Essential for boosting is the definition of a so-called set of hypotheses or hy-
potheses class: H = {h|h : X → Y} [4]. The AdaBoost formulation that is
presented in this paper is almost the exact same one originally defined by Freund
and Schapire [3], even though many variants have appeared in scientific liter-
ature. The only difference between the original AdaBoost and the one in this
paper is that the indicator function is used in the weight updating. The result of
this variation is that only the weight of incorrectly classified samples is updated
in each iteration, meanwhile the weight of the correctly classified ones is only
changed by re-normalizing the entire weight matrix. This modification was made
to better align the binary classification algorithm to the multi-class classification
algorithm and to then make its origin and analogy to the binary case more visible.

2. Theoretical Background 7

AdaBoost iteratively uses a base algorithm in order to get the hypothesis on
the reweighed data and interprets their contribution to create a strong classi-
fier [4]. Essential is the use of sampling weights which in the beginning are equal
for all samples. The objective of training is to minimize the error rate weighted
by the distribution D(m) on the training set. Pri∼D(m) “denotes the probability
with respect to the random selection of an example according to the distribution
D(m)” [3]. Accordingly, the weighted error rate corresponds to the sum of the
incorrectly classified samples.

err(m) = Pri∼D(m) [T (m)(xi) 6= yi] =

n∑
i=1

wi1(ci 6= T (m)(xi)) (2.6)

Having specified sample weights then allows training the weak learner a second
time with a stronger focus on the samples that were classified incorrectly in the
first round. This is in practice realized by increasing the sample weights of
exactly those samples and decreasing the correctly classified ones. This process
of training the classifier, evaluating the error, and computing new weights to
specifically train the error is repeatedly executed until the requested accuracy or
convergence is reached. Hereby, the final - ideally strong - classifier is computed
as a weighted sum of all the trained classifiers. This particularly means that in the
beginning, a number of estimators T has to be set. Moreover, the total number
of train data samples has to be set to n. This allows setting the weight of each
sample to wi = 1

n for i = 1, ..., n , ensuring a distribution of the weights since all
sample weights summed up is then equal to on [3]. The following procedure has
to be executed for every of the T estimators: First, the classifier has to be fit to
the training dataset using the weights. Secondly, the error rate of the classifier on
the training data has to be computed, which corresponds to computing the sum
of the weights of the samples that were classified wrong. Crucial for boosting is
a parameter indicating the quality of a classifier or, in different terms, how sure
a classifier is about a certain decision. In AdaBoost, this is realized by alpha
which is defined as α = log 1−ε

ε [3]. One can easily see that classifiers with an
error rate of 0.5 (random guessing) are assigned an alpha of zero, meaning their
“vote” in the final classification does not count. Meanwhile, if the error rate is
very small and goes to zero, the alpha increases to infinity, which would stand
for a perfect classifier. For the algorithm to work, the weights of the incorrectly
classified samples have to be increased. This update of the weights is performed
by multiplying the current weights with the exponential of alpha. Finally, the
weights have to be re-normalized to keep a distribution by dividing each weight
by the sum of all the weights. The strong classifier results from the superposition
of all the trained classifiers. Namely, the output for one sample is the class that
maximizes the sum of all the alphas of the weak classifiers that produce this class
as output [3]. The pseudocode for AdaBoost based on the formulation by Zhu et
al. [5] is provided in Algorithm 1.

2. Theoretical Background 8

Algorithm 1 AdaBoost
Given: (x1, y1), ..., (xn, yn) where xi ∈ χ, yi in {-1, +1}

1. Initialize: W1(i) = 1/n for i = 1, ..., n

2. For i = 1, ...,M :

(a) Train weak learner T (m) using distribution Wt

err(m) =
n∑
i=1

wi1(ci 6= T (m)(xi))/
n∑
i=1

wi

(b) Compute

α(m) = 1
2 log(

1−err(m)

err(m))

(c) Set
wi ← wi · exp(α(m) · 1(ci 6= T (m)(xi))), i = 1, ..., n

(d) Re-normalize wi
3. Output

H(x) = sign(
M∑
m=1

α(m)T (m)(x))

Freund and Schapire [6] showed that the generalization error can be bounded
by the training error. With high probability, the generalization error is smaller
than:

