ETH

Distributed
Eidgendssische Technische Hochschule Ziirich .
Swiss Federal Institute of Technology Zurich ComPUt'ng

User Tailored Jass Al

Semester Thesis

Balta Nisa

baltani@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Oliver Richter, Benjamin Estermann
Prof. Dr. Roger Wattenhofer

January 16, 2022

Acknowledgements

I want to thank my supervisors Oliver Richter and Benjamin Estermann for their
guidance through this project and always offering me help when getting stuck.

I also want to thank all the Jass players that helped me testing the implemen-
tations by playing against the bots and enduring all the bugs that were present
at the time being.

Abstract

Ratings in competitive games are very important. On the one hand it gives an
estimation about ones own skill relative to other players and on the other hand
it is an opportunity to offer a skill based matchmaking.

In this thesis, we will discuss the selection of a suitable rating system and
evaluate the effect of such in connection with the bots and human players. To
ensure a good game experience on the WebApp we implemented a login system
and a user page where the users can access the statistics based on their game
plays. Furthermore we extended the WebApp with a matchmaking system where
the users can choose between three different bot strengths. The system will then
assign bots in the chosen bot strength to the player.

i

Contents

Acknowledgements i
Abstract ii
1 Introduction 1
2 Background 2

2.1 Jass ... 2

2.2 Bots 2
3 Login 3

3.1 Implementation,

3.2 Login Data 3
4 Rating Systems 4

4.1 EloRating. 4

4.1.1 Updating 4

4.1.2 Example Chess, 4

4.2 Microsoft Trueskill 5
421 Updating)

4.2.2 Matchmaking o 7

5 Evaluation 9

51 Ratingof Bots

5.2 Users Study 10
6 Conclusion 13
Bibliography 14
A User Study A-1

i

CHAPTER 1

Introduction

A main aspect of playing competitive games is to compare ones skill with other
players. To do so, we need a rating system to evaluate the skill of the players.
A widely known example of such a rating systems is the Elo rating system |[1]
, originally developed for chess. To maintain a game interesting for every player
one needs to play against people in the same skill range. Always loosing a game
can discourage a player. However, even winning all the time could decrease the
experience.

Schieber Jass is one of the most played Jass variations in Switzerland and it
combines luck, skill and social competences in one game. The web application
(WebApp) we worked on offers the possibility to play Jass against an Al or with
other online players. In this thesis, we extended the WebApp with a rating system
based on Microsoft Trueskill [2]. This way the bot assignments for the games will
be more personalized. Additionally, the users will be able to get an estimation of
their own skill relative to other players and bots on the WebApp.

For a larger variation in bot strengths we had to modify our bots. We ad-
dress the different possibilities of such changes and also the effects achieved by
those. Furthermore, we evaluate the game experience of our users regarding the
matchmaking and the game play of the modified bots. This is evaluated within
a user study, where the users tested the different bot strengths.

The main goal of this project is to improve the user experience of the WebApp
regarding the matchmaking and also giving our users the possibility to choose the
difficulty they want to play. For these means we implemented a login interface for
our users and choose a suitable rating system. Furthermore, we explored possible
changes of the bots to get different bot strengths. We evaluated the effect caused
by these changes on one hand by their effect on the bot rating and on the other
hand by a user study.

CHAPTER 2

Background

2.1 Jass

Jass is a four player card game which is played in teams of two where the team-
mates are sitting on the opposite side of the table. It is also considered a tradi-
tional Swiss game where Schieber Jass is one of the most played variations. This
is also the variation used in the WebApp.

The game is played with a deck of 36 cards. At the beginning of each round every
player gets 9 cards. In the trump phase the starting player can either decide on
a trump or pass the decision to their teammate. If the decision is passed to the
teammate it does not change the starting player. The trump can be any of the
suits, bottom-up or top-down.

In the playing phase the starting player has to play the first card and the turns
are anticlockwise. Having played 4 cards we have a trick where the player with
the strongest card gets to collect the trick and starts the new game. A round
is made out of 9 tricks. The game continues until one of the teams reaches the
preset target score.

