e
/A1)
l‘/‘= v

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Hierarchical Reinforcement Learning
for Algorithmic Trading

Semester Thesis

Pierre Motard

pmotard@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Zhao Meng
Prof. Dr. Roger Wattenhofer

March 4, 2022

Acknowledgements

I want to thank Yunpu Ma and Zhao Meng for their active involvement in chal-
lenging my ideas and proposing interesting approaches as well as Professor Wat-
tenhofer for making this project possible in the Distributed Computing depart-
ment. I would also like to thank my family for the constant support in all my
undertakings.

Abstract

The cryptocurrency market is growing at an unprecedented rate, characterized
by much more emotionally driven and non rational behaviors with "hodlers’ as
well as high volatility exposing investors to high risks. Different statistical and
machine learning techniques have been applied for automated trading, and more
recently reinforcement learning. This work implements a hierarchical reinforce-
ment learning agent that decomposes the order execution into different levels
allowing for a more structured exploration of each sub-action as well as reducing
the state space. The model demonstrates that it is capable of making profits in
both simplified and low dimensional trading environment as well as in a realistic
environment involving bid-ask spread and fees.

i

Acknowledgements

Abstract

1 Introduction

1.1 Motivation for reinforcement learning

1.2 Motivation for cryptocurrency trading strategy

1.3

Contribution

2 Background

2.1
2.2
2.3

OHLCV data
Limit order book data

Indicators

3 Environment

3.1

3.2

3.3

Simple environment
3.1.1 State space
3.1.2 Action space
Limit order book environment .
3.2.1 State space
3.2.2 Action space
Reward functions
3.3.1 Networth
3.3.2 Difference in net worth .
3.3.3 Realized PnL.

3.3.4 Differential sharpe ratio
3.3.5 Trade completion

1ii

Contents

N — =

ot W W W

NIV BN I e B e BN e SR TN e NI © N =}

................... 10

CONTENTS

4 Models

4.1 Hierarchical reinforcement learning

4.1.1 Theory.o

4.1.2 Hierarchical Reinforcement Learning with TradeR

4.1.3 Surprise reward function

5 Experiments

5.1 Experiments Lo

6 Conclusion

6.1 Further work

6.2 Conclusion

Bibliography

v

11
11
11
12
13

15
15

18
18
18

19

CHAPTER 1

Introduction

1.1 Motivation for reinforcement learning

The use of automatic trading strategies has intensified since more data have been
made available to the wider public. Existing statistical and machine learning ap-
proaches [1]| are based on identifying and extracting significant signals, followed
by building a trading strategy based on these signals to maximize profit. Com-
mon trading strategies rely on a recurring pattern in the data, called an "edge",
which acts as an indicator for taking a position in the market. These edges are
increasingly difficult to find and never last long. Traditional machine learning ap-
proaches are therefore limited in their interactivity with the environment. Models
are learned and parameterized after cross-validation over different periods, then
backtested to measure performance. Reinforcement learning allows to directly in-
teract with a stochastic environment [2] to learn an optimal policy for the agent
in order to automate decision making and maximize a long term objective. The
main advantage of reinforcement learning is the feedback of a reward signal that
can be customized to the desired strategy.

1.2 Motivation for cryptocurrency trading strategy

The trading strategy used in this work is called trend following, it is also used
by humans making it easily understandable. It consists of identifying a trend
in the market using different market characteristics, as well as indicators, and
taking a position by following this trend. These trends most often come from
emotional drivers. Because the cryptocurrency market is much less controlled by
high-frequency trading systems and open to the general public, it is more likely
to incorporate predictable trends and opportunities. The cryptocurrency market
remains less efficient overall, meaning that historical data can potentially lead to
informative predictions about future prices, although its efficiency is increasing
rapidly over time [3].

In addition, since the cryptocurrency market is prone to high volatility, it is

1. INTRODUCTION 2

possible to achieve larger gains and presents itself as an opportunity to rely on
agents learning safer strategies.