Pr[H(x) 6= y] +O

(√
Td

m

)
(2.7)

wherem is the number of samples, d is the VC-dimension of the weak hypoth-
esis and T is the number of boosting iterations. Hence, in theory, it seems that
boosting would overfit when run for too many rounds since a higher T means
a higher bound for the error. Yet empirical studies have shown that this, in
practice, does not occur, even when performed for more than 1000 rounds. In-
terestingly, the generalization error even continued to decrease after the training
error reached zero. This observation is important for the experiments in this the-
sis, because similar phenomena happened in the testing process with GNNs [6].
Although AdaBoost was first introduced in the context of binary classification,
in this paper a multi-class boosting algorithm is needed. For this purpose, three
different approaches for multi-class classification are briefly examined in the fol-
lowing: SAMME, SAMME.R and Adaboost.M1.

2. Theoretical Background 9

2.3.2 Multi-Class Classification - SAMME and SAMME.R

Boosting can be seen as an infinite-dimensional optimization problem. But in
the original AdaBoost formulation, no specific loss function was denoted. For
SAMME and SAMME.R a specific exponential loss function is defined. SAMME
was first formulated by Zhu et al. [5], motivated by finding a natural extension of
AdaBoost to multi-class. SAMME stands for Stagewise Additive Modeling using
a Multi-class Exponential loss function. The concrete algorithmic implementa-
tion of SAMME is very similar to AdaBoost, except for one minor difference:
the calculation of alpha (Algorithm 2, 2b) is extended by the term log(K − 1),
K denoting the total number of classes. It can be easily mathematically shown
that SAMME reduces to AdaBoost for the case k = 2 by inserting into the new
equation for alpha. Conceptually, this multi-class algorithm has the advantage
that the accuracies of the hypotheses do no longer have to be at least 50 percent,
but still, random guessing which for multi-class reduced to acc > 1

K . As a matter
of fact, this is an effect of the new formula for alpha. This can be proven by in-
serting error rates as high as err ≤ 1− 1

K in the formula for alpha which then is
still a positive number. This again is a crucial condition for the algorithm since
otherwise the weight of incorrect samples would be reduced instead of increased.
This leads to changes in the range of alpha in a way that more weight is put
on misclassified data points. Zhu et al. [5] show that the newly added term is
not artificial or arbitrary, but the mathematical extension to making SAMME
equivalent to fitting a forward stage-wise additive model using a multi-class ex-
ponential loss function. The pseudocode for SAMME can be seen in Algorithm
2. It almost strictly follows the formulation by Zhu et al. [5].

Similar in structure to SAMME is SAMME.R. But instead of using the
final classification of the hypothesis themselves, SAMME.R uses “real-valued,
confidence-rated predictions, such as weighted probability estimates” [5]. It is an
ad-hoc boosting algorithm, meaning it uses the computed weighted probability
estimates in each iteration. These real-valued estimates give SAMME.R its name
(the R stands for Real). The probability estimates of each iterative round are
used to derive the weak hypotheses and also state the changes of the sample
weights [5]. The concrete SAMME.R formulation is presented in Algorithm 3,
based on the formulation by Zhu et al. [5].

A direct and straight-forward approach to transform AdaBoost for binary
classification to a multi-class boosting algorithm would be to use the same algo-
rithm but instead of binary classifiers multi-class base learners. It is possible to
proceed in the same way, only the output of the weak learner is now {0, ...,K},
instead of {0, 1}. The drawback of this boosting algorithm, which was introduced
by Freund and Schapire [3] as AdaBoost.M1, is that training error still has to
be smaller than 0.5 for the algorithm to work. However, when classifying mul-
tiple labels, it is more difficult to achieve such an error, since random guessing
is no longer equal to an error rate of 0.5. This is a major disadvantage that

2. Theoretical Background 10

Algorithm 2 SAMME
Given: (x1, y1), ..., (xn, yn) where xi ∈ χ, yi in {0,...,K}

1. Initialize: W1(i) = 1/n for i = 1, ..., n

2. For i = 1, ...,M :

(a) Train weak learner T (m) using distribution Wt

err(m) =
n∑
i=1

wi1(ci 6= T (m)(xi))/
n∑
i=1

wi

(b) Compute

α(m) = log(1−err
(m)

err(m)) + log(K − 1)