For the evaluation we used the Fair Game Mode [3] where 8 rounds are played
and out of those 4 are repeated rounds, where the starting hands of a previous
round are repeated for the opposing players. This mode eliminates the luck factor
occurring in Jass.

2.2 Bots

Whenever we use the term bot we are referring to the mixed agent which has a
policy trained by Proximal Policy Optimization [4] for the trump phase and a
Determinized Monte Carlo Tree Search [5] (DMCTS) with fixed 400 determiniza-
tions and 40 iterations. These values will be discussed in Chapter 5.1. We will
also explore the influence of changing these values.

CHAPTER 3

Login

As basis for the rating system we had to implement a login system to be able
to separate and store all the relevant information of the players and bots. The
previous solution for the user login was to use only a player name and therefore
it was possible, that multiple users could access the same account, which was not
secured by a password. To have a proper distinction between the users a login
system was necessary.

3.1 Implementation

For the implementation of the new login system we made use of Passport.js [6]
which is an authentication middleware for Node.js. Passport.js provides a large
set of strategies out of which we used the local login and the Google authentica-
tion. If there is any demand for additional strategies it can be easily expanded.
After implementing the login system we also added a user page to the WebApp
giving the users an opportunity to check their personal informations like the
amount of played games and their own ranking.

3.2 Login Data

All login and user related data is saved to a SQL database with help of Sequelize
[7].which is a promise-based Node.js ORM (Object-Relational Mapping Library).
Queries can be written in JavaScript when using Sequelize.

For the current login system we offer a local and a Google authentication. For all
user related data we use three different SQL tables. One for each authentication
method and one for a global user identification. This combined table allows us
to identify every user directly by their user ID instead of differentiating the login
method and then searching in the corresponding table. In the global table we
are also saving all the rating related parameters which we will further discuss in
Chapter 4.1.

CHAPTER 4

Rating Systems

4.1 Elo Rating

The Elo rating system [1] was first developed to calculate the relative skill levels
of chess players. The main idea of this method is to assign a number to each
player which gives an estimation on the outcome of the game. The winner takes
points from the losing player and player’s with the same rating have draw possi-
bility of 1.

Elo rating assumes that the skill of each player follows a normal distribution.
Since our performance regarding a particular task isn’t going to be always con-
stant the collection of all performances will eventually be normally distributed.
When it comes to the comparison of players, the Elo points assigned to the play-
ers are giving an estimation about the outcome of a game between these players.
If the difference in the points of two players is equal to zero a draw is expected.
The player with a higher rating has a higher probability of winning.

4.1.1 Updating
The new rating of Player A is calculated as follows:
Rani1=Ran+ K- (SA —Ey) (4.1)

Ea is the expected score for Player A playing against player B. Ra is the Elo
rating of player A. Sa stands for what player A actually scored and K is a weighted
factor to steer the speed in which the rating evolves. This factor is based on the
players skill and is often higher for the first 20 games in order to adjust the rating
quickly, since the system is not yet certain about the current belief.

4.1.2 Example Chess

Let’s assume we have two players one of them has a rating of 1500 points and the
other 1700 points. Player 2 has a higher probability to win considering the higher

4. RATING SYSTEMS 5

rating. For the rating updates, we can think of it as betting points considering
the winning chance one has. Now the winner will take some points off of the
loser. We are going to use the value K=25. The resulting new ratings will be
1519 and 1681. It gets obvious that the Elo rating doesn’t take the individual
uncertainties into account and updates the values with a fixed factor.

4.2 Microsoft Trueskill

The Trueskill [2] rating system was developed at Microsoft Research and used
for Xbox Live games. Trueskill also uses a normal distribution and characterizes
a player’s skill by the two values g (mu), the mean value and o (sigma), the
variance. We can see it as a generalization of the Elo rating system. Elo rating
only uses a single value and does not take the uncertainty into account therefore
it also needs more games to evaluate a players skill. It is also limited to two
players whereas Trueskill was designed to support multiplayer games. Therefore,
Trueskill was better suited for our purpose. Furthermore, the K factor that was
fixed for the Elo rating system is implemented in a dynamic way for the Trueskill
rating system. Using Elo rating the change in the rating of the players is the same
even if the system is more certain in the skill of one player, Trueskill updates the
ratings according to the uncertainty o it has regarding the skill belief. We will
see an example afterwards.