1.3 Contribution

In this project, I explore trend following trading strategies in light of a rein-
forcement learning framework. Using two environments, from a simpler low-
dimensional environment using basic financial data to a more complex and real-
istic environment using limit order book data from [4]. Both environments are
presented in section 3. I implement a hierarchical reinforcement learning (HRL)
agent presented in section 4: the TradeR agent [5]. It decomposes its order exe-
cution by first deciding on an amount and then on the position to take (buy, sell
or hold), thus reducing the dimensionality of each action.

CHAPTER 2

Background

In this section, I present the types of financial data that will compose the envi-
ronments. There are currently no standards in the financial data to be used but
rather different levels of complexity and granularity.

2.1 OHLCYV data

The first simple way to capture the overall state of a financial asset at a given
time is the OHLCV data point. Open, High, Low, Close, Volume (OHLCV)
data is a compact way to represent the information flow of the financial market
information. "Open" is the price of the asset at the beginning of that period and
"Close" at the end. "High" is the highest price during that period and "Low"
is the lowest. "Volume" quantifies the volume traded during this period. An
example of an OHLCV data point is shown in figure 2.1.

2.2 Limit order book data

Another much finer source of market trading data is the limit order book, which
contains the status of bids and offers being offered in the market at a given time.
It can be seen as two stacks, one for each side, representing the bids, orders from
traders offering to buy an asset, and asks, orders from traders offering to sell
their asset. When the best (higher) bid is lower than the best (lower) ask offer,
an arbitrage opportunity exists. The difference between these two prices is called
the bid-ask spread [6]. Figure 2.2 from [7] illustrates a limit order book of depth
10 because it contains 10 price and quantity levels. Both sides are shown here in
red for asks and blue for bids.

The bottom red line represents the best ask with a price of 8711.93, so the
lowest price at which someone is willing to sell. That is, the lowest price at which
you can buy BTC. However, the quantity is only 0.01 BTC, which means that
if you buy more, you consume this first line and move directly to the next line,

2. BACKGROUND 4

High High

Close

Open

Low Low

Figure 2.1: Diagram illustrating the OHLCV data.

Figure 2.2: Diagram illustrating a sample depth 10 limit order book. [7]

now buying at the price of 8712.00 which has a higher quantity. This example
demonstrates the need for high liquidity for traders trading large volumes, other-
wise they quickly consume several levels and end up buying at unexpected high
price.

The symmetrical behavior occurs for the top blue line representing the best
bid at a price of 8711.46. Similarly, traders who want to sell large volumes will
consume levels and end up selling at a much lower price than expected.

Note that the best ask price, 8711.93, is higher than the best bid price of
8711.46, and the bid-ask spread is the difference, 0.47. The midpoint, generally

used as the asset price, is the average between the best bid and best ask, thus in
this case 8711.695.

2. BACKGROUND 5
2.3 Indicators

From the raw data, indicators can be computed to give a specific feature and
extract information that could be correlated to future prices.

Some examples used in the environment [4] are the following:
Change in midpoint
Logarithmic difference between the current and the previous midpoints.

omy = logmy — logmy_1

where my is the midpoint price at time t.

Spread
Difference between the best bid and the best ask

spread; = bestbid; — bestask;,

Trade Flow Imbalance (TFI)
Indicator measuring the imbalance between buys initiated b and sells s initiated
transactions over a time window w.

UP, — DW Ny

TFI = —t—— """t
YT UP, + DWN,

where UP, = >"" b and DWN; = >"7") s;.

Custom Relative Strength Index (CRSI)
Normalized measure of the magnitude of price changes over a time window.
_gaing — |lossi|

CRSI; = —
gaing + |lossy|

where gaing =Y ;") Am; if Am; > 0 else 0 and loss; = ;7 Am; if Am; <0

else 0 and Am; = mTil — 1.

CHAPTER 3

Environment

In this section, I present the two environments used to train the reinforcement
learning agents as well as the reward functions.

3.1 Simple environment

The first environment implemented simulates a simplified financial market in
which the agent owns a portfolio and manages the balance between its cash and
a cryptocurrency asset. It incurs small fees to the agent for each transaction
similar to a real cryptocurrency exchange. In order to make informed decisions,
it observes historical and current market data as well as the state of its own
portfolio. Table 3.1 summarizes the characteristics of this environment.