(c) Set
wi ← wi · exp(α(m) · 1(ci 6= T (m)(xi))), i = 1, ..., n

(d) Re-normalize wi
3. Output

C(x) = argmax
k

M∑
m=1

α(m) · 1(T (m)(x) = k))

AdaBoost.M1 has compared to SAMME or SAMME.R. Consequently it is better
to use SAMME than AdaBoost.M1.
Another strategy for multi-class boosting is the “All vs. One” method. Freund
and Schapire [3] propose a multi-class boosting algorithm using this reduction
from multi-class to binary classification called AdaBoost.MH. Nevertheless, this
seems inefficient under consideration that, as a matter of fact, normal AdaBoost
already has to be performed for multiple runs. Beyond that, AdaBoost.MH of-
ten lacks robustness and, if the posed binary classification task do not have a
certain degree of complexity, already one or two wrong classifications by some
weak learners suffice to potentially cause a wrong final classification [3]. This
means, that either SAMME or SAMME.R seems to be the right choice for boost-
ing GNNs.
In this thesis, we choose to use SAMME.R. The first reason for this is that
SAMME.R appears to be the cleaner and mathematically more profound al-
gorithm. Especially, since it uses probability estimates that can express more
accurately how sure a hypothesis is about a certain prediction, while in SAMME
an argmax value is used instead, which is rounded and therefore does not reflect
this aspect as precise as SAMME.R does. Consequently, SAMME.R also incor-
porates into the prediction, if another label has a high probability to be correct,
too. Apart from this, SAMME is very sensitive to an error rate smaller than
random guessing. If this is not guaranteed, the weak learner with such an error
rate cannot be used. SAMME.R, in contrast, does not depend on good accuracy.
This is especially important for this thesis because a GNN might perform worse
than random guessing. Finally, Zhu et al. [5] stated that SAMME.R “converges

2. Theoretical Background 11

Algorithm 3 SAMME.R
Given: (x1, y1), ..., (xn, yn) where xi ∈ χ, yi in {0,...,K}

1. Initialize: W1(i) = 1/n for i = 1, ..., n

2. For i = 1, ...,M :

(a) Train weak learner T (m) using distribution Wt

(b) Obtain the weighted class probability estimates

p
(m)
k = Probw(c = k|x), k = 1, ...,K

(c) Set

h
(m)
k ← (K − 1)(log p

(m)
k (x)− 1

K

∑
k′

log p
(m)
k′ (x)), k = 1, ...,K

(d) Set
wi ← wi · exp(−K−1

K yTi logp(m)(xi)), i = 1, ..., n

(e) Re-normalize wi
3. Output

C(x) = argmax
k

M∑
m=1

h
(m)
k (x)

faster and performs better than same” which is the final tipping point to use
SAMME.R in this thesis. A detailed graphical comparison of the three boosting
algorithms - AdaBoost, SAMME, and SAMME.R - regarding their convergence
of the error rate with the number of iterations is provided in Figure 2.1. The
graphical plot illustrates how SAMME.R converges faster than SAMME and after
several boosting iterations has a lower error rate.

2. Theoretical Background 12

Figure 2.1: Comparison of Adaboost, SAMME and SAMME.R, Figure by Zhu
et al. [5]

Chapter 3

Methodology

3.1 Graph Neural Networks with Boosting

This chapter describes the methodical procedure for applying boosting to GNNs.
In advance of the implementation of GNNs with boosting, AdaBoost was metic-
ulously investigated and studied by applying it to several machine learning al-
gorithms. This way, it could be tested on simpler applications how well the
boosting algorithm works and - most importantly - ensured that the implemen-
tation is flawless. At the beginning of the work, boosting was implemented and
tested on the most simple use case: decision tree stumps which were implemented
with the help of python’s Scikit-learn [7] and NumPy [8] libraries. This was fol-
lowed by a PyTorch [9] AdaBoost application on Logistic Regression. The next
logical step was to expand from the binary classification case to SAMME and
later SAMME.R on a simple PyTorch Feed-Foward Neural Network. Both in
terms of accuracy and convergence similar results to Zhu et al. [5] were achieved.
This reassures the decision to use SAMME.R instead of SAMME. Finally, the
algorithm had to be applied to GNNs.
Boosting GNNs in principle works just like boosting any other classifier. For
training with the multi-class boosting with SAMME.R probability estimates for
each possible label are required. This means applying a softmax layer to the out-
put of the GNN giving every class a value between zero and one while the values
of all the classes add up to one. Training with sample weights is achieved through
the cross-entropy loss. Several GNNs are to be fitted with these sample weights.
After training, the weights are updated in a way that increases the weight of
incorrectly classified samples. These new weights influence the cross-entropy loss
of the next, new GNN that is being trained since larger weights mean a bigger
loss and therefore the GNN attaches more attention to the correct classification
of these samples.