4.2.1 Updating

The default starting values for Xbox Live games is set to p = 25 and o = 25/3.
The estimation of the player’s skill is calculated with R = u — 3 - ¢ . This cal-
culation assumes, that the players skill is to 99% higher than what is calculated.
The rating value is later also used for the leader board. With the given start
values every player starts with a rating R=0 and the range for the rating is set
to the interval [0,50]. For the WebApp we will use the same default values as
stated here.

Example

H Old Mu OId Sigma New Mu New Sigma H

1 25.0 8.33 32.04 6.17
2 2795 1.63 27.66 1.70

Table 4.1: 1v1 example

4. RATING SYSTEMS 6

Table 4.1 shows the update of a 1vl game. Here we took the p and o values
of one of our server bots for player 2 and the default starting values for player 1.
We are going to explore the outcome where player 1 won the game. Figure 4.1
shows the distribution of both players before we update the ranks. We can clearly
see that the uncertainty for the skill of player 2 is significantly smaller as the one
of player 1. This is due to the amount of games evaluated by the system. More
updates will generally lead to a lower ¢ value and the server bot already played
many games.

025
.'I I', player 1
(\ player 2
| 1
0.2 T
|Gl |
|
|
| |
015 | {
| |
| |
| |
| |
;1T | 1
| |
| |
| |
|I I'
0.05 1
S [
0 e . . £ | | N | b

Figure 4.1: Distribution before update.

In Figure 4.2 we can observe the changes of the distributions after updating
the ratings. Again the uncertainty of the players decreased. When we analyse
the changes for the u and o of both players we see that the player 2 has slight
changes, since the system is more certain about their skill. With a chance of
winning of 17% player 1 was expected to lose the game. This is also the reason
why the o value of player 2 increased, because player 2 was initially estimated
stronger than player 1.

4. RATING SYSTEMS 7

0.251
n —player 1
R player 2
| |
0.2 1
| |
|
|I |
|
0.15 F—
| |
[[
[
|I |
017 | |
| |
f |
0.05} / . S
|I II. Y \
i et
__,// -1 0
D 1 L —— 1 = 1 1 1 1 1 — |
] 5 10 15 20 25 30 35 40 45 50

Figure 4.2: Distribution after update.

4.2.2 Matchmaking

The Matchmaking with the Trueskill System is made by using the chance of
drawing. This is calculated by taking the combined Gaussian of the players and
taking the probability of a draw. This will be the function value at 0. The chance
of drawing will always be in the interval [0,1] where 0 indicates the worst match
and 1 the best match. For team matches Trueskill takes the sum of the team
players as the skill of the team.

We implemented three different bot strengths; easy, normal and hard mode.
Since we used a Trueskill package for JavaScript which contained the chance of
winning we had to adjust it slightly. The chance of winning equals 0.5 when the
drawing probability is equal to 1. This way we could limit the allowed range to
a certain threshold. For the normal mode it matches players with a chance of
winning in the range [0.45, 0.55]. Algorithm 4.2.2 shows a pseudo code for the
implementation of our bot assignment. For the easy mode we search for bots
where our chance of winning is higher than 0.7 and for the hard mode opponents
where it is below 0.3.

The implemented matchmaking system is only used for filling the bots and not
for additional human users. The matching algorithm starts whenever the user
presses "Start the Game". The reason for not implementing the matchmaking
for our online users is that the number of players on the WebApp are not enough
to get a reasonable queuing to be able to assign the best matches. The users
would have to wait an unreasonable amount of time to find a match and also

there might be no perfect match for this particular player which would further
extend the searching time.

4. RATING SYSTEMS

Algorithm 1 Matchmaking for normal bot strength

for bot in botlist do
CoW <+ ChanceO fWinning(player, bot)
if abs(CoW — 0.5) > 0.05 then return bot
else if abs(CoW — 0.5) > abs(previousCoW — 0.5) then
previousCoW < CoW
end if
end for

CHAPTER 5

Evaluation

5.1 Rating of Bots

The standard bot used on the server is the mixed agent with the values deter-
minizations of 400 and iterations of 40. To analyse the performance of the server
bots in the rating system we let the bots play against each other on the cluster.
The results are then written into the database where each bot variation has 8
"instances" that behave like normal users with different names and ids. The user
for the update is picked randomly for each game.