TABLE 3.1: Summary of the main modeling choices for the simple environment.

Term Description

Data 1. Train: BTC, 7 months; 2. Test: ETH, 7 months
State Space 1. OHLCV data; 2. Portfolio status

Action Space 1. Discrete (€ 0,1,2); 2. Continuous (€ [0,1])
Reward 1. networth; 2. networth; — networth;_1 3. balance;
Starting balance 1 000 000

Metric 1. Final net worth; 2. Episode return

3.1.1 State space

The state space consists of public and private data. Public data is represented
by the Open, High, Low, Close, and Volume information of an asset with a
window lag to include historical data, set to 100. Private data consists of the
current state of the portfolio. It is composed of the balance representing the
current liquidity of the portfolio, the shares held, i.e. the quantity of an asset
held by the agent, and the net worth, i.e. the total value of our portfolio by

6

3. ENVIRONMENT 7

adding the value of the liquidity and the value of assets. For public data, the
training phase uses Bitcoin OHLCV data while the testing phase uses Ethereum
data. Both data frames last 7 months with one data point every hour. The size
of the state space is therefore

State space size =5 X (w + 1) + 3

where w is the number of past data points being concatenated to the current
observation. Three observations are added for the portfolio status.

3.1.2 Action space

The action space spans all possible actions that the agent can perform. It
is a combination of discrete and continuous actions. The order side o; is the
discrete component that can take three values 0,1,2 corresponding to buy, sell or
hold orders. The amount z; is the continuous component ranging from 0 to 1
representing the percentage of the agent’s ability to buy or sell. In the case of
a buy order, the ability to buy is given by the balance, the available liquidity,
and an amount equal to 1 means that the agent is investing all its cash in the
asset. In the case of a sell order, the ability to sell is given by the shares of asset
held. An amount equal to 1 means that the agent sells all its assets, removing
all exposure to changes in the asset price. The action at time t is represented as
follows:

at = (:L‘t S [07 1]7025 € 07 172)

3.2 Limit order book environment

The environment considered above is great for its simplicity making it under-
standable by every human being that can assess the trading behavior. However,
it lacks a large amount of information included in the markets that can be useful
for the agent to have a more accurate view of the markets. It also lacks a realistic
approach to trading in a real financial market when buyers fill ask orders and
sellers fill bid orders, for market orders. Because of the spread between both,
buyers buy at a higher price than sellers sell at. The following work [4] proposes
a framework that allows to train an agent in such an environment. It explains
the complexities of the environment in detail, therefore I will only summarize the
main features.

3. ENVIRONMENT 8

3.2.1 State space
Data collection and feature engineering

Data is recorded from cryptocurrency market exchanges, here Bitmex, and re-
constructs the limit order book at a frequency of one second. Every second, it
records the price and quantity at depth 20 of the limit order book. Similar to
schema 2.2 but records 20 bars in the bid side in blue and 20 bars in the ask side
in red, each bar consisting of the price and the quantity, thus 2 x 20 x 2 = 80

values in total. The notation used is pf@de for the price at time t, LOB level i and

side

side € {bid, ask} as well as i< for the associated quantity. The dollar value of
each level can then be computed as follows:

I-1
side __ side side
X = Zpt,i X Qi
=0

where I ranges from 1 to 20.

The dollar value computed above allows to measure the imbalances in the
LOB between the ask and bid sides. At each level, the imbalance ¢;; can be
computed:

Xagk o sz:d
li= Xt:sk XtI;Zd
ti T e
Recording the live limit order book of exchanges allows to get informations
about the orders, notably whether they are cancel C, limit L or market M orders.

Dollar values for each are added to the features, at each LOB level ¢ and for each
side.

side side side

Ct,i =DPri X Gy
Lie = pi x ¢

M = piif x qf"
Finally, indicators detailed in 2.3 are also part of the observation space. They
are computed over multiple windows: 5, 10 and 15 minutes for RSI and 5, 15 and

30 minutes for TNS.

