
Distributed

 Computing

Abstraction and Reasoning Challenge
Bachelor’s Thesis

Enea Peter

peteren@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Ard Kastrati

Prof. Dr. Roger Wattenhofer

April 4, 2022

Acknowledgements

I would like to thank Ard Kastrati for supervising my work and for his contin-
uous assistance and guidance. Furthermore, I would like to thank Prof. Roger
Wattenhofer and his Distributed Computing Group at ETH Zürich for giving me
the opportunity to write this interesting thesis.

ii

Abstract

When humans encounter new puzzles and logical problems, it is often sufficient
to see a few examples, rely on prior knowledge, and make a few attempts to
learn how to solve them. Current, machine learning models, on the other hand,
often need a lot of examples, specialize only in one task, and do not learn based
on previously acquired knowledge. DreamCoder is a machine learning model
that tries to get closer to the human learning process. This thesis aims to un-
derstand and evaluate the ability of DreamCoder to learn as a human and its
capability to solve different logical tasks. A system that can learn from previous
experiences and react to challenges having only little data available would have
numerous applications in the present and the future. In this work, it was found
that DreamCoder shows promising results but is still far from being able to learn
as a child. DreamCoder tries to solve problems by abstracting useful primitives.
However, to do so, there is a need for tasks with increasing difficulty. These,
have to be designed or created in such a way, that they allow for primitives to
be discovered. What becomes evident with the results of this thesis is that there
is a lack of the capability to create these increasingly difficult, but meaningful
tasks.

iii

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 DreamCoder . 1

1.2 The Puzzles . 2

1.2.1 ARC . 4

1.2.2 Sliding puzzle . 5

2 Experiments 7

2.1 Datasets . 7

2.1.1 ARC . 7

2.1.2 Sliding puzzle . 8

2.2 Building new domains . 11

2.2.1 ARC . 11

2.2.2 Sliding puzzle . 13

2.3 Performed experiments . 14

2.3.1 ARC . 15

2.3.2 Sliding puzzle . 15

3 Results and Discussion 17

3.1 ARC . 17

3.1.1 Results . 17

3.1.2 Discussion . 24

3.2 Sliding puzzle . 25

3.2.1 Results . 25

3.2.2 Discussion . 29

iv

Contents v

4 Conclusion 31

Bibliography 33

A ARC A-1

A.1 Primitives . A-1

A.1.1 Primitives ”All” . A-1

B Sliding puzzle B-1

B.1 Code . B-1

B.1.1 Is Solvable . B-1

B.1.2 Functions/Primitives for solving slider problem B-2

B.1.3 Solving the slider puzzle B-7

B.1.4 Solving the slider problem like DreamCoder B-10

B.2 Primitives . B-17

B.2.1 Primitives ”Basis sliding puzzle” B-17

B.2.2 Primitives ”Tasks and Primitives engineered” B-18

B.3 Tasks . B-19

B.3.1 Engineered tasks . B-19

B.4 Results . B-20

B.4.1 Results of ”Task and Primitives engineered” B-20

B.4.2 Results using primitive set ”Basis + Help_2” B-20

Chapter 1

Introduction

When we come across a new puzzle while reading a newspaper or magazine, we
often don’t even think about how we, as humans, are able to understand the
puzzle and learn how to solve it. With just a few rules, we can start playing and
developing strategies to solve the game. We do not need many examples and
improve our ability to solve step by step by drawing on previous experience and
reasoning about the given problem. This approach is very different from the one
used by most current machine learning methods. They are often data hungry,
require many examples, and cannot improve their ability to solve a problem by
combining newly acquired techniques to solve sub-problems or other problems.
In addition, they can only work on problems and tasks they have seen before
and they are often specialised in solving a single task. This makes it difficult
to develop systems that can solve a variety of different, unrelated problems.
DreamCoder [1] is a machine learning model that takes a different approach than
usual and tries to get closer to the way humans learn and solve problems. In this
work, DreamCoder is being run on two different datasets. On the one hand, a
collection of abstract reasoning tasks, and on the other a known puzzle.
The definition by François Chollet of the intelligence of a system is as follows:
”The intelligence of a system is a measure of its skill-acquisition efficiency over a
scope of tasks, with respect to priors, experience, and generalization difficulty”[2].
This thesis aims to understand and evaluate the ability of DreamCoder to learn as
a human and its capability to solve different logical tasks. For this purpose, first,
the model itself is introduced and followed by the description of the puzzles.
In the second chapter, the experiments and technical detail are presented. In
the third chapter, the results are presented and discussed. In the fourth, and
last chapter, the results of the experiments are discussed as a whole and the
conclusions are drawn.

1.1 DreamCoder

DreamCoder, introduced by Ellis et al.,2020 [2], is a machine learning system
based on an approach called ”wake-sleep Bayesian program induction”. The au-

1

1. Introduction 2

thors claim that DreamCoder is capable to discover interpretable, reusable, and
generalizable knowledge over different domains. Learning, for DreamCoder, is
based on the search for a functional program that solves a given problem, given
by input-output examples, using a set of functions in a given library. Dream-
Coder apparently tackles two fundamental bottlenecks encountered traditionally
when talking about the application of program induction. On the one hand,
it learns to compactly represent programs, reducing the problem of very long
programs. On the other hand, it learns to induce programs in a given domain
reducing the problem of a huge search space. Dreamcoder solves tasks using
its library of functions, it then learns new functions out of existing functions
through compression, by capturing which combination of functions was used in
several solved tasks. Thanks to these newly learned functions it can then try
to solve other tasks it was not able to solve before. In addition, Dreamcoder
also trains a neural network that predicts which functions most likely will solve a
given task. Thanks to the compression of the combination of functions into a new
function and a neurally guided search of programs to solve tasks, DreamCoder
learns to solve increasingly complex tasks related to a domain. It is interesting
to note that when DreamCoder solved, thanks to its grown library of functions
and trained model, a very complex task, in theory, the same tasks would have
also been solvable with the initial library. But the program to solve the task with
the initial library would be huge and not be foundable in a reasonable amount of
time. DreamCoder grows its knowledge of a particular domain by ”wake-sleep”
cycles. The schematic view of the model, taken from the original publication, can
be found in Figure-1.1. It iterates through a wake phase, where it tries to solve
tasks, and through two sleep-phases, where it learns to solve new tasks. In the
wake phase, the model tries to find for each task a program that solves it. It uses
the functions of the library and is helped by the neural recognition model. The
Abstraction sleep-phase has the role of finding common program parts in solu-
tions of tasks found in the wake phase. It then abstracts these common program
parts into new code primitives and can extend the existing library. In such a way
in the next wake phase more complex tasks can hopefully be solved. In the sec-
ond sleep phase, dreaming, the neural network is trained that helps to search for
programs that solve the tasks in the wake phase. It is trained on solved tasks, as
well as new ”fantasies” generated by sampling programs from the learned library.

1.2 The Puzzles

To understand better the capabilities of DreamCoder and explore its ability of
abstract reasoning, DreamCoder was adapted to solve the Abstraction and Rea-
soning Corpus (ARC) introduced by François Chollet in ”On the Measure of
Intelligence”[1]. In addition, it was also tried to adapt it to solve the ”Sliding
puzzle” to see if it was possible to bring it to solve a logical game that a human

1. Introduction 3

Figure 1.1: Schematic view of DreamCoder taken from the original publication
(Figure 2 of [2]). The basic algorithm is shown in the middle. On top, the wake
phase is shown whereas on the left and the right the two sleep phases can be
found.

1. Introduction 4

Figure 1.2: ARC task C59EB873, difficulty level entry. [3]

being can learn after some tries.

1.2.1 ARC

ARC is a dataset introduced by François Chollet. Its general purpose is to serve
as an artificial intelligence benchmark, a program synthesis benchmark, or a psy-
chometric intelligence test [1]. ARC has various top-level goals. Most important
for this thesis are the following:

• Tasks generally provide only a few examples, this requires solving a task
with little experience

• there is a need for generalization as in the evaluation set only unseen tasks
are present

• It is solvable by humans without prior knowledge and training and it per-
mits a broad intelligence comparison with machines.

The dataset is composed of 800 different tasks, 400 training tasks, and 400 evalua-
tion tasks. These tasks are furthermore divided into different categories based on
difficulty. The different categories are entry, easy, medium, difficult, tedious, mul-
tiple solutions, and unfixed. The dataset can be found at github.com/fchollet/
ARC. Each task is composed of a few examples and one test (only in the category
multiple solutions there are more tests than one). All examples are composed of
one input/output pair where both are colored grids of dimensions between 1× 1
and 30 × 30. The grids are colored with 10 possible colors. In Figure-1.2 and
Figure-1.3 two tasks are shown of difficulty level entry.

github.com/fchollet/ARC
github.com/fchollet/ARC

1. Introduction 5

Figure 1.3: ARC task 66E6C45B, difficulty level entry. [3]

1.2.2 Sliding puzzle

The sliding puzzle exists in many variations and under many names. The focus
was on the following puzzle: there is a n × n sized grid with n2 − 1 tiles in it.
The tiles are numbered from 1 to n2−1 and one space is empty. The objective of
the game is to rearrange the tiles into order. Problem instances were restricted
to square grids. To move the tiles, the only allowed moves are sliding a neighbor
(a tile that is above, below, on the right, or the left of the space) of the space
onto the space. This results in exchanging the space with the moving tile. In
Figure-1.4 an example is shown: it is shown how the tile number 13 is moved
down by one.

Figure 1.4: Example of a 4 × 4 instance of the sliding puzzle, illustrating one
aloud movement. For instance, in the right image tile 13 was moved down by
one. [4]

Not knowing the game a human being would probably simply try to solve
it by brute force. Beginning moving the smallest number to the top left corner
and then continuing with the bigger number one number at a time. After some
attempts, a strategy would probably become clear. There are two main strategies

1. Introduction 6

how to solve the puzzle. Either you try to solve row by row until you reach the
last two rows and then proceed to solve column by column. Another possibility
is to solve first a row, then a column, then again a row until you only have one
more 2x2 square in the bottom right-hand corner to solve. The most difficult
part of the process is how to place the last two elements of a row or column
respectively. The easiest way to do so is to bring the second-last element of the
row to the rightmost position of the row. Then bring the last element just below
it. Then move the empty tile into the second-last position of the row and move
the last two elements in position by simply exchanging the empty tile first with
the second-last element and then with the last element of the row. The process is
illustrated in Figure-1.5. To solve the column the process is analogous except that
you work with columns and bring the last element to the right of the second-last
element instead of bringing it below it.

Figure 1.5: Example of a 3× 3 instance of the sliding puzzle illustrating how to
correctly position the last two elements of a row. First, bring the number 2 to
the last position of the row. Then position the 3 below it and move the empty
tile next to the 2. Then exchange first the empty tile with the 2 and then with
the 3. This results in a solved first row. [4]

Chapter 2

Experiments

2.1 Datasets

This section describes how the different problems were presented and how the
tasks and the new domains for DreamCoder were created.

2.1.1 ARC

Representation of the problem

In the ARC dataset, the tasks were already given. Therefore, the representation
used in these tasks could simply be used. To represent one input/output pair,
two lists of lists of integers were used. The integers allowed are the numbers from
0 to 9. All grids present in the dataset were squares. Each of these lists of lists
can be represented as a colored grid by mapping each number to a color in the
way shown in Figure-2.1. The grid can be seen as a matrix of numbers from 0
to 9 represented as a list of lists in row-major manner. One task of the dataset
is considered solved when the right output grid, given an input grid and some
examples, can be obtained. Meaning that the outputted list of lists is compared
with the given solution and if they match the task is solved.

Creation of tasks

In this case, tasks were already given by the ARC dataset. The tasks are subdi-
vided in different difficulty levels: entry, easy, medium, difficult, tedious, multiple

Figure 2.1: ARC color mapping. [3]

7

2. Experiments 8

solutions, and unfixed. For the purpose of this thesis, the ARC tasks were simply
kept as they were and used as tasks for DreamCoder. Also, the original differen-
tiation in levels and training/evaluation split were kept the same. The focus was
laid on the task sets of the first three difficulty levels (entry, easy and medium).
This resulted in 340 training tasks, where 27 were entry-level, 210 were easy level
and 103 were medium level. In addition, there were 255 evaluation tasks with 6
entry, 92 easy, and 145 medium tasks. Each task has from 2 to 4 input/output
train examples and 1 input/output test. Task ”C59EB873” is shown in Figure-1.3
and has 3 train examples and 1 test example. The first input/output example
equals the following list of lists pair:
{′input′ : [[0, 5, 1], [5, 5, 5], [2, 5, 0]],
′output′ : [[0, 0, 5, 5, 1, 1], [0, 0, 5, 5, 1, 1], [5, 5, 5, 5, 5, 5],

[5, 5, 5, 5, 5, 5], [2, 2, 5, 5, 0, 0], [2, 2, 5, 5, 0, 0]]}.

2.1.2 Sliding puzzle

Representation of the problem

This problem, consisted of n× n grids filled with numbers and one empty space.
The problem can be seen as a n×n matrix filled with integers from 1 to (n∗n−1)
and one blank space. The number 0 was simply assigned to the empty space and
therefore a square matrix filled with numbers from 0 to (n ∗n− 1) was obtained.
This matrix can be easily represented in form of a list of lists in row-major
order. The problem is considered solved when the flattened list of lists is in the
following form: [1, 2, ..., (n ∗ n− 1), 0]. In the sliding puzzle, only the empty tile
can be moved. This is modeled by the fact that the only allowed movements are
exchanging the number zero with one of its orthogonal neighbours in the matrix.