The first run consisted of 500 games with bots using four different combinations
for the determinizations and iterations values. As you can see in table 5.1 there is
no significant difference in the average rating of the different bot variations. The-
oretically the bot with the highest determinizations and iterations values should
show a higher average rating. This is likely due to the minimal difference in their
performance. Since Trueskill doesn’t take into account how many points each
player has made but only what the outcome of the game was the difference is too
small to see the effect after an average 62.5 evaluated games per user.

H Determinizations Iterations Random factor Average rating H

400 40 - 20.3311
300 30 - 20.3103
200 20 - 20.3600
100 10 - 20.0596

Table 5.1: Bot games on cluster without random factor

To further increase the difference in strength we tried to influence the action
decision of the bots with a random factor. The random factor is the probability
with which the given bot will choose a random action out of the legal actions
instead of the calculated best move. This change should be reflected in the ratings
of the bots. Table 5.2 shows the outcome of the 1000 games we evaluated. Here
the first bot is clearly the strongest among the four variations. This is also the

5. EVALUATION 10

standard bot used before.

H Determinizations Iterations Random factor Average Rating H

400 40 0 21.9901
300 30 0.1 19.6657
200 20 0.2 20.1829
100 10 0.3 19.9052

Table 5.2: Bot games on cluster with random factor

Table 5.2 shows the results of the last run with bot variations in the random
factor but no changes in the determinizations and iterations values.

H Determinizations Iterations Random factor Average Rating H

400 40 0 21.8545
400 40 0.1 19.6447
400 40 0.2 20.0947
400 40 0.3 19.6100

Table 5.3: Bot games on cluster only random factor

When comparing the two runs with a random factor we can see that we have
an overall decrease in the rating whenever the bot has a randomness implemented
in their action. The reason why we don’t see the impact of the factor clearly in
the rating is most likely due to the pairings for the cluster games. There was
no matchmaking system used and the bots also had to pair up with higher or
lower ranked bots. When playing Schieber Jass the outcome not only depends
on ones own performance but also on the skills of your team partner. Therefore
the ratings of the three other bots is coming out noisy.

5.2 Users Study

The main goal of the user study was on the one hand to find out how the WebApp
users experienced the matchmaking and on the other hand if the randomness of
the weaker bots was noticeable. For the user study every participant created
an account and played three quick games to get a more stable rating. After
those three ranking games they had to play one game for every bot strength.
The players where asked to fill out a short form after each of these games, see
Appendix A for details.

Figureb.1 shows how the participants rated the game play of the assigned
bots. We can see, that the bots in the easy mode were rated more random then

5. EVALUATION 11

the ones assigned in the hard or normal mode. In figure 5.3 we can see how
the bots where assigned to a game regarding the chosen bot strengths. We used
the bot parameters in table 5.2 where bot 0 corresponds to the first row, bot 1
to the second row and so on. The user study shows that in the hard mode the
bots had a rather natural game play this is most likely due to the use of bot 0
which had no random factor. Bot 0 was exclusively assigned in the hard mode.
The participants also observed the randomness of the bots, which is reflected in
figure 5.1. There we can observe that bots in the easy mode were considered
more random than in the other two modes. Finally, when looking at figure 5.2
we can see that the participants were satisfied with the overall bot assignments.
The matchmaking for the normal and easy modes both appear more random,
this could be due to the randomness of the assigned bots. Random actions can
also make the bot appear less human like and influence the overall experience of
the game.

How did the bots play?

4.5
4
3.5
3
2.5
2
1.5
1
05 I I |
) |
1 (natural) 2 3 4 5 (random)
M Difficulty: easy m Difficulty: normal m Difficulty: hard

Figure 5.1: How did the bots play?

5. EVALUATION 12

How was the bot strength?