Data preprocessing

The normalization method is described in [8]. It deals with the non-stationarity of
features in the limit order book by transforming the non-stationary prices into a
percentage difference to the current midpoint, making the time series stationary.
Then it uses a z-score normalization using the mean and standard deviation of
previous days’ data.

3. ENVIRONMENT 9

Position features

The position features contain features related to the agent’s portfolio status in-
cluding the realized PNL remaining constant if the agent holds and unrealized
PNL sensitive to the variations of the best ask and best bid. The starting balance
is also 1000000.

3.2.2 Action space

The action space is the same as in the simple environment presented above 3.1.2,
therefore each action is denoted as a; = (z; € [0,1],0; € 0,1, 2).

3.3 Reward functions

The reward function drives the learning of the reinforcement learning agent. It
is very useful in financial applications as we can keep the same goal of making
profits, but through different strategies and different risk acceptances. Several
rewards functions were tried out in this project.

3.3.1 Net worth

This first simple reward functions allows the agent to understand that the key is
to always keep the net worth high. It also gives a continuous reward since the
net worth is always positive, unless the agent loses all the money in which case
the episode is stopped due to lack of funds.

r+ = networthy

3.3.2 Difference in net worth

The net worth difference with the previous timestep provides a way to assess the
impact of the current action, but it is highly exposed to asset price movements,
even if the agent acts positively.

r = networthy — networth;_1

3.3.3 Realized PnL

Another reward is the realized PnL, which provides the agent with a constant
feedback signal and an incentive to increase the liquidity throughout the episode.

ry = balance;

3. ENVIRONMENT 10

3.3.4 Differential sharpe ratio

Used in [4], the differential sharpe ratio provides the agent with a continous signal
feedback, representing the risk-adjusted return to which the agent has exposed
itself. The formula is as follows:

B, 16A;, — 1A, 6B
DSR; = t—104¢ — 3 tl3 t
(Btfl - 14?—1)5

where

Ay = A1+ (R — A1)
By = By_1 +n(R} — By—1)
0A=R—A;_1

6B =R? - By,

R = Inventory; - my

my being the midpoint price at time t, Inventory; the number of assets held at
time t.

3.3.5 Trade completion

Also used in [4], trade completion provides the agent with a goal-based feedback
signal, with a reward r, € [—1, 1] depending on the success of a profit objective
defined by a threshold.

CHAPTER 4

Models

4.1 Hierarchical reinforcement learning

In this section, I present a new promising way of modeling policies called hierar-
chical reinforcement learning.

4.1.1 Theory
Definition

The essence of this work is to implement and experiment with a recent method
for solving Markov decision processes (MDP) in reinforcement learning, namely
hierarchical reinforcement learning. The former abstracts the idea of a “macro-
operator” [9] [10] sometimes called "meta" or simply “macro” which is a sequence
of operators or actions that a higher-level policy can invoke as a primitive action.
The concept of hierarchy comes from the fact that these higher-level policies can
take advantage of the output of lower-level policies as a black box, which may
themselves have lower-level policies. More concretely, as described in TradeR [5],
the global policy m(a¢|s;) can be decomposed into many components, specifically
many policies m;(a¢|s;) each responsible for solving a sub-MDP. This hierarchical
abstraction of policy into its components allows temporal coherency in state and
value predictions. These components can then be coupled together in varied
forms such as a master-slave structure or a sequence, in which cases the sub-
MDPs interact simultaneously or sequentially, respectively.

Benefits

In many reinforcement learning applications, the hierarchy offers multiple ad-
vantages [11] [10] over classical RL. First, it allows for structured exploration,
meaning that the agent can explore through sub-policies rather than trying mul-
tiple combinations of primitive actions. By construction, each task is properly
trained independently of the others. Therefore, each level of the hierarchy can

11

4. MODELS 12

embody different knowledge allowing for transfer learning. Moreover, as each
agent focuses on an easier task, often with a smaller state space or action space,
this helps tackle the curse of dimensionality in problems with too large spaces.
HRL offers a solution for many applications suffering from a scaling problem.
Finally, by deconstructing a task into several simple policies, the reinforcement
learning algorithms are more sample efficient because they require less interaction
with the environment and thus fewer data to achieve good performance.