Creation of tasks

In this case, the creation of the tasks was not as straightforward as it was with
the ARC as there was no existing dataset that could be used. The simplest
idea that comes to mind is to simply take a n× n matrix filled in random order
with the numbers from 0 to (n ∗ n− 1) as input and the solved puzzle in matrix
form as output. The first thing to note here is that not all such input matrices
representing an instance of the sliding puzzle are solvable. In fact only half of all
possible initial configurations are solvable. If an instance of the puzzle is solvable
or not can be easily checked using the function ”is_solvable” in the appendix
in Section-B.1.1. The next question is whether the task should contain only a
single instance of the problem or several instances of the problem, and in the
latter case whether the instances should be of the same size or different sizes. As
DreamCoder seemed to have more difficulty when presented with lots and lots
of tasks, grouping the instances of the same size seemed also a valid idea. In the

2. Experiments 9

end, both ideas were used by creating tasks with single solvable instances of the
puzzle and tasks with 5 solvable instances of the puzzle of the same size. The
tasks were created as follows:

• 60 tasks containing each 5 input/output pairs with grid size 3× 3

• 50 tasks containing each 5 input/output pairs with grid size 4× 4

• 40 tasks containing each 5 input/output pairs with grid size 5× 5

• 30 tasks containing each 5 input/output pairs with grid size 6× 6

• 20 tasks containing each 5 input/output pairs with grid size 7× 7

• 1 task containing all 12 solvable 2× 2 size instances

• 100 tasks containing only 1 solvable instance size 3× 3

• 50 tasks containing only 1 solvable instance size 4× 4

All instances, except the size 2×2, were created by taking a random permutation
of a list of numbers from 0 to (n ∗n− 1). From the permutation, a matrix of size
n × n was created by considering the permutation as the result of a row-major
traversing of the matrix. The instance was only kept if solvable. In total this
resulted in 351 different tasks.

Because of the difficulties, DreamCoder encountered in solving this puzzle,
also a second group of tasks was created. These tasks were more carefully de-
signed following a possible path to solving the sliding puzzle. This was done with
the objective in mind that in this way, DreamCoder would possibly be able to
learn how to solve the puzzle. It was tried to design the tasks so that they each
constituted a step on the way to solving the puzzle. The objective of this task set
was to constitute the intermediate steps in the process of bringing the number 1
to the top left corner. The thinking behind this was that this is often the first
step taken when solving this puzzle. The tasks created can be found in the list
below. In each task all possible instances of size 2× 2 were present. In addition,
40 instances in each of the sizes 3× 3, 4× 4, and 5× 5 were present. The tasks
are listed in different categories depending on the purpose:

• Move the 0 related tasks: these tasks aimed to learn to bring the number
0 (the empty tile) to the right border, to the bottom, and to the bottom
right corner. Having the 0 in that position represents a good starting point
to proceed with solving the puzzle at various stages of the process. In this
category there were 6 tasks:
p_move_0_to_right, p_move_0_to_right2,
p_move_0_to_bottom, p_move_0_to_bottom2,
p_move_0_to_bottom_right, p_move_0_to_bottom_right2,

2. Experiments 10

• Tasks aiming to remove the 1 from the last line, if that was the case. This
opens up the possibility of moving the zero below the 1. The tasks were
the following:
p_move_1_away_from_last_row_starting_with_0_bottom_right,
p_move_1_away_from_last_row,
p_move_1_away_from_last_row_and_0_to_last_row.
The tasks are slightly different. The first one is the easiest and the others
become progressively more difficult.

• Tasks aiming to move the 0 below the 1: these tasks aimed to bring the zero
below the 1. This represents an intermediate step in the process to move
the 1 to the upper left corner. From the situation with the 0 below the 1,
it is then easier to bring the 1 to the upper left corner. This is because it
is clear where the 0 is located with respect to the 1. Therefore the 1 can
be moved more easily.
In this category, there were 3 objectives to learn. This resulted in 12 tasks,
4 times the same 3 objectives but always with slightly different starting
points. The objective were: zero_is_in_same_col_as_1, zero_is_one
_row_below_1, zero_is_below_1. The 4 different starting points differed
in the conditions that had to hold for the input images: no condition, 0 had
to be in the bottom right corner, 1 was not allowed to be in the last row, 1
was not allowed to be in the last row and 0 had to be in the bottom right
corner. For all of these 12 tasks another equal task, but with other input
instances, was created to improve the learning of new primitives because of
the repetitiveness.

• Helper tasks to bring 1 away from the last row: As DreamCoder could not
solve the tasks about bringing away the 1 from the last row right away this
additional tasks were added. The tasks were:
p_move_zero_above_1_if_1_is_in_last_col ,
p_move_zero_above_1_if_1_is_in_last_col_zero_everywhere.
Both aim to bring the 0 above the number 1, but only if the number 1 was
located in the last row. Also, these two tasks were duplicated.

• A single task aiming to move the number 0 below the 1. All the above tasks
can be considered preparatory tasks for solving this task.

• Tasks regarding the moving of the 1: In this category, there were 3 tasks
all with duplicates making a total of 6. The tasks were the following:
p_move_1_up_and_0_below,
p_move_1_left_and_0_below, p_move_1_corner_up_left.
To solve those tasks the 0 had first to be brought below the 1 and then the
1 could be moved. In the first two cases, it is simply one step up or left in
the last task the aim is to bring the 1 in the top left corner. In all 3 tasks,
it holds that in the input instances the 1 was not in the last row.

2. Experiments 11

• The last task brings this series of tasks to a conclusion and aims to bring
the number one to the top left corner starting from an arbitrary instance
of the problem.

This makes a total of 45 tasks for this second set. A full listing of these tasks
can be found in the appendix in Table-B.3.

2.2 Building new domains

When building a new domain in DreamCoder different decisions have to be taken.
Tasks have to be defined including the input and output type. These can then be
split into training and testing sets. In addition, primitives, declaring input and
output types have to be defined. In the following, the ideas behind the defined
primitives for both domains, ARC and sliding puzzles, are presented.

2.2.1 ARC

As explained in Section-2.1.1 the input and output types of the tasks were lists
of lists of integers. The corresponding type in DreamCoder is (tlist (tlist (tint))).
The general approach that was taken to define the primitives to solve ARC tasks
was to simply try to solve different tasks by hand and get a feeling of what
primitives could be useful to solve general ARC tasks. The idea behind that was
to test whether and how well it is possible to use DreamCoder to solve abstract
reasoning tasks without having in-depth knowledge about the tasks and by only
providing general primitives.
In the following, four different primitive sets are presented. These were used in
the experiments. The difference between the sets lies in the number of primitives
given and not in the implementation of the single primitives. The full list of
the names of primitives contained in the sets can be found in the appendix in
Section-A.1.1.

• Elementary: this set of primitives contains only the most low-level kind
of primitives. Primitives that add and remove rows and columns and a
primitive that changes entry at row i and column j to color c. In addition,
it contained the numbers from 0 to 9 representing the 10 colors.

• Basis ARC: This set of primitives contained all primitives of ”elementary”
and additional primitives which seemed intuitive on a colored grid. The
primitives can be separated into different groups depending on what type
of operations they perform or on what properties of the image they work
on. The following primitives were added:

2. Experiments 12

– Color specific: returning the color at a specific position, coloring a row
or a column with a specific color, color a specific position with color
c1 if it previously had color c2, color in black all colored pixels and in
color c all black pixels, mapping some color c1 to some color c2, count
all colored pixels, return the first encountered color.

– Division of the image: identity function giving back the original image,
taking only part of the image by giving the coordinates of the upper
left and lower right corners, take the top half or the left half of the
image, take only the first row/column.

– Transposing and reflecting: transposing the image, reflecting the im-
age vertically/horizontally.

– Amplification: stacking two different images one above the other or
one next to the other, double/triple every pixel horizontally or verti-
cally

– Logic: if some Boolean input is true apply a function to some input
value, union of two images by taking the color of the second image for
pixels that are black in the first, intersection of two images by blacking
out all colored pixels of the first image where the second image was
black, if first row/column is all equal return true and otherwise false,
return whether two images are equal or not, return whether an image
is horizontally/vertically symmetric.

– Move and remove black: move an image up, down, left, or right by
inserting a black row or column and eliminating the row or column on
the opposite end, remove all black row/columns on top, bottom, left,
or right.

– Others: flatten the image to a list row by row, access a list at some
index, return an image composed only of one row of size n.

• All: here some primitives were added that could have been discovered using
the primitives in the set ”Basis ARC”. Adding them can help to solve more
tasks and maybe discover more easily other new primitives. For exam-
ple, primitives taking the bottom half and taking the right half have been
added. The same effect can be achieved by composing mirroring primitives
with take-upper-half or take-left-half primitives. In addition rotation by 90
degrees clockwise and counterclockwise were added (can be achieved with
transposing and mirroring). Also, the primitives flip down (stack vertically
the image and the horizontally mirrored image) and duplicate horizontal-
ly/vertically were added (all 3 can be emulated with the stack primitives
and the mirror primitives).

• Selected: the primitives in this set are selected primitives from the set ”All”.
The primitives that showed the most promising results in solving tasks were
added here. The aim was to reduce the number of primitives in order to

2. Experiments 13

reduce the search space and potentially discover more new primitives and
solve more tasks. It has been seen that especially for primitives taking
various arguments DreamCoder had more difficulty using them for solving
problems.

2.2.2 Sliding puzzle

Also for this puzzle, to represent the input and output types, lists of lists of
integers were used. Using the inbuilt types of DreamCoder tint and tlist the
resulting type was: tlist (tlist (tint). In addition, the inbuilt type tbool was
used to represent Booleans. Booleans were needed as input and output for some
primitives. The first created primitives were the 4 most basic primitives, which
would perform the only aloud movements in the puzzle. The aloud movements
are moving the empty tile, in this case the 0, right, left, up, and down. This
means that the only aloud modification of the matrix is the swapping of the 0
with one of its 4 orthogonal (horizontal and vertical) neighbors. In the first trials,
it was observed that with these and other rather generic and low-level primitives
and general tasks there was no way DreamCoder could learn to solve the puzzle.

Therefore a different approach was tried. First, the problem was studied more
in-depth by trying to solve it. This resulted in a program capable of solving any
instance of the problem up to 9×9. This program can be found in the appendix in
Subsection-B.1.3. Afterwards, the most basic possible primitives were extracted
from this program. In order to be sure that these primitives would be enough
to solve the problem, a program was written that solved the puzzle in a way as
potentially DreamCoder would also be able to learn. This second program can
also be found in the appendix in Subsection-B.1.4. The primitives extracted were
the starting set of primitives to run DreamCoder with. This set is called ”Basis
sliding puzzle” in the following. The objective was to see if DreamCoder would
be able to learn to solve the puzzle. The list of primitives in the set ”Basis sliding
puzzle” can be found in the appendix in Section-B.2.1. To help DreamCoder in
learning to solve the puzzle 3 other sets were created. Each of these sets contains
the primitives of ”Basis sliding puzzle” and two other additional primitives. These
additional primitives are all higher level than the primitives in the basis set. They
gather a bigger part of the solution program (which can be found in Subsection-
B.1.3) into one primitive. In the following, the sets and the additional primitives,
as well as their actions are listed. From set to set, going downwards, the primitives
solve a bigger part of the problem.

• Basis + Help_1: In this set, the following primitives are added:

– move_to_right_position_row

– move_to_right_position_col

2. Experiments 14

Both these primitives take as input one slider instance and the number n
that has to be moved to the right position. If 0 is situated below n, then
they both output the slider instance with n moved into the right position.
All movements are only performed using the 4 basic movements defined
above. The first primitive moves n to the right position when a row is
trying to be solved whereas the second one works in the case of a column.

• Basis + Help_2

– solve_one_number_of_a_row
– solve_one_number_of_a_col

These primitives, instead of only moving a number to the right position if
some preconditions are met, move the number directly to the right position.
There is only one small precondition, namely the 0 has to be in the bottom
right corner before beginning. Also in this case one primitive is for the case
solving a row and one for the case solving a column.

• Basis + Help_3

– solve_row
– solve_col

These primitives are very high level, they directly solve a row or a column
of a problem instance. Nevertheless, they are only able to solve rows and
columns up to the last 2. This means that when using them correctly in the
end only a 2× 2 square in the bottom right corner remains unsolved. This
can then be easily solved using a primitive found in the set ”Basis sliding
puzzle” which solves this last small square.

In addition, as explained in Section-2.1.2, a second way was tried that focused
more on the creation of specific tasks. In this case, the idea was to create tasks
that represented intermediate steps in solving the problem. Specific primitives
were created that would allow these tasks to be solved. The set of primitives in
question is called "Tasks and Primitives engineered". Some primitives are shared
between this set and the ”Basis sliding puzzle” set, but not all. However, in
theory, these tasks could also be solved with the primitives in the ”Basis sliding
puzzle” set, but the primitives in the ”Tasks and Primitives engineered” were less
general and therefore easier to use. A complete list of the primitives contained
in this set can be found in the appendix in Section-B.2.2.

2.3 Performed experiments

The experiments where performed on the Slurm cluster of the D-ITET at ETH
Zürich.

2. Experiments 15

2.3.1 ARC

As explained in Subsection-2.1.1 there were a total of 340 training tasks sub-
divided by difficulty. In addition, there were 255 evaluation tasks. Moreover,
there was also a collection of different primitives as explained in Subsection-
2.2.1. To test the capability to learn of DreamCoder different sets of primitives
were supplied and it was analyzed how they performed. It was also analyzed how
many tasks were solved after each iteration and how many new primitives were
found. All experiments were performed with a recognition timeout of 30’000 sec-
onds, 15 iterations, and a testing timeout of 2’000 seconds. The experiment were
performed with 4 different sets of primitives: Elementary, Basis ARC, All and
Selected. In addition, DreamCoder was run with the primitive selection ”All” and
the merging of the training set and the evaluation set as task set. This resulted
in a larger training set and no evaluation set. In Table-2.1 a summary of the
performed experiments can be found.