13

3. Methodology 14

3.2 Experiments

After having explained boosting and GNNs and therewith setting the theoretical
foundations for this thesis, the experimental methodology will be explained in
the next section.
The setup of the experiments follows Faber et al. [1] with the same datasets and
GNN architectures to ensure consistency and comparability of the results as this
thesis seeks to implement the outlook suggested by Faber et al. [1]. In order
to get as generally valid and meaningful results as possible, we test some of the
most common GNN architectures and investigate their performance on multiple
for graph learning designed datasets. The exact setup can be read in [1].
For the implementation of boosting with GNNs, mainly the PyTorch library [9]
and the DGL library [10] are used. As for the datasets, we adopt most of the
hyper-parameter settings. The maximum number of training epochs is set to 500,
but an early stopping mechanism with patience of 25 is implemented in the code.
Early stopping occurs frequently, especially in the first few rounds of boosting.
Depending on the dataset and GNN architecture in the experiment, the training
loss at times goes to zero after several boosting iterations. A possible explanation
for the training loss being zero is that the GNN has perfectly learned the train
mask of the dataset. As explained priorly, this - what normally is considered
heavily overfitted - should not pose a problem with boosting since the general-
ization error still decreases. We use the Adam optimizer and cross-entropy loss
for training. All neural networks have three layers and to obtain probability esti-
mates for SAMME.R, an additional softmax activation function is applied to the
output. The embedding width is the maximum of twice the number of inputs or
outputs but bounded to 128 [1]. We set the number of boosting iterations to ten.
This number ensures that we already see some changes on the solvable set but
at the same time have a reasonable training time.
Finally, all configurations - of which there are three - are run with ten different
seeds. The first configuration is to train all GNN architectures without boost-
ing with all the datasets and hereby setting a baseline in terms of accuracy and
the solvable set for comparison with the other configurations. The second con-
figuration is to boost all GNN architectures with all datasets and ten boosting
iterations. It is expected that this configuration already leads to the augmenta-
tion of the solvable set. Lastly, a modified boosting configuration is used: In each
of the ten boosting iterations another model is randomly used for training: with
equal probability, it is either the case that the specific GNN for that boosting
is trained, a feature-only model, or an edge-only model. This is the suggested
extension of GNNs and their parts by Faber et al. [1] and is here referred to as
mixed boosting. Then statistical tests are performed on the test predictions with
a 99.9 percent confidence level.

Chapter 4

Main Results

The results of training the three described GNN boosting configurations were
evaluated according to the benchmark of the respective solvable set. Thereby
two aspects are particularly considered: the solvable set for each configuration
itself (no boosting, boosting, mixed boosting) and each dataset as well as what
the predictive advantage of a configuration over another is, that is to say, what
predictions that GNNs without boosting cannot make correctly, can boosting or
the mixed boosting approach make additionally. It is important to also test this
the other way around, meaning what advantage GNNs without boosting do have
over the boosting configurations. This helps to avoid a one-sided perspective on
the results.
The values in Table 4.1 represent the mean count of runs that pass the sta-
tistical test that was executed for testing (p = 0.001 confidence level). In Ta-
ble 4.1 we can see that the normal boosting approach with SAMME.R generally
works better than ensembling GNNs, edge-only, and feature-only models since
the scores for normal boosting on the solvable set are always at least as good
as for mixed boosting. Compared to only GNNs without boosting, there is a
tendency that boosting performs slightly better than no boosting, except for the
Mutag, AMZN-Photo, OGBN-Arxiv, and Reddit-B dataset. Even though there
are improvements through boosting of up to three percent, we can also observe
drastic deteriorations, for example for REDDIT-B. This suggests the assumption
that some datasets are more suitable for boosting algorithms than others.