4.1.2 Hierarchical Reinforcement Learning with TradeR

TradeR [5] aims to address two practical challenges, namely catastrophy and
surprise minimization by formulating trading as a real-world hierarchical rein-
forcement learning problem. Solving catastrophy minimization relies on the hi-
erarchical structure, allowing for an improved sample efficiency and thus tolerate
trial and error learning for a shorter amount of time. Surprise minimization is
addressed be estimating the deviation of the state, embedded in the learning of
the agent in order to make it robust to abrupt changes.

The implementation of TradeR is based on PPO [12] which consists of an
Actor-Critic framework as shown in Figure 4.1. The actor is the decision-maker
and where lies the hierarchical architecture. It consists of order and bid networks
as two distinct policies. The critic is used to evaluate the current actor policy and
to update the network parameters. The main feature of PPO is that it updates
the policy in such a way that it does not incur performance collapse relative to the
previous step policy, hence the name proximal policy. This goal can be achieved
by clipping the updated policy so that it does not deviate too much from the old
policy.

PPO is an on-policy algorithm and TradeR as well with a rollout buffer. Each
transition (a¢, s¢,7¢) is appended to a buffer that is periodically rolled out in re-
versed order to compute the discounted rewards and advantages estimation. The
loss consists of the PPO loss, thus a combination of a mean-square error compo-
nent that measures the difference between the discounted rewards and the state
values evaluated by the critic network, and a surrogate loss function to ensure
that the policies remain proximal and to avoid abrupt drops in performance. The
PPO loss also includes an entropy term to reward high-entropy action distribu-
tions and encourage exploration. The parameters of the order and bid policies,
as well as the critic policy, are updated jointly.

As discusses, the hierarchy lies in the actor part. I detail the structure of the
actor using two sequential policies, each addressing a sub-problem.

The goal of the actor is to make a decision i.e. an action in the action space
consisting of a tuple. Each component of the tuple has its own sub-policy.

4. MODELS 13

Rollout buffer ~ Monte carlo estimate of rewards

Discounted rewards
-------- Gr=rt+1 +¥r+2 + 23+ -:
v
- - _J5ss optimization
K ’ ‘ Enwronma ﬁ@nt Neweweights * \

1
— Reward ' Critic
o 3 - Critic network, .
o ! i

-
State

Data
from cryptocurrency
markets

\4

State

Policy evaluation |

0 0.2¢ T,
| Amount |: . QS
19% — Update ! T 4 Bid network " Order network
portfolio Tvpe : o 016 Mears
. :
. . osr o d
[DU BT = I

A

L 81% Acton | +
I Actor
® BTC @ USD Decaying
variance

Figure 4.1: Diagram illustrating the components of TradeR.

Order determination: The first sub-problem is the choice of a quantity
to invest in assets or to retrieve in cash. At a given timestep ¢, the order net-
work estimates this quantity z; by observing the state s; following the sub-policy
Tord(Z|8¢). The output of the network is the mean quantity which, with a stan-
dard deviation hyperparameter o, defines a normal distribution from which we
can sample to use the sampled quantity xy ~ N (Z¢, 0¢) in our future order. This
allows us to explore different amounts in the distribution and tune the stan-
dard deviation towards more exploitation or exploration. This hyperparameter
decreases during learning to account for the agent’s improvement over time.

Bid execution: The bid policy is built on top of the order policy because
it observes the same state s; but also the output of the former policy, x;. The
bid network, using the sub-policy mp;q(0¢|st, 1), returns three values, summing
up to 1, that form a categorical distribution between buy, sell, and hold actions.
Sampling this softmax distribution yields the decided order type o, € {0,1,2}.

From the quantity amount sampled from the first policy x; and the discrete
action to be taken, sampled from the second policy o;, we can construct the final
action a; = (o € {0,1,2}, 2 € [0, 1]) as a tuple that determines the order to be
executed by the environment.