Primitive set name Number of
training tasks

Number of
evaluation tasks Iterations Recognition

timeout (s)
Testing
timeout (s)

Elementary 340 255 15 30’000 2’000
Basis ARC 340 255 15 30’000 2’000
All 340 255 15 30’000 2’000
Selected 340 255 15 30’000 2’000
All 595 0 15 30’000 -

Table 2.1: Summary of the performed experiments on the ARC dataset.

2.3.2 Sliding puzzle

As seen in Subsection-2.1.2 there were 2 different sets of tasks. On the one hand,
351 tasks requiring to solve the puzzle as a whole, on the other hand, 45 tasks
trying to guide the process requiring to solve sub-problems. For the first collection
of tasks, different sets of primitives were used. From the most general one, with
which it was theoretically possible, but very difficult, to solve the problem, to
more specific sets with higher-level primitives with which it would be easier to
solve the puzzle. For the second collection a more specific subset of primitives
was used, with which it wouldn’t be possible to solve the whole problem but
at least the tasks of this collection. In Table-2.2 a summary of the performed
experiments can be found.

2. Experiments 16

Primitive set name Taskset name Number of
training tasks Iterations Recognition

timeout (s)

Basis sliding puzzle General Tasks 351 15 30’000
Basis + Help_1 General Tasks 351 15 30’000
Basis + Help_2 General Tasks 351 15 30’000
Basis + Help_3 General Tasks 351 15 30’000
Tasks and Primitives
engineered Engineered Tasks 45 15 30’000

Table 2.2: Summary of the performed experiments on the sliding puzzle.

Chapter 3

Results and Discussion

In this chapter first, the results of the experiments are presented and then dis-
cussed. The ARC dataset is covered first followed by the sliding puzzle. In the
next chapter, a general discussion is presented in which both experiments are
considered together.

3.1 ARC

3.1.1 Results

In this subsection, the results of the experiments listed in Table-2.1 are presented.
The results are given separately for each experiment.

Elementary

Running DreamCoder with the primitive selection ”Elementary” resulted in 0
training tasks solved and 0 evaluation tasks solved. This is reasonable and was
also expected. Although it is possible to create any kind of image with these
primitives, the issue is that there is no way to read and react to the input image.
Therefore few imaginable tasks exist that could be solved. An example could
be a task where the output is the same image for any input. But even in this
case, this kind of task would be difficult to solve because it would require many
function compositions with many input parameters to get to the final output
image. Other solvable tasks could be tasks where it is simply removed a row or
column from the input image. However, in the ARC dataset already the entry
difficulty tasks are often more complex than those described here.

Basis ARC

When running DreamCoder with the primitive selection ”Basis ARC” 53 primi-
tives were in the initial library. After the first iteration, 19 training tasks and 1

17

3. Results and Discussion 18

evaluation task were solved. In addition, 4 new primitives could be found. The
following primitives were newly found:

1 . #(lambda (mirrorVer (mirrorHor $0))) = ' ' Mirror a long
diagonal ' '

2 . #(lambda (_union $0 (mirrorHor $0))) = ' ' Union o f the image
and i t s h o r i z o n t a l l y mirrored image ' '

3 . #(lambda (stack_h $0 (mirrorVer $0))) = ' ' F l ip r ight ' '
4 . #(lambda (stack_v $0 (mirrorHor $0))) = ' ' F l ip down ' '

It can be seen can see how the first new primitive, mirror an image horizontally
and vertically, was created out of the primitives mirrorVer and mirrorHor. These
are primitives that can be found in the initial set. This newly created primitive
was for example used to solve Task 6150a2bd. The visual representation of this
task can be found in Figure-3.1. Another task that has been solved is for example
task F25FFBA3. This has been solved using the second newly found primitive
and can be found in Figure-3.2. When a task is solved using various primitives,
it does not necessarily mean that a new primitive is created. For example task
2dee498d has been solved using the primitives ”take_left_half_with_border”
and ”addColLast” in the following way:

(lambda (take_left_half_with_border (addColLast (
take_left_half_with_border $0))))

Where $0 is the input argument of the lambda function. Nevertheless no new
primitive has been created out of this solution. This is because a new primitive
is only created when a part of a function composition is used in different places
in the process of solving tasks. Example 2dee498d can be found in Figure-3.3.
In the second iteration, 6 more training tasks and 2 more evaluation tasks could
be solved. All new solved tasks, except for 1, were solved using new primitives
found in iteration 1. For example, one newly solved task is 62c24649 and can
be found in Figure-3.4. This task could be solved thanks to the use of the new
primitives 3 and 4 found in iteration 1. It is solved as follows:

(lambda (#(lambda (stack_h $0 (mirrorVer $0))) (#(lambda (
stack_v $0 (mirrorHor $0))) $0)))

This function has also been used to create a new primitive. The result of this
primitive is an image that is first flipped to the right and then flipped down.
After iteration 2 no more tasks have been solved and no new primitives have been
found. This leads, after 15 iterations, to a final result of 25 out of 340 training
tasks and 3 out of 255 evaluation tasks solved, and 5 newly found primitives. In
the end, the library contained 58 primitives.

3. Results and Discussion 19

Figure 3.1: Task 6150a2bd of the ARC dataset. The task was solved in the
following way: (lambda (#(lambda (mirrorVer (mirrorHor $0))) $0)). [3]

Figure 3.2: Task F25FFBA3 of the ARC dataset. The task was solved in the
following way: (lambda (#(lambda (_union $0 (mirrorHor $0))) $0)). [3]

Figure 3.3: Task 2dee498d of the ARC dataset. The task was solved
in the following way: (lambda (take_left_half_with_border (addColLast
(take_left_half_with_border $0)))). [3]

3. Results and Discussion 20

Figure 3.4: Task 62c24649 of the ARC dataset. The task was solved in the
following way: (lambda (#(lambda (stack_h $0 (mirrorVer $0))). (#(lambda
(stack_v $0 (mirrorHor $0))) $0))). [3]

All

When running DreamCoder with the primitive selection ”All” the starting point
was 72 primitives. The additional primitives, with respect to the set ”Basic ARC”,
are primitives that could be achieved through composition using only primitives
in the set ”Basic ARC”, but in this case were already given at the start. One
example is the primitive ”rotate90degCCW” which is the same as ”(mirrorHor
(transpose $0))”. ”rotate90degCCW” was given in ”All” but not in ”Basic ARC”.
Thanks to more primitives, after the first iteration already 26 training tasks
and 2 evaluation tasks were solved. One example, of an evaluation task, that
was solved thanks to additional primitives is task 32E9702F. This task can be
found in Figure-3.5. To solve this task the primitive ”move_left” was used. This
was not present in ”Basic ARC” but could have been emulated with ”(remFirst-
Col(addColLast $0))”.
The newly found primitives were very similar to the previous experiment. The
only primitive that was found with this starting set and was not with the set
”Basis ARC” was the following:

#(lambda (lambda (negat ive (row_of_size_n $1) (
f i r s t_co lo r_ecounte r ed $0)))) = ' '1 x1 image o f the f i r s t
c o l o r encountered in a row−major t r av e r s a l ' '

This new primitive has for example been used to solve task 445EAB21. This task
can be found in Figure-3.6.

After 15 iterations 29 out of 340 training tasks were solved and 4 out of 255
evaluation tasks were solved and the library increased from 72 to 78 primitives.

3. Results and Discussion 21

Figure 3.5: Task 32E9702F of the ARC dataset. The task was solved in the
following way: ((lambda (negative (move_left $0) 5)). [3]

Figure 3.6: Task 445EAB21 of the ARC dataset. The task was solved in the fol-
lowing way: (lambda (flip_down (#(lambda (lambda (negative (row_of_size_n
$1) (first_color_ecountered $0)))) 2 (take_bottom_half_with_border $0)))).
[3]

3. Results and Discussion 22

Figure 3.7: Task 2013d3e2 of the ARC dataset. The task was solved in the fol-
lowing way: (lambda (copyPart (#(lambda (remove_bottom_black_rows (re-
move_left_black_rows (remove_top_black_rows $0)))) $0) 0 5 2 3)). [3]

Selected

As explained in Subsection-2.2.1, for this subset only primitives were used that
seemed to be strictly necessary to solve those tasks that were solved by the
primitive set ”All”. The aim was to see if the right function compositions could
be made using the given primitives to solve the tasks. The starting point for
this experiment was 29 primitives. After 15 iterations 27 out of 340 training
tasks were solved and 6 out of 255 evaluation tasks were solved. In total 4 new
primitives were found. One primitive is interesting as it was not found in the
other experiments. The primitive is the following:

#(lambda (remove_bottom_black_rows (remove_left_black_rows (
remove_top_black_rows $0)))) = ' ' remove ex t e rna l b lack rows
except the r i gh t black rows ' '

Thanks to this primitive, for example, task 2013d3e2 could be solved which was
not solved in ”Basis ARC” and ”All”. Task 2013d3e2 can be found in Figure-3.7.
The fact that fewer primitives were given in the beginning is interesting as in
this way the search space was reduced. This can be seen in the fact that more
evaluation tasks and nearly as many training tasks as in the experiment ”All”
were solved. One evaluation task that was solved in this case and not in the
experiment ”All” is be03b35f. This task can be found in Figure-3.8.

”All” on unified training and evaluation tasks

As explained in Subsection-2.3.1 for this experiment there were no evaluation
tasks and therefore there were only training tasks. These were composed of all
training and evaluation tasks together. Interestingly after the first iteration, 33

3. Results and Discussion 23

Figure 3.8: Task be03b35f of the ARC dataset. The task was solved in the
following way: (lambda (mirrorHor (take_top_half_without_border (transpose
(take_top_half_without_border $0))))). [3]

out of 595 training tasks were solved but in the following iterations, no more
tasks were solved. This was despite the fact that 6 new primitives were found
in the first iteration. No different primitive, with respect to the newly found
primitives in the previous experiments, was found. The total number of tasks
solved is equal between this experiment and the experiment ”All”. Interestingly,
in this experiment, the tasks bc4146bd and be03b35f were solved, whereas in the
experiment ”All” those were not solved. At the same time the tasks, d9fac9be
and 1cf80156, were solved in this experiment but not in the experiment ”All”.
These four tasks were solved in the following way:

Solved by ' ' ' ' All ' ' on un i f i e d t r a i n i n g and eva lua t i on tasks ' '
but not by ' ' All ' ' :

be03b35f :
(lambda (#(_union (addRowFirst (row_of_size_n 2))) (

rotate90degCW $0)))
bc4146bd :

(lambda (stack_h (#(lambda (rotate90degCW (flip_down (
t ranspose $0)))) (#(lambda (rotate90degCW (
flip_down (t ranspose $0)))) $0)) $0))

Solved by ' ' All ' ' but not by ' ' ' ' All ' ' on un i f i e d t r a i n i n g and
eva lua t i on tasks ' ' :

d9fac9be :
(lambda (negat ive empty1x1 (f i r s t_co lo r_ecounte r ed (#(

lambda (_union $0 (mirrorHor $0))) $0))))
1 c f80156 :

(lambda (remove_bottom_black_rows (
remove_left_black_rows (remove_right_black_rows (
remove_top_black_rows $0)))))

3. Results and Discussion 24

Name
Solved training tasks
Total training tasks

Solved evaluation tasks
Total evaluation tasks

Number of primitives
at the beginning

Number of new
found Primitives

Elementary 0/340 0/255 23 0
Basis ARC 25/340 3/255 53 5
All 29/340 4/255 72 6
Selected 27/340 6/255 29 4
All on unified training
and evaluation tasks 33/595 - 72 6

Table 3.1: Summary-table of the experiments performed on the ARC dataset.

Different explanations are possible, surely it has to be noted that if on the one
hand more training tasks means more data on the other hand it means that it
becomes also more difficult to solve the single tasks.

3.1.2 Discussion

From the results of the experiments it can be seen that some tasks were solved,
new primitives were found and the newly found primitives were used to solve
more difficult tasks. DreamCoder was also able to find some primitives that were
missing in the primitives set ”Basis ARC” compared to the primitive set ”All”.
For example the primitive ”flip down” was found using the primitives ”stack ver-
tically” and ”mirror horizontally”. These results show that DreamCoder works
on this domain.
The results found on the ARC dataset, which are summarized in Table-3.1, are in
line with the results of the paper from Banburski et al. [5]. Using a small set of
primitives including ”vertical flip”, ”rotate counter-clockwise”, ”overlay of two im-
ages”, ”stack vertically” and ”take left half” Banburski et al. run DreamCoder on
a subset of tasks all involving symmetries. They solved 22 out of 36 tasks. Their
success rate of solved tasks, number of solved tasks/total number of tasks, is so
much higher because they only tackled an accurately chosen selection of tasks.
In addition, it is very intuitive to find the right primitives to tackle symmetry
problems. This statement is underlined by the fact that many symmetry-related
tasks were also solved in the conducted experiments of this work. It can be ex-
pected that by using a bigger subset of ARC tasks, and using the same set of
primitives as Banburski et al. used, no more tasks would be solved.
The paper ”On the Measure of Intelligence” by François Chollet [1], in which
the ARC dataset is presented, describes what prior knowledge is necessary to
solve the ARC tasks. Four different categories are listed: objectness priors, goal-
directedness priors, numbers and counting priors, and basic geometry and topol-
ogy priors. It is broadly explained what is meant by these categories and some
examples are given, but it is left to the reader to try to figure out exactly what
might fit into this category.
Thinking about these categories, it is no surprise that most of the tasks solved by
the used primitives were tasks related to symmetries and basic geometric opera-

3. Results and Discussion 25

Type of tasks:

All 2× 2 instances
together in one task Single tasks (1 instance per task) 5er tasks (5 instances per task)

Dimension:

2× 2 3× 3 4× 4 3× 3 4× 4 5× 5 6× 6 7× 7

Number of tasks: 1 100 50 60 50 40 30 20

Table 3.2: Summary of task-distribution in task set ”General Tasks” of the slider
puzzle.

tions and that these tasks were also the ones they focused on in the publication
of Banburski et al.[5]. This is because primitives regarding basic geometric op-
erations and symmetries are probably intuitively the easiest to think of and also
the easiest to implement.