In addition to the accuracy as evaluation metric, we take into account how
the actual solvable set changes through boosting, i. e. which correct predictions
GNNs with boosting can make that non-boosted GNNs cannot make. Figure 4.1
illustrates the share of predictions a GNN cannot solve that boosting can solve
and what percentage of predictions that GNNs do not solve, is solved by mixed
boosting. Figure 4.2, in contrast to that, shows what percentage of predictions
that the two boosting approaches cannot solve, is solved by a simple GNN. These
figures help to assess to what extent the boosting methods increased and changed
the solvable set. We observe that the boosting configurations can often solve
around 10 to 30 percent of the predictions not solved by a GNN, depending on
the particular dataset and the GNN architecture used for boosting. In Figure 4.1,

15

4. Main Results 16

Dataset No Boosting Mixed Boosting Normal Boosting

Cora 0.782 0.744 0.784
Citeseer 0.64 0.634 0.659
Pubmed 0.743 0.72 0.758

AMZN-Photo 0.891 0.877 0.882
AMZN-Comp 0.776 0.745 0.779
MAG-Physics 0.944 0.945 0.945
MAG-CS 0.921 0.93 0.921

OGBN-Arxiv 0.598 0.561 0.575
Mutag 0.45 0.0 0.4

Enzymes 0.2 0.233 0.233
Proteins 0.562 0.357 0.598
IMDB-M 0.04 0.333 0.333
Reddit-B 0.625 0.485 0.485

Table 4.1: The three columns “No Boosting”, “Mixed Boosting”, and “Normal
Boosting” show the prediction score resulting from performing a statistical test
with 99.9 percent confidence level on the solvable set of ten runs with different
seeds for the respective dataset. “No Boosting” refers to the classical training of
a GNN without boosting. “Mixed Boosting” contains the values for the configu-
ration in which we randomly use a GNN, an edge-only model, or a feature-only
model. “Normal Boosting” shows the values for boosting GNNs with the normal
SAMME.R algorithm. The first eight datasets are node classification datasets
and the last five are graph classification datasets.

we observe that normal boosting performs slightly better than mixed boosting.
It is remarkable that normal boosting can solve a big share of the graphs that
were incorrectly classified by simple GNNs on the REDDIT-B dataset.

On the other hand, when it comes to the predictions that can be solved by a
simple GNN, but not by the boosting configurations, the image turns out differ-
ently: the share is often in the range of 30 to 70 percent, both for the comparison
with normal boosting and mixed boosting. This is particularly applicable to the
graph classification datasets. Interestingly, for the node classification datasets
the GCN, GS-mean, GS-pool, and GAT architectures can hardly solve any of the
predictions that normal boosting cannot solve. Meanwhile, the GIN-sum archi-
tecture can solve a big amount of predictions that neither of the two boosting
configurations can.
So, we can state that boosting helps solving some of the predictions that could
not be solved without boosting. However, at the same time boosted GNNs can
no longer solve predictions that a normal GNN can. It seems that rather a shift
than an extension of the solvable set takes place that is caused by a stronger
focus on correctly classifying originally not solved predictions and an associated

4. Main Results 17

Co
ra

Ci
te

se
er

Pu
bm

ed

AM
ZN

-P
ho

to

AM
ZN

-C
om

p

M
AG

-P
hy

sic
s

M
AG

-C
S

OG
BN

-A
rx

iv

M
ut

ag

En
zy

m
es

Pr
ot

ei
ns

IM
DB

-M

Re
dd

it-
B

GCN

GS-mean

GS-pool

GAT

GIN-max

GIN-mean

GIN-sum
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Co
ra

Ci
te

se
er

Pu
bm

ed

AM
ZN

-P
ho

to

AM
ZN

-C
om

p

M
AG

-P
hy

sic
s

M
AG

-C
S

OG
BN

-A
rx

iv

M
ut

ag

En
zy

m
es

Pr
ot

ei
ns

IM
DB

-M

Re
dd

it-
B

GCN

GS-mean

GS-pool

GAT

GIN-max

GIN-mean

GIN-sum

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4.1: What percentage of predictions that a GNN cannot make correctly
can be made by GNNs with normal boosting (a) or by GNNs with mixed boost-
ing? This can be a measurement of to what extent boosting leads to an extension
of the solvable set. Higher values mean that the boosting approach can solve a
big ratio of the predictions that only GNNs cannot solve. (Higher values are
good).

neglect of previously solved predictions.