4.1.3 Surprise reward function

The implementation of a hierarchical reinforcement learning agent from TradeR
[5] includes an energy-based intrinsic motivation aiming at making the agent
robust to abrupt changes in the observation space. The idea is derived from
contraction theory and is applied by transforming a surprise signal from the

4. MODELS 14

agent with a contraction operator 7 that will be added to the reward to utilize
surprise minimization as an intrinsic motivation objective.

The contraction operator 7 is the log-sum-exp operator
f(w) =logy exp(f(w))
w
and the updated reward signal is

#(stya,05) = (s, ar) +1og Y exp(Viurp(i))

w

where o; is the standard deviation across all values of the batch for feature ¢ and
Vsurp is a neural network with a single layer and a ReLU non-linear activation
function.

CHAPTER 5

Experiments

5.1 Experiments

The following table 5.1 summarizes the main results for the first, simple, envi-

ronment considered.

TABLE 5.1: Final results for the simple environment.

Model Reward function Final networth Return
Baseline model
- PPO Net worth 1 049 040 4.90 %
- PPO Difference Net worth 982 610 -1.74 %
- PPO Realized PnL 960 332 -3.97 %
- A2C Net worth 993 902 -0.61 %
- A2C Difference Net worth 1 000 584 0.06 %
- A2C Realized PnL 1 039 690 3.97 %
TradeR
- without surprise term Net worth 948 628 -5.14 %
- with surprise term Net worth 1 034 960 3.5 %
- without surprise term Difference Net worth 981 257 -1.87%
- with surprise term Difference Net worth 986 143 -1.39%

and table 5.1 summarizes the results for the second environment.

Figure 5.1 shows the trading behavior of a PPO agent and figure 5.2 of an
A2C agent. We observe that PPO trades in a sparser fashion while A2C has
compulsive buy periods followed by compulsive sell periods.

Figure 5.3 shows the trading behavior from TradeR.

It is worth noticing that these experiments results are not comparable to the
results observed in [4] as not only they are not trained and tested on the same
periods but [4] uses a market making trading strategy which is fundamentally
different to the trend following strategy. The market maker supplies liquidity on

15

5. EXPERIMENTS 16

Figure 5.1: Plot of the executed trades by a PPO agent.

Figure 5.2: Plot of the executed trades by an A2C agent.

Figure 5.3: Plot of the executed trades by a TradeR agent.

5. EXPERIMENTS

TABLE 5.2: Final results for the second environment.

17

Model Reward function Final networth Return

Baseline model
- PPO Net worth 1 005 645 0.56 %
- PPO Difference Net worth 1 005 524 0.55 %
- PPO Realized PnL 1 006 754 0.68 %
- PPO Differential Sharpe Ratio 1 001 877 0%
- PPO Trade Completion 1 000 926 0.09 %
- A2C Net worth 1 005 686 0.57 %
- A2C Difference Net worth 1 000 570 0.06 %
- A2C Realized PnL 1 006 203 0.62 %
- A2C Differential Sharpe Ratio 1 002 629 0.26 %
- A2C Trade Completion 1003 178 0.32 %

TradeR
- without surprise term Net worth 1 001 852 0.19 %
- with surprise term Net worth 999 796 -0.02 %
- without surprise term Difference Net worth 1 003 945 0.39%
- with surprise term Difference Net worth 1 001 911 0.19%
- without surprise term Realized PnL 995 290 -0.47%
- with surprise term Realized PnL 997 140 -0.29%
- without surprise term Differential Sharpe Ratio 1 009 222 0.92%
- with surprise term Differential Sharpe Ratio 994 640 -0.54%
- without surprise term Trade Completion 998 291 -0.17%
- with surprise term Trade Completion 1007 115 0.71%

both sides by providing bids and asks, making profit from the bid-ask spread as
well as getting fees rather than paying fees.

From these experiments, I do not observe much improvement from the sur-
prise term added to the reward but that the net worth, included in the observation
space, deviates less from the initial value. Reasons for not improvement much
positive performance could include the lack of training time, lack of hyperparam-
eter tuning but would overall need to dig more into the learning of each policy
to understand the strategies in use.