In terms of the ARC dataset, it can be said that some basic primitives are easy
to find and that these also solve some tasks. However, to go beyond the simplest
primitives and tasks and solve a larger proportion of tasks, a lot of reasoning
on the knowledge priors and the implementation of more difficult primitives is
needed. Also non-trivial is the question of how generic/low-order the primitives
can be and how many are needed as starting point to solve the tasks. In general,
solving the majority of tasks will likely require a large number of primitives across
all 4 categories of needed prior knowledge. This means that the primitives must
be very diverse, as they must cover 4 very different knowledge categories.

3.2 Sliding puzzle

3.2.1 Results

In this subsection, the results of the experiments listed in Table-2.2 are presented.
Also in this case the results are presented separately for each experiment. As
said in Subsection-2.2.2 the primitives of ”Basis sliding puzzle” were extracted
from the program in Subsection-B.1.3 which solves the puzzle. The list of the
included primitives can be found in the appendix in Subsection-B.2.1. In the
later experiments, increasingly high-level primitives were added to facilitate the
solution of the puzzle. As explained in Subsection-2.3.2 and summarized in Table-
2.2 the first 4 experiments were run on a more general task set whereas the last
experiment was run on a more specialized one. In Table-3.2 a summary of the
first task set can be found.

Basis sliding puzzle

Running DreamCoder with this set of primitives resulted in the solution of only
a few tasks. This was despite the fact that with the primitives of this set the

3. Results and Discussion 26

problem could be solved. Only the 2 × 2 task and two single 3 × 3 tasks were
solved. In addition, no new primitive was found.

Basis + Help_1

The results running DreamCoder with the primitive set ”Basis sliding puzzle” and
some additional primitives, ”Help_1”, were very similar to the experiment ”Basis
sliding puzzle”. In ”Help_1” the two primitives ”move_to _right_position_row”
and ”move_to _right_position_col” could be found. More detail about those
can be found in Subsection-2.2.2. In this case, only the 2× 2 task and one single
3× 3 task were solved. Also in this case no new primitives were found. It has to
be noted that the primitives in ”Help_1” were still quite low-level.

Basis + Help_2

In this experiment, DreamCoder was run with the primitive set ”Basis sliding
puzzle” and two additional primitives of ”Help_2”. Those were different from the
ones in the previous experiment. These two additional primitives were higher-
level than the ones in Help_1. The primitives in ”Help_2” ’ were ”solve_one
_number_of_a_row” and ”solve_one _number_of_a_col”. More detail about
those can be found in Subsection-2.2.2. These primitives are already very high
level as can be seen in Subsection-B.1.4 where the definition of these primitives
can be found. They can solve one number of a row/column. Both are function
compositions of many many primitives of the ”Basis sliding puzzle” set. After the
first iteration, 3 new primitives are found. These primitives are:

1 . #(lambda (solve_one_number_of_a_col (
solve_one_number_of_a_row $0)))
= ' ' So lve s the f i r s t number that i s not in order o f the

f i r s t row that i s not ordered fo l l owed by s o l v i n g the
f i r s t number that i s not in order o f the f i r s t column
that i s not ordered ' '

2 . #(lambda (solve_one_number_of_a_col (
solve_one_number_of_a_col $0)))
= ' ' same as above but twice regard ing the number o f a

coulmn ' '
3 . #(lambda (move_number_left_with_zero_below (move_slice_down

$0)))
= ' 'move 0 one up and then move the number above the zero

one to the l e f t ' '

The first primitive was for example used to solve task ”p_size_3_74”. In Figure-
3.9 the solution process of ”p_size_3_74” can be found including an intermediate
step. The intermediate step is after ”solve_one_number_of_a_row” has been
applied. It has to be noted that it is a ”lucky” coincidence that after applying

3. Results and Discussion 27

Figure 3.9: Task p_size_3_74 of the slider ”General Tasks” dataset. The
task was solved in the following way: (lambda (solve_one_number_of_a_col
(solve_one_number_of_a_row $0))). On the left the input instance can be seen.
In the middle the result after the application of solve_one_number_of_a_row.
On the right the final result can be seen. [4]

”solve_one_number_of_a_row” the whole first row is in order and after apply-
ing ”solve_one _number_of_a_col” the whole problem is solved. In other tasks,
more function applications were needed.
In following iterations more primitives were found, mainly using compositions

of ”solve_one _number_of_a_row” and ”solve_one _number_of_a_col” and
newly found primitives.
Thanks to these high-level primitives and the newly discovered primitives, nearly
all single instance tasks were solved and in addition all 5er tasks of size 3 × 3.
Nevertheless, no 5er tasks of dimension 4× 4 or higher were solved. This means
that DreamCoder, with this set of primitives, was able to learn how to solve
general instances of size 3 × 3. Also, many instances of size 4 can be solved
but, as the 5er tasks of size 4× 4 were not solved, DreamCoder did not learn to
solve general instances of this, and bigger sizes. The exact number of tasks and
newly found primitives can be found in the summary Table-3.3. In addition in
the appendix a complete table, Table-B.5, with the number of solved tasks per
iteration and all newly discovered primitives can be found.

Basis + Help_3

”Help_3” contained the most high-level primitives. In this experiment, the prim-
itive set ”Basis sliding puzzle” and ”Help_3” were given. The set ”Help_3” con-
tained the primitives ”solve_row” and ”solve_col”, which solve an entire row/col-
umn (see also Subsection-2.2.2 for more detail). With these high-level primitives,
DreamCoder was able to solve all tasks involving instances of sizes 2× 2, 3× 3,
and 4 × 4. Also, it solved 37/40 of the 5er tasks of size 5 × 5. Interestingly the
function compositions used to solve some of the solved 5er tasks of size 5 × 5

3. Results and Discussion 28

would also have been able to solve the 3 unsolved 5er tasks of size 5 × 5. One
explanation for why those tasks were not solved, could be that DreamCoder was
overwhelmed by the size of the primitives, which are very large as can be seen in
the appendix in Subsection-B.1.4, or by the size of the tasks. This could also be
the explanation for why tasks of higher dimensions were not solved.
In this experiment only 2 new primitives were found:

1 . #(lambda (solve_2x2 (so lve_co l (solve_row $0))))
= ' ' s o l v e f i r s t row that i s not in order
f o l l owed by so l v e f i r s t column that i s not in order
f o l l owed by so l v e the 2x2 square at the bottom r i gh t

corner ' '
2 . #(lambda (so lve_co l (solve_row (solve_row $0))))

= ' ' s o l v e f i r s t row that i s not in order
f o l l owed by so l v e next row that i s not in order
f o l l owed by so l v e f i r s t column that i s not in order ' '

The first is a primitive able to solve directly a 3 × 3 instance of the problem.
Alternatively, if the problem is bigger than 3 × 3, it orders the first row and
column that are not ordered and additionally orders the 2 × 2 square in the
bottom right corner. The second primitive orders the first two not ordered rows
and the first not ordered column. Applying the first primitive many times one
after the other would solve also bigger instances of the puzzle. This underlines
the questions raised about the overwhelmingness of DreamCoder with demanding
and extensive tasks. A summary of the first four experiments on the slider puzzle
can be found in Table-3.3.

Primitive set
name: Type of tasks: Newly found

primitives:

All 2× 2 instances
together in one task Single tasks (1 instance per task) 5er tasks (5 instances per task)

Dimension:

2× 2 3× 3 4× 4 3× 3 4× 4 5× 5 6× 6 7× 7

Basis sliding
puzzle: 1/1 2/100 0/50 0/60 0/50 0/40 0/30 0/20 0

Basis + Help_1: 1/1 1/100 0/50 0/60 0/50 25/40 0/30 0/20 0
Basis + Help_2: 1/1 100/100 47/50 60/60 0/50 0/40 0/30 0/20 18
Basis + Help_3: 1/1 100/100 50/50 60/60 50/50 25/40 0/30 0/20 2

Table 3.3: Summary of the number of solved tasks for the different primitive sets
on the ”General Tasks” set of the slider puzzle.

Task and Primitives engineered

In this experiment, the tasks and primitives were different from the experiments
above. There were 45 carefully designed tasks and 31 primitives that should allow
solving the tasks. More details about the tasks can be found in Subsubsection-
2.1.2, about the primitives in Subsection-2.2.2 and a full list of the primitives

3. Results and Discussion 29

can be found in the appendix in Subsection-B.2.2. The general aim was to make
DreamCoder learn to bring the 1 in the upper left corner. This is by learning
intermediate steps such as moving the 0 to the bottom right corner or moving
the 0 below the 1. These steps were further split into smaller sub-steps. After 10
iterations DreamCoder learned, among other things, to move the 0 to the bottom
right corner, to move the 1 away from the last row, and to move the 0 below the
1. However, DreamCoder did not learn to move the 1 to the upper left corner. A
total of 9 new primitives were learned. These newly discovered primitives were
solutions or intermediate steps of the tasks. For example, the following two newly
learned primitives are very interesting:

1 . #(lambda (#(lambda (repeat_x_left $0 6)) (#(lambda (
repeat_x_up $0 4)) $0)))
= ' 'Move the 0 four t imes down and 6 times to the r ight ' '

2 . #(lambda (#(lambda (move_slice_up (repeat_x_down $0 (
n_movesdown_bring_zero_in_row_below_1 $0)))) (#(lambda (#(
lambda (#(lambda (repeat_x_right $0 (
n_movesright_bring_zero_in_col_of_1 $0))) (
if_1_is_in_last_row_move_one_up_else_no_move_in_order_to_get
_it_away_from_last_row $0))) (#(lambda (#(lambda (

repeat_x_left $0 6)) (#(lambda (repeat_x_up $0 4)) $0))) $0)
)) $0)))
= ' 'Move 0 below 1 ' '

The first brings the 0 down to the bottom right corner whereas the second moves
the 0 below the number 1. DreamCoder did not solve tasks related to the move-
ment of the 1. This could be because more intermediate steps would be needed
or better-engineered primitives. A table visualizing the full results of this exper-
iment can be found in the appendix in Subsection-B.4.1.

3.2.2 Discussion

Starting with general, straightforward primitives and generic tasks involving solv-
ing different instances of different sizes of the slider problem, it quickly became
clear that DreamCoder would not be able to learn how to solve the problem.
Therefore, the initial approach had to be reconsidered, towards a careful devel-
opment of primitives that would allow solving the problem and tasks that would
allow learning the necessary intermediate steps to solve the problem.
In the experiments, it can be seen that DreamCoder, although it is theoretically
possible, was unable to solve the problem with the ”Basis sliding puzzle” set of
primitives. As said, it would theoretically be possible, although the program is
extremely long, as shown by the program in the appendix in Subsection-B.1.4.
This program solves the puzzle using the same primitives and is solving it in a
way as DreamCoder could learn it. With the set ”Basis sliding puzzle” it was only
able to solve the size 2×2 instances of the problem, for which a primitive existed,

3. Results and Discussion 30

and a single instance of size 3 × 3 that was already nearly solved. This shows
that it is not enough to have primitives that can solve the problem in order to
learn how to solve it. It was expected that it would not learn to solve the whole
problem but nevertheless, the results were not very promising. Also with some
additional help, in form of higher-level primitives derived from parts of the solv-
ing program, DreamCoder still struggled to solve the puzzle. Help_2 primitives
include primitives capable of solving the next number, not in order of a row or
a column. These were already quite-high level primitives that require numerous
function compositions of the basic primitives. Nevertheless, DreamCoder got to
solve only tasks up to size 3× 3 when considering the 5er tasks. These 5er tasks
are particularly interesting as, to solve them, it is required to be able to solve
general instances of the problem. This is due to the fact that the same program
needs to solve 5 different instances. This means no general solving skills were
learned with those primitives.
Only with the highest level primitives, which include solving the first unordered
row/column, which again means that the problem was almost solved, it was able
to learn to solve general instances of the problem up to a size of 5 × 5. How-
ever, interestingly, it is not able to solve sizes of 6 × 6 or more. One possible
explanation is that the model is overwhelmed by the size of the primitives or the
complexity of the tasks.

Learnings from the findings above are that instead of, or better at the same
time as, developing primitives, it is necessary to develop tasks that represent
intermediate steps in the solution of the problem. Adding too many general tasks
would not help to learn to solve the problem as the number of possible tasks is
huge already with a small 3×3 problem and the needed steps to solve most of these
small problems is already large. Both aspects enlarge the possible search space
to find a general solution to the problem immensely. This means that finding
intermediate steps in the solution of the problem and creating tasks that require
solving these smaller sub-problems is a necessity. As can be seen in Subsection-
3.2.1 in ”Task and Primitives engineered” or in Table-B.4, DreamCoder slowly,
step by step, learns intermediate steps such as bringing the 0 in the bottom right
corner or bringing the 0 below the number 1. The steps in between the tasks, for
it to learn, had to be very small, the smaller the better. Furthermore, to create
new primitives there also had to be some sort of similarity between the tasks.
Despite the careful design of primitives, and tasks to solve the problem of putting
the 1 in its place, DreamCoder was unable to learn this ability. The engineering
of tasks and primitives requires time and in-depth knowledge of the problem.
You have to understand it so thoroughly that you are practically solving it on
your own whereas the objective would be to give general primitives, without too
much and in-depth reasoning, and straight forwards tasks and leave DreamCoder
to do the magic/work.