4.5
4
3.5
3
2.5
2
15
1
0
too easy suitable too hard random
m Difficulty: easy W Difficulty: nomal m Difficulty: hard
Figure 5.2: How was the bot strength?
Bot Assignment
12
10
8
6
4
2 [
0 |

Bot0 Botl Bot2 Bot3

m Difficulty: easy m Difficulty: normal m Difficulty: hard

Figure 5.3: Bot assignments partner and enemy team combined.

CHAPTER 6

Conclusion

In this project we have worked on a rating system to enable a better matchmak-
ing on the Server. The user study showed that the bot assignment worked fine
and the participants were mostly satisfied with the matchmaking. The biggest
issue seemed to be the random factor. Since the lower ranked bots with a ran-
domness in their action decision seemed to be less human like and the whole
matchmaking appeared to be random. The hard mode performed best regarding
the bot assignment. This mode was assigning mostly bot 0 to the players. Some
participants reported, that the random plays of the bots were rather confusing
and also influenced their own game performance. We decided to always assign
bot 0 as partner for our human users. The enemy bots will still be assigned
according the chosen bot strength. This way we can guarantee a improved game
experience, instead of users being dissatisfied by the performance of their own
partner.

For further extensions we would consider to make different changes in the bot
parameters to be able to create different strengths and achieve bad players with
less randomness. Furthermore we would add a reset possibility for the password.
This caused some trouble at the beginning of the user study. It would also be
interesting to find other ways of impacting the rating of the bots instead of a
random variable. This would also solve the issue with how they appear to the
human players.

13

Bibliography

[1] A. E. Elo, The Rating of Chess Players. Arco Pub., 1978.

[2] Trueskill ranking system. [Online|. Available: https://www.microsoft.com/
en-us/research/project /trueskill-ranking-system /

[3] Developing a jass ai server. |Online|. Available: https://pub.tik.ee.ethz.ch/
students/2020-HS /BA-2020-47.pdf#page—18&zoom=100,0,0

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Prozimal
policy optimization algorithms, Jul. 2017.

[5] D. Whitehouse, E. J. Powley, and P. I. Cowling, “Determinization and infor-
mation set monte carlo tree search for the card game dou di zhu,” in 2011
IEEE Conference on Computational Intelligence and Games, Oct. 2011.

[6] Passport.js : Simple, unobtrusive authentication for node.js. [Online].
Available: https://www.passportjs.org/

[7] Sequelize: A promise-based node.js orm tool. [Online|. Available:
https://sequelize.org/

14

https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/
https://pub.tik.ee.ethz.ch/students/2020-HS/BA-2020-47.pdf#page=18&zoom=100,0,0
https://pub.tik.ee.ethz.ch/students/2020-HS/BA-2020-47.pdf#page=18&zoom=100,0,0
https://www.passportjs.org/
https://sequelize.org/

APPENDIX A

User Study

To analyse the rating systems regarding our online users, the participants where
asked to fill out a form after playing a game with selected bot strengths.

1. How was the bot strength in this round?
2. On a scale from 1 (human/natural) to 5 (random), how did the bots play?

Table A.1 shows the answers of all participants

Bot strength Bot game play Difficulty

1 suitable 3 Hard
2 suitable 3 Normal
3 suitable 4 Easy
4 too easy 4 Normal
5 suitable 1 Normal
6 random 4 Easy
7 too strong 2 Hard
8 random 4 Normal
9 too easy 3 Hard
10 suitable 2 Normal
11 suitable 3 Normal
12 suitable 4 Easy
13 suitable 4 Hard
14 too easy 4 Easy
15 suitable 2 Hard
16 suitable 2 Hard
17 suitable 3 Easy
18 suitable 3 Easy

Table A.1: User study results

A-1

	Acknowledgements
	Abstract
	1 Introduction
	2 Background
	2.1 Jass
	2.2 Bots

	3 Login
	3.1 Implementation
	3.2 Login Data

	4 Rating Systems
	4.1 Elo Rating
	4.1.1 Updating
	4.1.2 Example Chess

	4.2 Microsoft Trueskill
	4.2.1 Updating
	4.2.2 Matchmaking

	5 Evaluation
	5.1 Rating of Bots
	5.2 Users Study

	6 Conclusion
	Bibliography
	A User Study