Lastly, Faber et al. [1] state that the considered GNN architectures perform
very similarly, in the sense that they all have a solvable set with a large intersec-
tion. We want to examine if this is also accurate for boosted GNNs. Figure 4.3
shows the Jaccard similarity of the different GNN architectures across all datasets
for normal boosting and mixed boosting. It is directly noticeable that the Jac-
card similarity between all the architectures and GIN-sum is zero while the rest
has rather good values, confirming that the similar performance of different GNN
architectures is preserved for both boosting configurations. Nevertheless, there
seem to be GNNs that work better for boosting than others, for example, GAT.

In summary, boosting GNNs can not meet the expectations to represent a
clear improvement of GNNs without boosting and also do not enhance their per-
formance in a way that suffices to have an absolute advantage over edge-only
and feature-only models. Only assumptions can be made about why this is the
case. One possibility could be that GNNs do not have perfect prerequisites to be
boosted because of their structure and learning algorithm. This would mean that
a machine learning model that is build differently would benefit more from boost-
ing on the same datasets. To investigate this assumption the effect of boosting
on a multilayer perceptron has been examined using the same experimental setup
as for GNNs. Table 4.2 indicates that on average the accuracy after ten boosting
iterations of a multilayer perceptron increases more than the accuracy of boosted
GNNs on several exemplary datasets, which would indeed suggest that GNNs are
not necessary suitable for boosting.

Another possible explanation for the poor effect of boosting could be that the

4. Main Results 18

Co
ra

Ci
te

se
er

Pu
bm

ed

AM
ZN

-P
ho

to

AM
ZN

-C
om

p

M
AG

-P
hy

sic
s

M
AG

-C
S

OG
BN

-A
rx

iv

M
ut

ag

En
zy

m
es

Pr
ot

ei
ns

IM
DB

-M

Re
dd

it-
B

GCN

GS-mean

GS-pool

GAT

GIN-max

GIN-mean

GIN-sum
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Co
ra

Ci
te

se
er

Pu
bm

ed

AM
ZN

-P
ho

to

AM
ZN

-C
om

p

M
AG

-P
hy

sic
s

M
AG

-C
S

OG
BN

-A
rx

iv

M
ut

ag

En
zy

m
es

Pr
ot

ei
ns

IM
DB

-M

Re
dd

it-
B

GCN

GS-mean

GS-pool

GAT

GIN-max

GIN-mean

GIN-sum
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4.2: Similarly to Figure 4.1: What percentage of predictions that a normal
boosting (a) or mixed boosting (b) cannot make correctly can be made by GNNs
without boosting? This shows how many predictions boosting approaches “lose”
for the sake of making predictions a normal GNN cannot make. Higher values
mean that the GNNs without boosting can solve a big ratio of the predictions
that the boosting configurations cannot solve. (Lower values are good).

GC
N

GS
-m

ea
n

GS
-p

oo
l

GA
T

GI
N-

m
ax

GI
N-

m
ea

n

GI
N-

su
m

GCN

GS-mean

GS-pool

GAT

GIN-max

GIN-mean

GIN-sum
0.0

0.2

0.4

0.6

0.8

1.0

(a)

GC
N

GS
-m

ea
n

GS
-p

oo
l

GA
T

GI
N-

m
ax

GI
N-

m
ea

n

GI
N-

su
m

GCN

GS-mean

GS-pool

GAT

GIN-max

GIN-mean

GIN-sum
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4.3: What are the predictive differences of the GNN models? This figure
shows the Jaccard similarity of solvable sets of all the GNN architectures with (a)
normal boosting and (b) mixed boosting over all datasets. Higher values mean
that two GNN architectures can solve very similar nodes.

4. Main Results 19

Dataset No Boosting Normal Boosting

Cora 0.419 0.498
Citeseer 0.438 0.481

AMZN-Photo 0.669 0.713
AMZN-Comp 0.444 0.537

Table 4.2: Similar to Figure 4.1: The columns “No Boosting”and “Normal Boost-
ing” show the prediction score of a multilayer perceptron resulting from perform-
ing a statistical test with 99.9 percent confidence level on the solvable set of
ten runs with different seeds for the respective dataset. “No Boosting” refers to
the classical training of a multilayer perceptron without boosting and “Normal
Boosting” shows the scores for boosting a multilayer perceptron with the normal
SAMME.R algorithm. The four depicted dataset clearly demonstrate the effect
of boosting.