Chapter 4

Conclusion

From the two different problems that have been studied and the experiments
carried out, it can be seen that a large number of tasks are needed which do not
differ too much from each other and which are increasing in difficulty. Also, basic
primitives are needed, that can solve the problems that are wanted to be solved.
This does not seem too far from the expectations of what needs to be provided
to a model like DreamCoder for it to be able to solve the task sets. However,
finding primitives that are capable of solving a problem and finding the right tasks
that allow DreamCoder to learn has proven to be much harder than expected.
Although, in theory, one could simply provide a set of primitives that implement
a Turing complete language and allow one to find any computable answer, the
results in Subsection-3.2.1 in ”Basis sliding puzzle” have shown that having the
tools to be able to solve something is not enough in order to learn how to solve it.
In general, it seems reasonable to assume that some domain knowledge is needed
to be able to write the tasks and primitives. However, it should not be the case
that to write the tasks and primitives you need to have such a deep knowledge
that you have basically solved the problem yourself. The problem is that it is
not easy to guess what primitives suffice to solve the problem unless you solve
it yourself. In addition, creating tasks of increasing difficulties seems easy when
thinking about the slider problem: simply take tasks of increasing size. This
has though proven to be far from what is needed to permit DreamCoder to be
able to learn to solve the problem. Also here it is difficult to guess the needed
intermediate steps without solving the problem yourself. As well in the case of the
ARC dataset, where the tasks were already given, the work behind the creation
of the primitives turned out to be much bigger than what was imagined. This is
because the step from knowing what prior knowledge is needed to knowing which
primitives are needed requires a lot of in-depth reasoning.

Returning to the opening discussion about an AI/model’s ability to learn like
a child, based on prior knowledge, I think DreamCoder shows some promising
results, but there is still a long way to go. Especially because DreamCoder strug-
gles with an increased number of tasks and an increased number of primitives.
This means that even though the approach of DreamCoder seems very abstract,
mixing different domains can lead to difficulties. Therefore it can only tackle one

31

4. Conclusion 32

problem at a time and not use knowledge of other previously solved problems.
DreamCoder can not "think outside the box". To conclude, I would say that
for humans, learning to solve puzzles and logical challenges, is also ”learning by
doing”, there is a sort of artificial generation of tasks and an implicit division
into sub-problems. This is a capability also needed in such models in order to
solve abstract reasoning problems and logic puzzles based on general primitives
and tasks. In DreamCoder, although in the Dreaming phase (see Figure-1.1)
new tasks are generated by sampling from the primitive library, this capability is
not sufficient. The task generation is a challenging and fundamental step in the
solution of such problems which needs further attention in future work.

Bibliography

[1] F. Chollet, “On the measure of intelligence,” CoRR, vol. abs/1911.01547,
2019. [Online]. Available: http://arxiv.org/abs/1911.01547

[2] K. Ellis, C. Wong, M. I. Nye, M. Sablé-Meyer, L. Cary, L. Morales,
L. B. Hewitt, A. Solar-Lezama, and J. B. Tenenbaum, “Dreamcoder:
Growing generalizable, interpretable knowledge with wake-sleep bayesian
program learning,” CoRR, vol. abs/2006.08381, 2020. [Online]. Available:
https://arxiv.org/abs/2006.08381

[3] F. Chollet. Arc dataset. [Online]. Available: https://volotat.github.io/
ARC-Game/?

[4] S. Tatham. Fifteen, from simon tatham’s portable puzzle collection. [On-
line]. Available: https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/
fifteen.html

[5] A. Banburski, A. Gandhi, S. Alford, S. Dandekar, S. Chin, and tomaso a
poggio, “Dreaming with {arc},” in Learning Meets Combinatorial Algorithms
at NeurIPS2020, 2020. [Online]. Available: https://openreview.net/forum?
id=-gjy2V1ko6t

[6] C. S. Princeton. Slider puzzle assignement, course 226 in spring 2020. last
accessed: 02.04.2022. [Online]. Available: https://www.cs.princeton.edu/
courses/archive/spring20/cos226/assignments/8puzzle/specification.php

33

http://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2006.08381
https://volotat.github.io/ARC-Game/?
https://volotat.github.io/ARC-Game/?
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/fifteen.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/fifteen.html
https://openreview.net/forum?id=-gjy2V1ko6t
https://openreview.net/forum?id=-gjy2V1ko6t
https://www.cs.princeton.edu/courses/archive/spring20/cos226/assignments/8puzzle/specification.php
https://www.cs.princeton.edu/courses/archive/spring20/cos226/assignments/8puzzle/specification.php

Appendix A

ARC

A.1 Primitives

A.1.1 Primitives ”All”

Primitive name:

flatten
first_row_is_equal
first_col_is_equal
image_equality
is_horizontically_simmetric
is_vertically_simmetric_
8
6
2
5
7
0
1
3
4
9
color_at
list_at_index
count_colored_pixels
first_color_ecountered
flip_down
colormapping_from_c1_to_c2
transpose
take_top_half_with_border
take_right_half_with_border
rotate90degCW

A-1

ARC A-2

Table A.1 continued from previous page

Primitive name:

mirrorHor
_union
remove_right_black_rows
remove_left_black_rows
remove_bottom_black_rows
duplicate_h
remove_top_black_rows
take_bottom_half_with_border
mirrorVer
rotate90degCCW
take_left_half_with_border
remFirstRow
move_down
move_left
negative
addColLast
copyPart
addColFirst
duplicate_v
identity
remFirstCol
stack_h
tilev2
tileh2
row_of_size_n
addRowLast
empty1x1
addRowFirst
addPixelAllAround
remLastRow
remLastCol
cropByOne
colpixijc
colrow
colcol
tilev3
tileh3
_intersection
move_up
move_right
take_first_row

ARC A-3

Table A.1 continued from previous page

Primitive name:

take_first_col
stack_v
color_if_was_c2
fkt_if

Table A.1: Names of primitives in set ”All”.

Appendix B

Sliding puzzle

B.1 Code

B.1.1 Is Solvable

In the following python code, the definition of the function ”is_solvable” can be
found. This function returns whether an instance of the sliding puzzle problem
is solvable or not. The idea behind the code was taken from [6].

Listing B.1: Python code with function that is able to discover if an instance of
the sliding puzzle is solvable or not.
def f ind_zero (im) :

for i in range (len (im)) :
for j in range (len (im [0])) :

i f (im [i] [j]==0):
return (i , j)

def count_invers ions (l s s) :
l s =[item for s u b l i s t in l s s for item in s u b l i s t]
l s . remove (0)
count=0
for i in range (len (l s) −1):

for j in range (i +1, len (l s)) :
i f (l s [i]> l s [j]) :

count+=1
return count

def i s_so l vab l e (l s s) :
i f (len (l s s)%2==0):

return (0 !=((count_invers ions (l s s)+(f ind_zero (l s s)) [0])%2))
else :

return (0==(count_invers ions (l s s)%2))

B-1

Sliding puzzle B-2

B.1.2 Functions/Primitives for solving slider problem

Listing B.2: Python code with functions needed to solve the slider problem.
#coordinates of element n in the image
def find_ (im , n) :

row=0
column=0
for i in range (len (im)) :

for j in range (len (im [0])) :
i f (im [i] [j]==n) :

row=i
column=j

return (row , column)

#move a t i l e r i gh t and zero l e f t
def move_right (im1) :

im=copy . deepcopy (im1)
row=find_ (im , 0) [0]
column=find_ (im , 0) [1]
i f (column==0) :

return (im)
else :

temp=im [row] [column]
im [row] [column]=im [row] [column −1]
im [row] [column−1]=temp

return im

#move a t i l e l e f t and zero r igh t
def move_left (im1) :

im=copy . deepcopy (im1)
row=find_ (im , 0) [0]
column=find_ (im , 0) [1]
i f (column==(len (im [0]) −1)) :

return (im)
else :

temp=im [row] [column]
im [row] [column]=im [row] [column+1]
im [row] [column+1]=temp

return im

#move a t i l e up and zero down
def move_up(im1) :

im=copy . deepcopy (im1)
row=find_ (im , 0) [0]
column=find_ (im , 0) [1]
i f (row==(len (im)−1)) :

return (im)
else :

temp=im [row] [column]
im [row] [column]=im [row+1] [column]
im [row+1] [column]=temp

return im

#move a t i l e down and zero up
def move_down(im1) :

im=copy . deepcopy (im1)
row=find_ (im , 0) [0]
column=find_ (im , 0) [1]
i f (row==0) :

return (im)
else :

temp=im [row] [column]
im [row] [column]=im [row −1] [column]
im [row −1] [column]=temp

return im

#repeat fk t ion x times
def repeat_x (im1 , fkt , x) :

im=copy . deepcopy (im1)
for i in range (x) :

im=fk t (im)
return im

#I f n i s in l a s t row return 1 e l se 0
def n_of_needed_move_down_to_get_n_away_from_last_row(im1 , n) :

rown=find_ (im1 , n) [0]
i f (rown==(len (im1)−1)) :

return 1
else : return 0

#number of movements to the r igh t needed to get 0 in the same column as n

Sliding puzzle B-3

def n_of_needed_move_right_to_get_0_in_same_col_as_n (im1 , n) :
co ln=find_ (im1 , n) [1]
return ((len (im1 [0]) −1)−co ln)

#number of movements down needed to get 0 in the row below the row where n i s
def number_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (im1 , n) :

rown=find_ (im1 , n) [0]
return ((len (im1)−1)−rown−1)

#sequence of moovements to move the number above the 0 one up , passing with the zero
↪→ from the r igh t

def move_up_on_right (im1) :
im=copy . deepcopy (im1)
return move_up((move_right (move_down(move_down(move_left (im))))))

#sequence of moovements to move the number above the 0 one up , passing with the zero
↪→ from the l e f t

def move_up_on_left (im1) :
im=copy . deepcopy (im1)
return move_up((move_left (move_down(move_down(move_right (im))))))

#sequence of moovements to move the number above the 0 one to the l e f t
def move_left_with_zero_below (im1) :

im=copy . deepcopy (im1)
return move_right ((move_up(move_left (move_down(move_right (im))))))

#returns move_on_left i f the 0 i s located in the l a s t column , e l se returs
↪→ move_on_right

def choose_move_up_fkt (im1) :
im=copy . deepcopy (im1)
co ln=find_ (im , 0) [1]
i f (co ln==(len (im1 [0]) −1)) :

return move_up_on_left
else :

return move_up_on_right

#l i s t of correct order how to proceed in the so lut ion of the problem
def l i s t_co r r e c t_orde r (im) :

rows=(len (im))
c o l s=(len (im [0]))
c o r r e c t_ l i s t =[0]∗ rows∗ c o l s
counter=0
counter_for_first_element_in_colum=1
for i in range (rows) :

for k in range ((rows−i)) :
c o r r e c t_ l i s t [counter]=(i ∗(rows+1)+1)+k
counter+=1

i f (counter <(rows∗ c o l s)) :
c o r r e c t_ l i s t [counter]= c o r r e c t_ l i s t [counter −1]+counter_for_first_element_in_colum
counter_for_first_element_in_colum+=1
counter+=1
for k in range ((rows−i)−2) :

c o r r e c t_ l i s t [counter]= c o r r e c t_ l i s t [counter −1]+rows
counter+=1

c o r r e c t_ l i s t [rows∗ co l s −1]=0
return c o r r e c t_ l i s t

#coordinates where to pos t i t ion each element , the l a s t 2 elements of each row and
↪→ column

#represent a spec ia l case . The second l a s t element has to be placed as l a s t and the
#la s t element below or to the r igh t of i t (depending i f we are ta l k ing about a row or

↪→ col)
def r ight_posit ion_of_n (im , n) :

counter=1
for i in range (len (im)) :

for j in range (len (im [0])) :
i f (counter==n) :

#spec ia l case for l a s t two in row
i f (((len (im [0]) −1)−j)<2) :

i f (j==(len (im)−2)) :
return (i , j +1)

else : return (i +1, j)

i f (((len (im)−1)−i)<2) :
i f (i==(len (im)−2)) :

return (i +1, j)
else : return (i , j +1)

return (i , j)
counter+=1

#in which row i s element n in the end
def row_in_definite_end_order (im , n) :

Sliding puzzle B-4

l s =[0]∗(len (im) ∗ len (im [0]))
index=0
for i in range ((len (im) ∗ len (im [0]))−1) :

l s [i]= i+1
i f (i+1==n) :

index=i
row=(index) //(len (im [0]))
return row

#in which col i s element n in the end
def col_in_definite_end_order (im , n) :

n=n+1 #because n was the index and not the actual number
l s =[0]∗(len (im) ∗ len (im [0]))
index=0
for i in range ((len (im) ∗ len (im [0]))−1) :

l s [i]= i+1
i f (i+1==n) :

index=i
co l=(index −1) % (len (im [0]))
return co l

#check i f i t i s needed to so lve a row
def rows_are_ok_up_to_last_2 (im) :

counter=1
for i in range (len (im)) :

for j in range (len (im [0])) :
i f ((i <(len (im)−2)) and (im [i] [j] != counter)) : return False
counter+=1

return True

#check i f i t i s needed to so lve a column
def cols_are_ok_up_to_last_2 (im) :

counter=1
for i in range (len (im)) :

for j in range (len (im [0])) :
i f ((j <(len (im [0]) −2)) and (im [i] [j] != counter)) : return False
counter+=1

return True

#la s t number of the row working on
def last_number_of_row_of_first_row_not_in_order (im) :

for i in range (len (im)) :
f i r s t_ e l=len (im) ∗ i+1
i f (im [i] [0] ! = f i r s t_ e l) :

return (i +1)∗ len (im)
for j in range (len (im [0])) :

i f (im [i] [j] != f i r s t_ e l+j) :
return (i +1)∗ len (im)

#la s t number of the current ly column working on
def last_number_of_col_of_first_col_not_in_order (im) :

for i in range (len (im [0])) :
f i r s t_ e l=i+1
i f (im [0] [i] != f i r s t_ e l) :

return i + ((len (im)−1)∗ len (im))+1
for j in range (len (im)) :

i f (im [j] [i] != f i r s t_ e l+j ∗(len (im))) :
return i + ((len (im)−1)∗ len (im))+1