CHAPTER 6

Conclusion

6.1 Further work

There is a lot of future work to be done in improving hierarchical structures to
tackle the curse of dimensionality with financial data entering the big data era.
By deconstructing decisions into smaller dimensional ones, an example of inter-
esting work could be to develop explainable models to justify the choices of the
agent at each level and evaluate accountability when a large loss is incurred or
identify potential edges when recurring good decisions appear. The high volatility
of cryptocurrency market is not yet well handled by machine learning and rein-
forcement learning techniques, more robust methods of reducing surprise states
could be developed. Finally, with a drastic change in the environment, similar
techniques could be applied to Automated Market Makers (AMM) [13] to explore
the opportunities in decentralized finance.

6.2 Conclusion

In this work, I exploit the concept of hierarchical reinforcement learning to en-
courage an agent to optimize each sub-part of its decisions. The results show a
positive outcome on average since in most experiments the agent makes profits
even in a realistic setting including transaction fees. However, these experiments
are also characterized by an instability in the behaviors and further work should
be done in the explainability of decision drivers.

18

Bibliography

[1] M. L. de Prado, Advances in Financial Machine Learning, 2018. [Online].
Available: https://ssrn.com/abstract==3104847

[2] S. Jansen, Machine Learning for Algorithmic Trading, 2020. [Online].
Available: https://ssrn.com/abstract=3104847

[3] C. Lopez-Martin, S. Benito Muela, and R. Arguedas, “Efficiency in
cryptocurrency markets: new evidence,” Furasian FEconomic Review,
vol. 11, mno. 3, pp. 403-431, Sep 2021. [Online|]. Available: https:
//doi.org/10.1007 /s40822-021-00182-5

[4] J. Sadighian, “Extending deep reinforcement learning frameworks in cryp-
tocurrency market making,” 2020.

[5] K. Suri, X. Q. Shi, K. Plataniotis, and Y. Lawryshyn, “Trader: Practical
deep hierarchical reinforcement learning for trade execution,” 2021.

[6] J. Fernandez-Tapia, “Modeling, optimization and estimation for the on-line
control of trading algorithms in limit-order markets,” Ph.D. dissertation, 09
2015.

[7] “Understanding the limit order book,” Tradient blog, 2020.

[8] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj,
and A. losifidis, “Using deep learning for price prediction by exploiting
stationary limit order book features,” CoRR, vol. abs/1810.09965, 2018.
[Online|. Available: http://arxiv.org/abs/1810.09965

[9] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforce-
ment learning,” vol. 13, p. 2003, 2003.

[10] E. S. Pierre Motard, Shuaijun Gao, “Hierarchical rl for cryptocurrency trad-
ing,” Course project from Foundations of Reinforcement Learning, 2022.

[11] Y. Flet-Berliac, “The promise of hierarchical reinforcement learning,” The
Gradient, 2019.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017.

[13] J. Xu, K. Paruch, S. Cousaert, and Y. Feng, “Sok: Decentralized exchanges
(dex) with automated market maker (amm) protocols,” 2022.

19

https://ssrn.com/abstract=3104847
https://ssrn.com/abstract=3104847
https://doi.org/10.1007/s40822-021-00182-5
https://doi.org/10.1007/s40822-021-00182-5
http://arxiv.org/abs/1810.09965

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation for reinforcement learning
	1.2 Motivation for cryptocurrency trading strategy
	1.3 Contribution

	2 Background
	2.1 OHLCV data
	2.2 Limit order book data
	2.3 Indicators

	3 Environment
	3.1 Simple environment
	3.1.1 State space
	3.1.2 Action space

	3.2 Limit order book environment
	3.2.1 State space
	3.2.2 Action space

	3.3 Reward functions
	3.3.1 Net worth
	3.3.2 Difference in net worth
	3.3.3 Realized PnL
	3.3.4 Differential sharpe ratio
	3.3.5 Trade completion

	4 Models
	4.1 Hierarchical reinforcement learning
	4.1.1 Theory
	4.1.2 Hierarchical Reinforcement Learning with TradeR
	4.1.3 Surprise reward function

	5 Experiments
	5.1 Experiments

	6 Conclusion
	6.1 Further work
	6.2 Conclusion

	Bibliography