GNNs have already almost reached convergence before boosting. Having a look
at Figure 2.1 we can see that the error rate, and thus also the accuracy, converge
after many iterations. The accuracy of a model that per se is rather a strong
learner will not increase exponentially but converge after few iterations since it
already has a good error rate. If the GNN has a good accuracy this would mean
that the effect of boosting is not as strong as if it was a weak learner.

Chapter 5

Conclusion

GNNs do not necessarily benefit from their informative advantage through the
information they have about node features and graph structure compared to ma-
chine learning models that only use features or edges. This thesis applied the
multi-class boosting algorithm SAMME.R with the objective to enhance the per-
formance of GNNs in a way that they offer a clear advantage over their parts,
features and edges. Two different boosting configurations were implemented:
First, a normal boosting approach that follows the algorithm SAMME.R by Zhu
et al [5]. and always uses the same GNN architecture as a weak learner. Secondly,
a boosting mixture, that randomly uses either a specific GNN architecture, only
its features, or only its edges and thereby ensembles GNNs with their parts.
We come to the conclusion that the normal boosting approach performs better
than mixed boosting. Yet, none of the two configurations represents a clear or
consistent improvement over the use of GNNs without boosting. Despite the
fact that normal boosting achieved worse accuracies on some datasets than just
GNNs, boosting can be seen as a valid alternative depending on the dataset and
the GNN architecture. Whether to use boosting or not is also a cost-benefit
consideration since there is a rather small improvement with significantly higher
computational effort. That is why it has to be decided situationally if boosting a
GNN makes sense. The fact that in this thesis boosting is only performed with
ten iterations should not be neglected when assessing the results since with more
iterations a stronger effect of boosting is conceivable.
The reasons why boosting does not achieve as good results with GNNs as with
other machine learning models such as decision trees or a multilayer perceptron
are unclear at this point and can be subject of further research. This can also in-
clude the consideration of whether another ensembling technique such as bagging
could achieve better results.

20

Bibliography

[1] L. Faber, Y. Lu, and R. Wattenhofer, “Should graph neural networks
use features, edges, or both?” Mar. 2021. [Online]. Available:
https://arxiv.org/abs/2103.06857

[2] W. L. Hamilton, “Graph representation learning,” in Synthesis Lectures on
Artificial Intelligence and Machine Learning, Vol. 14, No. 3, 2020, pp. 1–159.

[3] Y. Freund and R. E. Schapire, “Boosting: Foundations and algorithms,” in
Adaptive Computation and Machine Learning Series, 2012, pp. 1–528.

[4] A. Ferrario and R. Hämmerli, “On boosting: The-
ory and applications,” 2019. [Online]. Available: https:
//www.research-collection.ethz.ch/bitstream/handle/20.500.11850/383242/
20190611_Boosting_Chapter_FINAL.pdf?sequence=1&isAllowed=y

[5] J. Zhu, S. Rosset, H. Zou, and T. Hastie, “Mutli-class adaboost,” 2006.
[Online]. Available: https://web.stanford.edu/~hastie/Papers/samme.pdf

[6] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” in Journal of Computer and
System Sciences, 55, 1997, pp. 119–139.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[8] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep.
2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[9] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,

21

https://arxiv.org/abs/2103.06857
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/383242/20190611_Boosting_Chapter_FINAL.pdf?sequence=1&isAllowed=y
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/383242/20190611_Boosting_Chapter_FINAL.pdf?sequence=1&isAllowed=y
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/383242/20190611_Boosting_Chapter_FINAL.pdf?sequence=1&isAllowed=y
https://web.stanford.edu/~hastie/Papers/samme.pdf
https://doi.org/10.1038/s41586-020-2649-2

Bibliography 22

high-performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[10] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph neural
networks,” arXiv preprint arXiv:1909.01315, 2019.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Acknowledgements
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Graph Neural Networks
	2.2 Graph Neural Networks as a Combination of Edges and Node Features
	2.3 Boosting
	2.3.1 Binary Classification - AdaBoost
	2.3.2 Multi-Class Classification - SAMME and SAMME.R

	3 Methodology
	3.1 Graph Neural Networks with Boosting
	3.2 Experiments

	4 Main Results
	5 Conclusion
	Bibliography