#number of steps down needed to get 0 in the same row as n
def number_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im1 , n) :

rown=find_ (im1 , n) [0]
return ((len (im1)−1)−rown)

#number of steps r igh t needed to get 0 in the same col as n
def n_of_needed_move_right_to_get_0_in_col_rigth_of_n (im1 , n) :

co ln=find_ (im1 , n) [1]
return max(0 , ((len (im1 [0]) −1)−coln −1))

#sequence of moovements to move the number above the 0 one down, passing with the zero
↪→ from the r igh t

def move_down_on_right (im1) :
im=copy . deepcopy (im1)
return move_right ((move_up(move_up(move_left (move_down(im))))))

#sequence of moovements to move the number above the 0 one down, passing with the zero
↪→ from the l e f t

def move_down_on_left (im1) :
im=copy . deepcopy (im1)
return move_left ((move_up(move_up(move_right (move_down(im))))))

Sliding puzzle B-5

#returns move_down_on_left i f the 0 i s located in the l a s t column , e l se retunrs
↪→ move_down_on_right

def choose_move_down_fkt (im1) :
im=copy . deepcopy (im1)
co ln=find_ (im , 0) [1]
i f (co ln==(len (im1 [0]) −1)) :

return move_down_on_left
else :

return move_down_on_right

#number of steps r igh t needed to get n to the bottom
def number_of_move_down_sequences_to_get_number_to_bottom(im1 , n) :

rown=find_ (im1 , n) [0]
return ((len (im1)−1)−rown)

#sequence of moovements to move the number above the 0 one to the right , passing with
↪→ the zero from above

def move_right_above (im1) :
im=copy . deepcopy (im1)
return move_up((move_left (move_left (move_down(move_right (im))))))

#sequence of moovements to move the number above the 0 one to the right , passing with
↪→ the zero from below

def move_right_below (im1) :
im=copy . deepcopy (im1)
return move_down((move_left (move_left (move_up(move_right (im))))))

#returns move_right_above i f the 0 i s located in the l a s t orw , e l se retunrs
↪→ move_right_below

def choose_move_right_fkt (im1) :
im=copy . deepcopy (im1)
rown=find_ (im , 0) [0]
i f (rown==(len (im1)−1)) :

return move_right_above
else :

return move_right_below

#number of steps r igh t needed to get n to the r igh t
def number_of_move_right_sequences_to_get_number_to_right (im1 , n) :

co ln=find_ (im1 , n) [1]
return max(0 , ((len (im1 [0]) −1)−co ln))

#check i f row i s f in i shed
def row_is_finished (im , n) :

f i r s t_ e l=len (im) ∗n+1
t e s t=(f i r s t_ e l==im [n] [0])
for i in range (len (im [0])) :

t e s t=t e s t and (im [n] [i]== f i r s t_ e l+i)
return t e s t

#check i f numbers of a row are placed in such a way that you can perform the swap
def row_is_ok (im , n) :

f i r s t_ e l=len (im) ∗n+1
t e s t=(f i r s t_ e l==im [n] [0])
for i in range (len (im [0])) :

i f (i<len (im [0]) −2) :
t e s t=t e s t and (im [n] [i]== f i r s t_ e l+i)

else :
i f (i==len (im [0]) −2) :

t e s t=t e s t and (im [n] [i+1]== f i r s t_ e l+i)
else : t e s t=t e s t and (im [n+1] [i]== f i r s t_ e l+i)

return t e s t

#check i f co l i s f in ished
def co l_ i s_f in i shed (im , n) :

f i r s t_ e l=n+1
t e s t=(f i r s t_ e l==im [0] [n])
for i in range (len (im)) :

t e s t=t e s t and (im [i] [n]== f i r s t_ e l +(i ∗(len (im))))
return t e s t

#check i f numbers of a col are placed in such a way that you can perform the swap
def col_is_ok (im , n) :

f i r s t_ e l=n+1
t e s t=(f i r s t_ e l==im [0] [n])
for i in range (len (im)) :

i f (i<len (im [0]) −2) :
t e s t=t e s t and (im [i] [n]== f i r s t_ e l +(len (im)) ∗ i)

else :
i f (i==len (im [0]) −2) :

t e s t=t e s t and (im [i +1] [n]== f i r s t_ e l +(len (im)) ∗ i)
else : t e s t=t e s t and (im [i] [n+1]== f i r s t_ e l +(len (im)) ∗ i)

return t e s t

Sliding puzzle B-6

#find out on wich row we are working
def working_on_row (im) :

for i in range (len (im)) :
f i r s t_ e l=len (im) ∗ i+1
i f (im [i] [0] ! = f i r s t_ e l) :

return i
for j in range (len (im [0])) :

i f (im [i] [j] != f i r s t_ e l+j) :
return i

#find out on wich col we are working
def working_on_col (im) :

for i in range (len (im [0])) :
f i r s t_ e l=i+1
i f (im [0] [i] != f i r s t_ e l) :

return i
for j in range (len (im)) :

i f (im [j] [i] != f i r s t_ e l+j ∗(len (im))) :
return i

#find the next number that i s not in order
def next_number_not_in_order_row_col (im) :

rows=(len (im))
c o l s=(len (im [0]))
co r r e c t_orde r_ in_f i l l i ng=l i s t_co r r e c t_orde r (im)
for i in range (rows∗ c o l s) :

row=right_posit ion_of_n (im , co r r e c t_orde r_ in_f i l l i ng [i]) [0]
c o l=right_posit ion_of_n (im , co r r e c t_orde r_ in_f i l l i ng [i]) [1]
i f ((im [row] [c o l] != co r r e c t_orde r_ in_f i l l i ng [i])

and (not (row_is_finished (im , row_in_definite_end_order (im ,
↪→ co r r e c t_orde r_ in_f i l l i ng [i]))))

and (not (co l_ i s_f in i shed (im , col_in_definite_end_order (im ,
↪→ co r r e c t_orde r_ in_f i l l i ng [i]))))) :

return co r r e c t_orde r_ in_f i l l i ng [i]

#number of steps up needed to get n to the r igh t posi t ion
def needed_steps_up_to_get_n_in_rigth_position_ (im1 , n) :

final_row_n=right_posit ion_of_n (im1 , n) [0]
rown=find_ (im1 , n) [0]
return (max(0 , rown−final_row_n))

#number of steps down needed to get n to the r igh t posi t ion
def needed_steps_down_to_get_n_in_rigth_position_ (im1 , n) :

final_row_n=right_posit ion_of_n (im1 , n) [0]
rown=find_ (im1 , n) [0]
i f (final_row_n==(len (im1)−1)) :

return (max(0 , final_row_n−rown−1))
return (max(0 , final_row_n−rown))

#number of steps l e f t needed to get n to the r igh t posi t ion
def needed_steps_to_left_to_get_n_in_rigth_position_ (im1 , n) :

f inal_col_n=right_posit ion_of_n (im1 , n) [1]
co ln=find_ (im1 , n) [1]
return (max(0 , coln−final_col_n))

#number of steps r igh t needed to get n to the r igh t posi t ion
def needed_steps_to_right_to_get_n_in_rigth_position_ (im1 , n) :

f inal_col_n=right_posit ion_of_n (im1 , n) [1]
co ln=find_ (im1 , n) [1]
return (max(0 , f inal_col_n−coln))

#spec ia l move sequence only for col to bring number one down i f the r igh t posi t ion i s
↪→ the l a s t row

def if_needed_move_up_move_left_to_bring_interested_element_in_last_row (im , n) :
final_row_n=right_posit ion_of_n (im , n) [0]
rown=find_ (im , n) [0]
i f ((max(0 , final_row_n−rown))==1) :

return move_left (move_down(im))
else : return im

#move number above 0 one to the r igh t
def move_right_with_zero_below (im1) :

im=copy . deepcopy (im1)
return move_left ((move_up(move_right (move_down(move_left (im))))))

#move number l e f t of 0 one to the l e f t
def move_left_on_last_row (im1) :

im=copy . deepcopy (im1)
return move_up((move_right (move_right (move_down(move_left (im))))))

#returns move_left_on_last_row i f the 0 i s located in the l a s t row , e l se retunrs
↪→ move_left_with_zero_below

def choose_move_left_fkt (im1 , n) :

Sliding puzzle B-7

im=copy . deepcopy (im1)
rown=find_ (im , n) [0]
i f (rown==(len (im1)−1)) :

return move_left_on_last_row
else :

return move_left_with_zero_below

#number of steps up needed to get 0 from the l a s t row to the row yoz are working on
def steps_to_get_up_to_row_where_to_do_the_swap (im1) :

row=working_on_row (im1)
return (len (im1)−row−1)

#number of steps l e f t needed to get 0 from the l a s t col to the col you are working on
def steps_to_get_left_to_col_where_to_do_the_swap (im1) :

c o l=working_on_col (im1)
return (len (im1)−1−(co l))

#solve the 2x2 square in bottom righ t corner , i f 0 i s there
def solve_2 (im1) :

im=copy . deepcopy (im1)
ul=im [(len (im1)−2)] [(len (im1 [0]) −2)]
ur=im [(len (im1)−2)] [(len (im1 [0]) −1)]
d l=im [(len (im1)−1)] [(len (im1 [0]) −2)]
dr=im [(len (im1)−1)] [(len (im1 [0]) −1)]
i f ((d l==(max(ul , ur , dl , dr)))) :

i f ((dr==(min(ul , ur , dl , dr)))) :
return im

i f ((ur==(min(ul , ur , dl , dr)))) :
return move_up(im)

else :
return move_up(move_left (im))

i f ((dr==(max(ul , ur , dl , dr)))) :
i f ((u l==(min(ul , ur , dl , dr)))) :

return move_left (move_up(im))
i f ((dr==(min(ul , ur , dl , dr)))) :

return move_left (im)
else :

return move_left (move_up(move_right (im)))
i f ((ur==(max(ul , ur , dl , dr)))) :

i f ((u l==(min(ul , ur , dl , dr)))) :
return move_up(move_left (move_down(move_right (move_up(move_left (im))))))

i f ((dr==(min(ul , ur , dl , dr)))) :
return move_left (move_up(move_right (move_down(im))))

else :
return move_left (move_up(move_right (move_down(move_left (im)))))

i f ((d l==(min(ul , ur , dl , dr)))) :
return (move_up(move_left (move_down(im))))

i f ((dr==(min(ul , ur , dl , dr)))) :
return (move_up(move_left (move_down(move_right (im)))))

else :
return (move_up(move_left (move_down(move_right (move_up(im))))))

#return the f k t resu l t ing of the function composition of fk t1 and fk t2
def two_fkt_in_sequence (fkt1 , f k t2) :

def f k t3 (im) :
return f k t2 (fk t1 (im))

return f k t3

B.1.3 Solving the slider puzzle

The function ”solve” that solves the slider puzzle is based on the functions
“solve_row” and “solve_col”. The function “solve” brings first the 0 down to the
right bottom corner. And then applies the functions ”solve_row” and ”solve_col”
one after the other 10 times. At this point, only the 2x2 square in the right
bottom corner needs to be solved. This is done using the ”solve_2” function.
”Solve_row” and ”solve_col” are very similar, they are based on an inner loop
that brings one number at a time to the correct place. The last two elements
of the row are brought into the last position and in the last position of the row
below. In this way, with a simple series of movements, called the swap, the row

Sliding puzzle B-8

can be completed. The function begins to solve a row only if there is a row left
to order that is not one of the last 2. Also in the inner loop numbers are brought
to the right position only until the current row is not finished. Two important
remarks, before beginning to solve a row/col the last element has to be brought
away the furthest possible to not end in a bad position before being able to place
it. In addition after each step, the 0 is brought back to the bottom right corner.

Listing B.3: Python code that solves the slider puzzle.
def solve_row (im1) :
im=copy . deepcopy (im1)
#i f i t happens that a l l rows except the l a s t 2 are already solved no need to continue

↪→ (would only dis troy the other rows again)
i f (not rows_are_ok_up_to_last_2 (im)) :

#la s t element of the row , because you need to move i t away from the top row before
↪→ continuing

last_el_of_row_working_on=last_number_of_row_of_first_row_not_in_order (im)

#move 0 below the interes ted number
im=repeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,

↪→ last_el_of_row_working_on))
im=repeat_x (im ,move_down ,

↪→ number_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (im ,
↪→ last_el_of_row_working_on))

#move the number down
im=repeat_x (im , choose_move_down_fkt (im) ,

↪→ number_of_move_down_sequences_to_get_number_to_bottom(im ,
↪→ last_el_of_row_working_on))

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

for i in range (10) :
i f (not (row_is_ok (im , working_on_row (im)))) :
#next number working on
next_number=next_number_not_in_order_row_col (im)

#move the intres ted number away from the l a s t row
im=repeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,

↪→ next_number))
im=repeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,

↪→ next_number))
im=move_up(im)

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

#move 0 below the interes ted number
im=repeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,

↪→ next_number))
im=repeat_x (im ,move_down ,

↪→ number_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (im ,
↪→ next_number))

#move to r igh t posi t ion
im=repeat_x (im , move_right_with_zero_below ,

↪→ needed_steps_to_right_to_get_n_in_rigth_position_ (im , next_number))
im=repeat_x (im , choose_move_up_fkt (im) , needed_steps_up_to_get_n_in_rigth_position_ (

↪→ im , next_number))
im=repeat_x (im , move_left_with_zero_below ,

↪→ needed_steps_to_left_to_get_n_in_rigth_position_ (im , next_number))

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

#the swap(bring l a s t 2 elements into r igh t postion)
im=move_right (im)
im=repeat_x (im ,move_down , steps_to_get_up_to_row_where_to_do_the_swap (im))
im=move_left (im)
im=move_up(im)

