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1 Introduction

According to its creator, the DFINITY foundation, a non-profit organization
with headquarters in Zurich, the Internet Computer is the fastest and most
scalable general-purpose blockchain which extends the Internet with computa-
tion. Decentralized applications (dapps) and smart contracts can run on the
Internet Computer and serve their content directly to the user in a browser.
Additionally, users can securely interact with and authenticate to dapps using
Internet Identity, ICP’s anonymous blockchain authentication framework. In
other words, ICP seems to be an alternative to centralized cloud computing
services like AWS or Google Cloud with the bonus that it is decentralized and,
according to the DFINITY foundation, infinitely scalable. 1

In this bachelor thesis, supervised by Prof. Dr. Roger Wattenhofer and Robin
Fritsch, we will analyze the inner workings of the Internet Computer (ICP) and
build a prototype project on top of it. We will try to find out how secure, fast,
and scalable it is and if it is, as promised by the DFINITY foundation, the
future of the Internet.

We will start with a technical analysis of ICP, where we deconstruct its inner
workings. The literature on ICP is very one-sided. On the one hand, their
marketing literature is reckoned by many as ”over-the-top” and their developer
literature is highly technical. In this thesis, we will try to strike the middle
ground between the two by appealing to the broader audience, which lies some-
where between consumers and developers. After the technical analysis, we will
look at the programming language Motoko, a new programming language for
smart contracts designed to seamlessly support the programming model of ICP,
followed by an outlook on what lies ahead for ICP, namely the Bitcoin and
Ethereum integration. After having dug deep into the technical aspects of ICP,
we will look at its tokenomics, which is the topic of understanding the sup-
ply and demand characteristics of a cryptocurrency. Having covered everything
technical alongside the finance aspect of ICP, we will present the prototype de-
veloped on ICP for this bachelor thesis by defining its objective, showcasing the
development and deployment process, and analyzing its speed and scalability.
In the last chapter of this thesis, we will summarize everything we have learned
and answer the question if ICP is really ”the future of the internet”.

1https://d�nity.org/howitworks/
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2 Technical Analysis

2.1 Overview

The Internet Computer network consists of a hierarchy of network building
blocks. Data centers on the first level (of which there eventually will be thou-
sands) host the node hardware. These data centers host many nodes, which
leads us to the second level. On the second level, there are nodes (of which
there eventually will be millions) combined to a subnet, the third level. These
subnets host canisters (of which there eventually will be billions), which are the
compute-unit of ICP. These canisters are what developers upload their compiled
web-assembly code on.

Figure 1: Hierarchy of network building blocks

The Network Nervous System (NNS) is the managing unit of the data centers.
It plays a similar role to ICAN on the Internet and permits data centers to join.

Another vital concept are subnets. A subnet hosts a subset of the canisters.
Subnets are created using nodes drawn from different data centers, which the
NNS coordinates. All the nodes of a subnet replicate the content of one another.
The NNS also can split or merge subnets to distribute the load (e.g., requests by
other canisters or end-users) as efficiently as possible, which can happen without
a service interruption.

4



Figure 2: Subnets

There are different subnet types. A particular subnet hosts the NNS, which
developers do not have access to. Developers can target a specific subnet type
for their canister (e.g., make code for a specific subnet type) like a data subnet,
system subnet, or fiduciary subnet, which allows the canister to have specific
properties or capabilities.

As already mentioned, subnets are used to host canisters. Canisters are bundles
of Web Assembly byte code and 4 KB memory pages. That Web Assembly
byte code gets created by compiling the code of Motoko or Rust. Canisters can
interact with each other via API calls. 2

The current network status of the Internet Computer (as of June 1st 2022) looks
as follows: 3

• Node providers: 44

• Node machines: 518

• Subnets: 35

• Canisters: 75’930

2.2 Layers

The Internet Computer consists of four layers: 4

• peer-to-peer layer

2https://medium.com/d�nity/a-technical-overview-of-the-internet-computer-f57c62abc20f
3https://dashboard.internetcomputer.org/
4https://d�nity.org/whitepaper.pdf
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• consensus layer

• routing layer

• execution layer

Figure 3: Layers

2.2.1 Peer-to-Peer Layer

The peer-to-peer layer’s job is to transport messages between replicas in a sub-
net. The goal is the following: If an honest replica broadcasts a message, then
that message will eventually be received by all honest replicas in the subnet,
which is called a ”best effort” broadcast channel.

2.2.2 Consensus Layer

The consensus layer’s job is to set up a global ordering of all inputs such that
all replicas in a subnet will process such inputs in the same order. The protocol
used here is based on a blockchain. The root of the tree is called the genesis
block, and each non-genesis block in the tree contains a payload consisting of a
sequence of inputs and a hash of the block’s parent in the tree. The inputs in the
payloads of the blocks along the longest path are the ordered inputs processed
by the execution layer of the Internet Computer.

2.2.3 Routing Layer

The routing layer’s job is to take the payloads from the consensus layer and give
it to the execution layer for processing, which updates the state of the canisters
and generates an output that the routing layer processes.
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2.2.4 Execution Layer

The execution layer’s job is to process the input one at a time. Processing the
input means updating the state of the canister and giving an output back to
the routing layer.

2.3 Network Nervous System

The Network Nervous System (NNS), a tokenized open governance system, su-
pervises and manages the Internet Computer. The NNS stores the information
of which nodes belong to which subnet, alongside many more things. It also
decides how to update that information (e.g., adding new nodes to subnets). A
few unique canisters make up the NNS, which is what we will take a look at
now.

Figure 4: Governance and Registry Canisters

The governance canister stores proposals and neurons. Proposals are suggestions
by the community on how ICP can or should be improved. These proposals can
be voted on by people who stake ICP tokens (see tokenomics section). Neurons
determine who is allowed to participate in governance.

The registry canister stores the configuration of the whole Internet Computer
(e.g., which nodes belong to which subnets). For example, in the above figure,
the registry canister stores the information that subnet S3 stores these four
nodes.

Another paramount canister in the NNS is the ledger canister, which stores
accounts and transactions. Accounts keep track of how many tokens a given
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