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

Sliding puzzle B-9

return im

def so lve_co l (im1) :
im=copy . deepcopy (im1)

i f (not cols_are_ok_up_to_last_2 (im)) : #i f i t happens that a l l co l s except the l a s t 2
↪→ are already solved no need to continue (would only dis troy the other co ls
↪→ again)

#la s t element of the col , because you need to move i t away from the top row before
↪→ continuing

last_el_of_col_working_on=last_number_of_col_of_first_col_not_in_order (im)

#move 0 to the r igh t of the interes ted number
im=repeat_x (im ,move_down ,

↪→ number_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im ,
↪→ last_el_of_col_working_on))

im=repeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
↪→ last_el_of_col_working_on))

#move the number to the r igh t
im=repeat_x (im , choose_move_right_fkt (im) ,

↪→ number_of_move_right_sequences_to_get_number_to_right (im ,
↪→ last_el_of_col_working_on))

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

for i in range (10) :
i f (not (col_is_ok (im , working_on_col (im)))) :

#next number working on
next_number=next_number_not_in_order_row_col (im) #next_number_to_work_on

#move the intres ted number away from the l a s t row
im=repeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,

↪→ next_number))
im=repeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,

↪→ next_number))
im=move_up(im)

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

#move 0 below the interes ted number
im=repeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,

↪→ next_number))
im=repeat_x (im ,move_down ,

↪→ number_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
↪→ im , next_number))

#move to r igh t posi t ion
im=repeat_x (im , choose_move_up_fkt (im) ,

↪→ needed_steps_up_to_get_n_in_rigth_position_ (im , next_number))
im=repeat_x (im , choose_move_down_fkt (im) ,

↪→ needed_steps_down_to_get_n_in_rigth_position_ (im , next_number))
im=repeat_x (im , choose_move_left_fkt (im , next_number) ,

↪→ needed_steps_to_left_to_get_n_in_rigth_position_ (im , next_number))
im=if_needed_move_up_move_left_to_bring_interested_element_in_last_row (im ,

↪→ next_number)

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

#the swap (bring l a s t 2 elements into r i g j t postion)
im=move_down(im)
im=repeat_x (im , move_right , steps_to_get_left_to_col_where_to_do_the_swap (im))
im=move_up(im)
im=move_right (im)

#move 0 back to r igh t lower corner
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)

return im

def s o l v e (im1) :
im=copy . deepcopy (im1)
#move 0 to bottom righ t
im=repeat_x (im ,move_up , 8)
im=repeat_x (im , move_left , 8)
#solve row then col un t i l 2∗2 square i s l e f t down r igh t

Sliding puzzle B-10

im=repeat_x (im , two_fkt_in_sequence (solve_row , so lve_co l) , 10)
return (solve_2 (im))

B.1.4 Solving the slider problem like DreamCoder

Listing B.4: Python code that solves the slider problem as DreamCoder could.

def funct ion_composit ion (fkt1 , f k t2) :
def f k t3 (im) :

return f k t2 (fk t1 (im))
return f k t3

def i f_true_i1_else_i2 (boo l l , im1 , im2) :
i f (boo l l) :

return im1
else : return im2

def funct ion_appl icat ion_x (im1 , fkt , x) :
im=copy . deepcopy (im1)
for i in range (x) :

im=fk t (im)
return im

def move_to_right_position_col (im , next_number) :
im=repeat_x (im , choose_move_up_fkt (im) , needed_steps_up_to_get_n_in_rigth_position_ (im

none , next_number))
im=repeat_x (im , choose_move_down_fkt (im) ,

noneneeded_steps_down_to_get_n_in_rigth_position_ (im , next_number))
im=repeat_x (im , choose_move_left_fkt (im , next_number) ,

noneneeded_steps_to_left_to_get_n_in_rigth_position_ (im , next_number))
im=if_needed_move_up_move_left_to_bring_interested_element_in_last_row (im ,

nonenext_number)
return im

def move_to_right_position_row (im , next_number) :
im=repeat_x (im , move_right_with_zero_below ,

noneneeded_steps_to_right_to_get_n_in_rigth_position_ (im , next_number))
im=repeat_x (im , choose_move_up_fkt (im) , needed_steps_up_to_get_n_in_rigth_position_ (im

none , next_number))
im=repeat_x (im , move_left_with_zero_below ,

noneneeded_steps_to_left_to_get_n_in_rigth_position_ (im , next_number))
return im

def solve_one_number_of_a_col (im) :
return i f_true_i1_else_i2 ((col_is_ok (im , working_on_col (im))) , im , repeat_x (repeat_x (

nonemove_to_right_position_col (repeat_x (repeat_x (repeat_x (repeat_x (move_up(
nonerepeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,

next_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x (im ,
nonemove_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,
nonemove_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (repeat_x
none(repeat_x (repeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,

Sliding puzzle B-11

nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (repeat_x (move_up(
nonerepeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x (
noneim ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (repeat_x (move_up(repeat_x (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) ,

next_number_not_in_order_row_col (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8))))))) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (repeat_x (repeat_x (move_up
none(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,

move_down , number_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (repeat_x (repeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (

Sliding puzzle B-12

nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,

next_number_not_in_order_row_col (repeat_x (repeat_x (repeat_x (move_up(repeat_x (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) ,

next_number_not_in_order_row_col (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8))))))))) ,
nonemove_up , 8) , move_left , 8))

def solve_one_number_of_a_row (im) :
return i f_true_i1_else_i2 ((row_is_ok (im , working_on_row (im))) , im , repeat_x (repeat_x (

nonemove_to_right_position_row (repeat_x (repeat_x (repeat_x (repeat_x (move_up(
nonerepeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) ,

next_number_not_in_order_row_col (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,
nonemove_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (repeat_x (repeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) ,

next_number_not_in_order_row_col (repeat_x (im ,move_down ,

Sliding puzzle B-13

nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) ,

next_number_not_in_order_row_col (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (repeat_x (move_up(repeat_x
none(repeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,

next_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x (im ,
nonemove_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))))))
none , next_number_not_in_order_row_col (repeat_x (repeat_x (repeat_x (repeat_x (
nonemove_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) ,

next_number_not_in_order_row_col (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,
nonemove_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (repeat_x (repeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,

Sliding puzzle B-14

nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,

n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (repeat_x (move_up(repeat_x
none(repeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) ,

next_number_not_in_order_row_col (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (
nonerepeat_x (move_up(repeat_x (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8) ,
nonenext_number_not_in_order_row_col (repeat_x (repeat_x (move_up(repeat_x (repeat_x
none(im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (repeat_x (im ,move_down ,
nonen_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))) , next_number_not_in_order_row_col (
nonerepeat_x (im ,move_down , n_of_needed_move_down_to_get_n_away_from_last_row(im ,
nonenext_number_not_in_order_row_col (im))))))) ,move_up , 8) , move_left , 8)))))))
none)) ,move_up , 8) , move_left , 8))

def solve_row (im) :
return (i f_true_i1_else_i2 (rows_are_ok_up_to_last_2 (im) , im , repeat_x (repeat_x (move_up(

nonemove_left (repeat_x (move_right (repeat_x (repeat_x (repeat_x (repeat_x (repeat_x (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im)))))) , choose_move_down_fkt (
nonerepeat_x (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))))))) ,
nonenumber_of_move_down_sequences_to_get_number_to_bottom(repeat_x (repeat_x (im ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,

last_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im)))))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))))))))) ,move_up , 8) , move_left
none , 8) , solve_one_number_of_a_row , 10)) ,move_down ,
nonesteps_to_get_up_to_row_where_to_do_the_swap (move_right (repeat_x (repeat_x (

Sliding puzzle B-15

nonerepeat_x (repeat_x (repeat_x (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im)))))) , choose_move_down_fkt (
nonerepeat_x (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,

last_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))))))) ,
nonenumber_of_move_down_sequences_to_get_number_to_bottom(repeat_x (repeat_x (im ,
nonemove_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im)))))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_row_below_the_intereseted_number (
nonerepeat_x (im , move_right , n_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))) ,
nonelast_number_of_row_of_first_row_not_in_order (repeat_x (im , move_right ,
nonen_of_needed_move_right_to_get_0_in_same_col_as_n (im ,
nonelast_number_of_row_of_first_row_not_in_order (im))))))))) ,move_up , 8) , move_left
none , 8) , solve_one_number_of_a_row , 10)))))) ,move_up , 8) , move_left , 8)))

def so lve_co l (im) :
return i f_true_i1_else_i2 (cols_are_ok_up_to_last_2 (im) , im , repeat_x (repeat_x (

nonemove_right (move_up(repeat_x (move_down(repeat_x (repeat_x (repeat_x (repeat_x (
nonerepeat_x (repeat_x (im ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im))) , choose_move_right_fkt (
nonerepeat_x (repeat_x (im ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im)))) ,
nonenumber_of_move_right_sequences_to_get_number_to_right (repeat_x (repeat_x (im
none ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im))) ,

last_number_of_col_of_first_col_not_in_order (repeat_x (repeat_x (im ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im)))))) ,move_up , 8) , move_left
none , 8) , solve_one_number_of_a_col , 1 0)) , move_right ,
nonesteps_to_get_left_to_col_where_to_do_the_swap (move_down(repeat_x (repeat_x (
nonerepeat_x (repeat_x (repeat_x (repeat_x (im ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im))) ,

choose_move_right_fkt (repeat_x (repeat_x (im ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im)))) ,
nonenumber_of_move_right_sequences_to_get_number_to_right (repeat_x (repeat_x (im
none ,move_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,
nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im))) ,
nonelast_number_of_col_of_first_col_not_in_order (repeat_x (repeat_x (im ,
nonemove_down ,
nonenumber_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number (im
none , last_number_of_col_of_first_col_not_in_order (im))) , move_right ,

Sliding puzzle B-16

nonen_of_needed_move_right_to_get_0_in_col_rigth_of_n (im ,
nonelast_number_of_col_of_first_col_not_in_order (im)))))) ,move_up , 8) , move_left
none , 8) , solve_one_number_of_a_col , 1 0)))))) ,move_up , 8) , move_left , 8))

def s o l v e (im) :
return (solve_2 (repeat_x (repeat_x (repeat_x (im ,move_up , 8) , move_left , 8) ,

nonefunct ion_composit ion (solve_row , so lve_co l) , 10)))

Sliding puzzle B-17

B.2 Primitives

B.2.1 Primitives ”Basis sliding puzzle”

Primitive name:

rows_are_ok_up_to_last_2
cols_are_ok_up_to_last_2
row_is_ok
col_is_ok
6
4
5
7
8
9
0
1
2
3
n_of_needed_move_down_to_get_n_away_from_last_row
n_movesright_bring_zero_in_col_of_n
n_movesdown_bring_zero_in_row_below_n
last_number_of_row_of_first_row_not_in_order
last_number_of_col_of_first_col_not_in_order
number_of_move_down_to_bring_zero_in_same_row_as_the_intereseted_number
n_of_needed_move_right_to_get_0_in_col_rigth_of_n
number_of_move_down_sequences_to_get_number_to_bottom
number_of_move_right_sequences_to_get_number_to_right
working_on_row
working_on_col
next_number_not_in_order_row_col
needed_steps_up_to_get_n_in_rigth_position
needed_steps_down_to_get_n_in_rigth_position
needed_steps_to_left_to_get_n_in_rigth_position
needed_steps_to_right_to_get_n_in_rigth_position
steps_to_get_up_to_row_where_to_do_the_swap
steps_to_get_left_to_col_where_to_do_the_swap
move_slice_down
solve_2x2
move_number_left_with_zero_below
move_right_with_zero_below
move_slice_right
choose_right_move_up_fkt
move_slice_left
move_slice_up
choose_move_down_fkt
choose_move_right_fkt
repeat_x
if_needed_move_up_move_left_to_bring_interested_element_in_last_row
choose_move_left_fkt
function_composition
if_true_i1_else_i2

Table B.1: Names of primitives in set ”Basis sliding puzzle”

Sliding puzzle B-18

B.2.2 Primitives ”Tasks and Primitives engineered”

Primitive name:

0
1
2
3
4
5
6
7
8
9
n_move_left_to_bring_1_in_right_col
n_move_up_to_bring_1_in_right_row
n_movesright_bring_zero_in_col_of_1
n_movesdown_bring_zero_in_row_below_1
if_1_is_in_first_row_then_return_0_else_1
if_1_is_in_first_col_then_return_0_else_1
move_slice_down
move_slice_left
move_slice_up
move_up_on_left_side
if_1_is_in_last_row_move_one_up_else_no_move_in_order_to_get_it_away_from_last_row
move_slice_right
repeat_x
move_up_on_right_side
move_number_left_with_zero_below
choose_right_move_up_fkt
repeat_x_down
repeat_x_up
repeat_x_left
repeat_x_right

Table B.2: Names of primitives in set ”Tasks and Primitives engineered”

Sliding puzzle B-19

B.3 Tasks

B.3.1 Engineered tasks

In the following Table-B.3 all tasks of the second set of tasks of the sliding puzzle
are listed:

Task name:

p_move_0_to_right
p_move_0_to_bottom
p_move_0_to_bottom_right
p_move_0_to_right2
p_move_0_to_bottom2
p_move_0_to_bottom_right2
p_move_1_away_from_last_row_starting_with_0_bottom_right
p_move_1_away_from_last_row
p_move_1_away_from_last_row_and_0_to_last_row
p_move_zero_in_same_colum_as_1
p_move_zero_in_row_below_the_row_1
p_move_zero_in_row_below_the_row_of_1
p_move_0_same_col_as_1_but_0_was_not_in_bottomom_right_corner_when_tarting
p_move_zero_in_row_below_the_row_of_1_but_0_was_not_in_bottomom_right_corner_when_starting
p_move_zero_below_one_1_but_0_was_not_in_bottomom_right_corner_when_starting
p_move_0_same_col_as_1_but_1_could_be_in_last_row
p_move_zero_in_row_below_the_row_of_1_but_1_could_be_in_last_row
p_move_zero_below_one_1_but_1_could_be_in_last_row
p_move_0_same_col_as_1_but_0_was_not_in_bottomom_right_corner_when_starting_and_but_1_could_be_in_last_row
p_move_zero_in_row_below_the_row_of_1_but_0_was_not_in_bottomom_right_corner_when_starting_and_but_1_could_be_in_last_row
p_move_zero_below_one_1_but_0_was_not_in_bottomom_right_corner_when_starting_and_but_1_could_be_in_last_row
p_move_zero_in_same_colum_as_1_2
p_move_zero_in_row_below_the_row_1_2
p_move_zero_in_row_below_the_row_of_1_2
p_move_0_same_col_as_1_but_0_was_not_in_bottomom_right_corner_when_starting_2
p_move_zero_in_row_below_the_row_of_1_but_0_was_not_in_bottomom_rigt_corner_when_starting_2
p_move_zero_below_one_1_but_0_was_not_in_bottomom_right_corner_when_starting_2
p_move_0_same_col_as_1_but_1_could_be_in_last_row_2
p_move_zero_in_row_below_the_row_of_1_but_1_could_be_in_last_row_2
p_move_zero_below_one_1_but_1_could_be_in_last_row_2
p_move_0_same_col_as_1_but_0_was_not_in_bottomom_right_corner_when_starting_and_but_1_could_be_in_last_row_2
p_move_zero_in_row_below_the_row_of_1_but_0_was_not_in_bottomom_rigt_corner_when_starting_and_but_1_could_be_in_last_row_2
p_move_zero_below_one_1_but_0_was_not_in_bottomom_right_corner_when_starting_and_but_1_could_be_in_last_row_2
p_move_zero_above_1_if_1_is_in_last_col
p_move_zero_above_1_if_1_is_in_last_col_2
p_move_zero_above_1_if_1_is_in_last_col_zero_everywhere
p_move_zero_above_1_if_1_is_in_last_col_zero_everywhere_2
p_move_0_below_1
p_move_1_up_and_0_below_1_not_in_last_row_n1lr
p_move_1_left_and_0_below_n1lr
p_move_1_corner_up_left_n1lr
p_move_1_up_and_0_below_2_n1lr
p_move_1_left_and_0_below_2_n1lr
p_move_1_corner_up_left_2_n1lr
p_move_1_corner_up_left

Table B.3: In this table all names of the tasks in the set ”Engineered tasks” can
be found.

Sliding puzzle B-20

B.4 Results

B.4.1 Results of ”Task and Primitives engineered”

Iteration: Solved
tasks:

Number
of
primitives∗:

New primitives discovered:

0 - 31

1 7/45 34

#(lambda (repeat_x_right $0 (n_movesright_bring_zero_in_col_of_1 $0)))
= ” Bring 0 in the same column as the number 1”
#(lambda (repeat_x_up $0 4)) = ” Move the zero down 4 times”
#(lambda (repeat_x_left $0 6)) = ” Move the zero right 6 times”

2 21/45 39

#(lambda (#(lambda (repeat_x_left $0 6)) (#(lambda (repeat_x_up $0 4)) $0)))
=”move 0 4 time down and 6 times right”
#(lambda (move_slice_up (repeat_x_down $0 (n_movesdown_bring_zero_in_row_below_1 $0))))
=”move down 0 until it is in the row below the row of 1”
#(lambda (#(lambda (repeat_x_right $0 (n_movesright_bring_zero_in_col_of_1 $0)))
(#(lambda (#(lambda (repeat_x_left $0 6)) (#(lambda (repeat_x_up $0 4)) $0))) $0)))
=”move 0 4 time down and 6 times right and bring zero in column of 1”
#(lambda (#(lambda (repeat_x_right $0 (n_movesright_bring_zero_in_col_of_1 $0)))
(if_1_is_in_last_row_move_one_up_else_no_move_in_order_to_get_it_away_from_last_row $0)))
=”if 1 is in last row move 0 one up an in same column as 1, else move 0 in same column as 1”
#(lambda (#(lambda (#(lambda (repeat_x_right $0 (n_movesright_bring_zero_in_col_of_1 $0)))
(if_1_is_in_last_row_move_one_up_else_no_move_in_order_to_get_it_away_from_last_row $0)))
(#(lambda (#(lambda (repeat_x_left $0 6)) (#(lambda (repeat_x_up $0 4)) $0))) $0)))
=”move zero 4 down and then 4 right followed by
if 1 is in last row move 0 one up an in same column as 1, else move 0 in same column as 1”

3 38/45 40

#(lambda (#(lambda (move_slice_up (repeat_x_down $0 (n_movesdown_bring_zero_in_row_below_1 $0))))
(#(lambda (#(lambda (#(lambda (repeat_x_right $0 (n_movesright_bring_zero_in_col_of_1 $0)))
(if_1_is_in_last_row_move_one_up_else_no_move_in_order_to_get_it_away_from_last_row $0)))
(#(lambda (#(lambda (repeat_x_left $0 6)) (#(lambda (repeat_x_up $0 4)) $0))) $0))) $0)))
=”move 0 below 1”

...
10 38/45 40

Table B.4: In this table the results of running DreamCoder on the engineered
slider puzzle dataset using the appositely engineered primitive set can be found.
DreamCoder was run for 10 iterations and with a recognition timeout of 30’000
seconds. The number of solved training tasks and the total number of primitives
and the newly found primitives are listed after each iteration. For each newly
discovered primitive, the action of the primitive is described. After iteration 3
no more changes were recorded and these results are therefore omitted. The last
row represents the final result.

B.4.2 Results using primitive set ”Basis + Help_2”

Sliding puzzle B-21

It
er

at
io

n:
So

lv
ed

tr
ai

ni
ng

ta
sk

:

So
lv

ed
si

ng
le

ta
sk

s
of

si
ze

:

So
lv

ed
5e

r
ta

sk
s

of
si

ze
:

N
um

be
r

of pr
im

it
iv

es
:

N
ew

pr
im

it
iv

es
di

sc
ov

er
ed

:

al
l2

×
2

ta
sk

s
to

ge
th

er
3
×
3

4
×
4

3
×
3

4
×
4

5
×
5

6
×

6
7
×

7

0
-

-
-

-
-

-
-

-
50

-

1
1/

1
30

/1
00

0/
50

0/
60

0/
50

0/
40

0/
30

0/
20

53

#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
=

”
so

lv
e

fir
st

nu
m

be
r

th
ta

is
no

t
in

or
de

r
of

th
e

fir
st

ro
w

th
at

is
no

t
in

or
de

r
fo

llo
w

ed
by

so
lv

e
fir

st
nu

m
be

r
th

at
is

no
t

in
or

de
r

of
th

e
fir

st
co

lu
m

n
th

at
is

no
t

in
or

de
r”

#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

co
l$

0)
))

=
”

sa
m

e
as

ab
ov

e
bu

t
tw

ic
e

re
ga

rd
in

g
th

e
nu

m
be

r
of

a
co

ul
m

n”
#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
=

”
m

ov
e

0
on

e
up

an
d

th
en

m
ov

e
th

e
nu

m
be

r
ab

ov
e

th
e

ze
ro

on
e

to
th

e
le

ft
”

2
1/

1
92

/1
00

3/
50

0/
60

0/
50

0/
40

0/
30

0/
20

56

#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

#
(l

am
bd

a
(r

ep
ea

t_
x

$0
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
)

#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
co

l$
0)

))
(m

ov
e_

sl
ic

e_
ri

gh
t

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

$0
))

))
)

3
1/

1
10

0/
10

0
29

/5
0

3/
60

0/
50

0/
40

0/
30

0/
20

60

#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
$0

))
)

#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

co
l$

0)
))

(m
ov

e_
sl

ic
e_

ri
gh

t
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
$0

))
))

)
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
$0

))
)

#
(l

am
bd

a
(#

(l
am

bd
a

(r
ep

ea
t_

x
$0

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

)
$0

6)
)

#
(l

am
bd

a
(#

(l
am

bd
a

(r
ep

ea
t_

x
$0

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

)
$0

7)
)

4
1/

1
10

0/
10

0
38

/5
0

41
/6

0
0/

50
0/

40
0/

30
0/

20
65

#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
$0

))
)

#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
$0

))
)

#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
co

l$
0)

))
(m

ov
e_

sl
ic

e_
ri

gh
t

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

$0
))

))
)

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
$0

))
))

#
(l

am
bd

a
(r

ep
ea

t_
x

$0
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
$0

))
9)

)
#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
$0

))
)

5
1/

1
10

0/
10

0
42

/5
0

60
/6

0
0/

50
0/

40
0/

30
0/

20
66

#
(l

am
bd

a
(#

(l
am

bd
a

(r
ep

ea
t_

x
$0

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
$0

))
)

$0
))

9)
)

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
co

l$
0)

))
(m

ov
e_

sl
ic

e_
ri

gh
t

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

$0
))

))
)

$0
))

)

6
1/

1
10

0/
10

0
36

/5
0

60
/6

0
0/

50
0/

40
0/

30
0/

20
68

#
(l

am
bd

a
(#

(l
am

bd
a

(r
ep

ea
t_

x
$0

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
(#

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

(m
ov

e_
sl

ic
e_

do
w

n
$0

))
)

$0
))

))
$0

))
)

$0
))

9)
)

(#
(l

am
bd

a
(#

(l
am

bd
a

(r
ep

ea
t_

x
$0

(l
am

bd
a

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

)
$0

6)
)

$0
))

)
#

(l
am

bd
a

(#
(l

am
bd

a
(r

ep
ea

t_
x

$0
(l

am
bd

a
(#

(l
am

bd
a

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

(#
(l

am
bd

a
(#

(l
am

bd
a

(s
ol

ve
_

on
e_

nu
m

be
r_

of
_

a_
co

l(
so

lv
e_

on
e_

nu
m

be
r_

of
_

a_
ro

w
$0

))
)

(#
(l

am
bd

a
(s

ol
ve

_
on

e_
nu

m
be

r_
of

_
a_

co
l(

so
lv

e_
on

e_
nu

m
be

r_
of

_
a_

ro
w

$0
))

)
(#

(l
am

bd
a

(m
ov

e_
nu

m
be

r_
le

ft
_

w
it

h_
ze

ro
_

be
lo

w
(m

ov
e_

sl
ic

e_
do

w
n

$0
))

)
$0

))
))

$0
))

)
$0

))
9)

)
(m

ov
e_

nu
m

be
r_

le
ft

_
w

it
h_

ze
ro

_
be

lo
w

$0
))

)
7

1/
1

10
0/

10
0

31
/5

0
60

/6
0

0/
50

0/
40

0/
30

0/
20

68
-

8
1/

1
10

0/
10

0
46

/5
0

60
/6

0
0/

50
0/

40
0/

30
0/

20
68

-
9

1/
1

10
0/

10
0

46
/5

0
60

/6
0

0/
50

0/
40

0/
30

0/
20

68
-

10
1/

1
10

0/
10

0
47

/5
0

60
/6

0
0/

50
0/

40
0/

30
0/

20
68

-

T
ab

le
B

.5
:

In
th

is
ta

bl
e

th
e

re
su

lt
s

of
ru

nn
in

g
D

re
am

C
od

er
on

th
e

ge
ne

ra
ls

lid
er

pu
zz

le
da

ta
se

t
us

in
g

th
e

pr
im

it
iv

e
se

t
”B

as
is

+
H

el
p_

2”
ca

n
be

fo
un

d.
D

re
am

C
od

er
w

as
ru

n
fo

r
10

it
er

at
io

ns
an

d
w

it
h

a
re

co
gn

it
io

n
ti

m
eo

ut
of

30
’0

00
.

T
he

nu
m

be
r

of
so

lv
ed

tr
ai

ni
ng

ta
sk

s
is

lis
te

d
se

pa
ra

te
ly

ac
co

rd
in

g
to

th
e

di
ffe

re
nt

di
m

en
si

on
s

an
d

th
e

nu
m

be
r

of
pr

ob
le

m
in

st
an

ce
s

fo
un

d
pe

r
ta

sk
.

T
he

nu
m

be
r

of
so

lv
ed

tr
ai

ni
ng

ta
sk

s
pe

r
ca

te
go

ry
an

d
th

e
to

ta
ln

um
be

r
of

pr
im

it
iv

es
an

d
th

e
ne

w
ly

fo
un

d
pr

im
it

iv
es

ar
e

lis
te

d
af

te
r

ea
ch

it
er

at
io

n.
T

he
la

st
ro

w
re

pr
es

en
ts

th
e

fin
al

re
su

lt
.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 DreamCoder
	1.2 The Puzzles
	1.2.1 ARC
	1.2.2 Sliding puzzle

	2 Experiments
	2.1 Datasets
	2.1.1 ARC
	2.1.2 Sliding puzzle

	2.2 Building new domains
	2.2.1 ARC
	2.2.2 Sliding puzzle

	2.3 Performed experiments
	2.3.1 ARC
	2.3.2 Sliding puzzle

	3 Results and Discussion
	3.1 ARC
	3.1.1 Results
	3.1.2 Discussion

	3.2 Sliding puzzle
	3.2.1 Results
	3.2.2 Discussion

	4 Conclusion
	Bibliography
	A ARC
	A.1 Primitives
	A.1.1 Primitives ''All''

	B Sliding puzzle
	B.1 Code
	B.1.1 Is Solvable
	B.1.2 Functions/Primitives for solving slider problem
	B.1.3 Solving the slider puzzle
	B.1.4 Solving the slider problem like DreamCoder

	B.2 Primitives
	B.2.1 Primitives ''Basis sliding puzzle''
	B.2.2 Primitives ''Tasks and Primitives engineered''

	B.3 Tasks
	B.3.1 Engineered tasks

	B.4 Results
	B.4.1 Results of ''Task and Primitives engineered''
	B.4.2 Results using primitive set ''Basis + Help_2''

