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Abstract

In this work, we investigate to which extent disentangled inputs have an influence
in reinforcement learning. We test this with a Deep-Q approach for the Atari
games Pong and Breakout. As inputs to the DQ-net we use disentangled features
of images from the environment. As a comparison we also train the agent directly
on the raw images and on reduced features coming from a trained autoencoder.
To get the disentangled features, we train three different types of variational au-
toencoders for both games and use the encoder of the VAEs as a preprocessing
step to the DQ-net.
We found no correlation between the disentanglement scores and the overall per-
formance of the RL agent, nor did we observe an improvement in the final reward
of the agent. However, compared to training on the raw images as inputs, we did
find a slightly faster increase in rewards at the beginning of the training when
using the VAEs’ encoded features as input. The results appear to show that this
improvement is likely correlated to the disentanglement of the input variables.
Lastly, the use of VAEs is accompanied by a significant increase in training time
which negates the potential benefits of a faster convergence when training on the
VAEs’ encoded features.
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Chapter 1

Introduction

If one wants to train a model for complex problems and in an unsupervised man-
ner that require a sequence of correct inputs, such as computer games or moving
a robotic arm, it is advantageous to use a reinforcement learning approach[1, 2].
In reinforcement learning an agent that can move freely in its environment is
used. This agent can be trained to learn ways to reach a favourable outcome.
In return, these desired outcomes are rewarded. As input for the agent, one can
use either abstracted data, such as position data, or high dimensional data, like
images of the environment. If you want to use images, the agent actually has to
solve two problems simultaneously. On the one hand, it has to learn to under-
stand the images and extract useful features, on the other hand, it has to learn
to move through the environment in order to fulfil the task. A problem that
arises with high dimensional input data is the persistence of variables that are
not independent of one another. If we could first transform this input data into a
few independent features, we would need a smaller network. This would require
less memory in training as well as in deployment. Additionally, it would lead to
less computational effort and possibly to a faster convergence at the beginning.
Under certain conditions it may even induce a better final result.

Variational autoencoders can be used to compress information into some la-
tent dimensions. It has been shown that with proper regularisation, the rep-
resentation in the latent dimension can be encouraged to contain disentangled
features. If little or, in the best case, no information is lost and as long as the
training and task data have the same distribution these reduced and disentangled
representations can be used to simplify a downstream task[3].

In this work we aim to further validate the aforementioned observation. For
this, different variational autoencoders are trained on images of multiple Atari
games. Firstly, we investigate how well these trained encoders can disentangle
the input images. Subsequently, the encoders of these trained VAEs are used as a
preprocessing step to a Deep-Q-Network[1]. With this setup we train the network
to play the different Atari games and compare it to the original implementation[1]
where a convolutional neural network is applied directly to the input images.
Since a perfect disentangled latent space would only need to store the positional
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1. Introduction 2

data of objects in an image we also train a DQN with the positions as inputs.
We can then use this DQN as a benchmark for perfect disentanglement. These
different networks will be compared based on the assumptions made above in the
second part of the analysis.



Chapter 2

Theoretical Background

2.1 Variational Autoencoder

Variational autoencoders were first proposed by D.P. Kingma and M. Welling
[4]. A variational autoencoder consists of two parts: an encoder and a decoder.
Unlike a normal autoencoder, the latent representation obtained from the encoder
is not directly fed into the decoder. The encoder learns to output the mean and
logarithmic variance of a multivariate gaussian distribution, given some input.
We then draw our latent space values from this distribution and feed these latent
variables into the decoder.

Figure 2.1: An example of a variational autoencoder with emphasis on the sam-
pling nature of the latent space

It seems like this architecture implicitly assumes that all input variables arise
from a Gaussian distribution. The reader may correctly note that our data
does not at all resemble a normal distribution, in any case. However, we can
map this normal Gaussian distribution to all possible distributions by utilising
a sufficiently complicated function. This function is learned by the decoder.
Theoretically, the decoder could learn the correct distribution independently.
However, this is complicated in training because strong dependencies between
the dimensions in the original input exist. In this case the encoder helps by
discovering the underlying structure in the data set. Intuitively, the encoder
breaks down these dependencies and stores reduced representations of the data
point in the bottleneck, the so-called latent variables. Therefore, we can model

3



2. Theoretical Background 4

our input variables x as a conditional probability distribution p(x|z), where z
are the variables in our latent space. The encoder can be described as qϕ(z|x)
and the decoder as pθ(x|z) with ϕ and θ being the weights of the networks that
parameterize q and p respectively.

The loss function consists of two parts: a reconstruction error Eqϕ(z|x)[log pθ(x|z)]
and a Kullback-Leibler divergence term. Through the reconstruction error, the
two probability distributions qϕ(z|x) and pθ(x|z) remain as similar as possible.
In other words, the encoder and the decoder should perform inverse operations.
For a good reconstruction we additionally want to make sure that our model uses
a smooth latent space that corresponds to a normal distribution. For this, we
use the KL divergence between qϕ(z|x) and the prior p(z) which we model as a
normal distribution. In summary, we arrive at the following loss function [4]

LV AE = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z))

Since we draw randomly from a probability distribution between the en-
coder and decoder, back-propagation cannot directly be applied. Therefore, the
reparametrization trick is used [4]. Simply put, we sample a value from a normal
distribution and then scale this value with the average and variance from our
trained latent space. This way we have separated the drawing from a probability
distribution and the learning of the network and can use back-propagation.

2.1.1 Disentanglement

A disentangled latent representation means that changing a variable in the latent
space leads to a change in a single ground truth factor in the output. For ex-
ample, a parameter could represent the orientation or the background colour in
an image. For disentangling the latent space different approaches with particular
types of VAEs are possible. In the following subchapters we will look at three
different ones. To evaluate disentanglement we use two metrics. One is the DCI
disentanglement score proposed by Eastwood & Williams [5] and the other is the
Mutual Information Gap MIG [6]. The DCI disentanglement score is high if each
latent variable learns a single ground truth factor. The MIG, on the other hand,
measures if each ground truth factor is learned by a single latent variable.

2.1.2 β-VAE

So far we have looked at our input x as a single probability distribution. How-
ever, we can split x into a conditionally independent part v and a conditionally
dependent part w. We want the latent factors made by qϕ(z|x) to reflect the
independent factors v in a disentangled manner. For this we keep qϕ(z|x) as
similar as possible to a normal distribution p(z). This controls the amount of
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information that can be stored in this latent variable and thus, causes statistical
disentanglement [7].

Lβ−V AE = Eqϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z))

Varying the hyper-parameter β > 1 puts more pressure on the representation type
in latent space than on the reconstruction. Through that, the encoder learns ’the
most efficient representation of the data’ [7] thus a disentangled representation of
v. It was further shown that the optimal β is not the same for all data sets and
thus, one has to find the optimal β for each data set separately. In this thesis
this is done in a supervised manner.

To find disentangled latent representations β must be chosen to be large.
However, this also limits the amount of information that can be stored in the
latent space. This is a major weakness in β-VAE which other types, like the
β-TCVAE, presented in the subsection 2.1.3 try to mitigate.

2.1.3 β-TCVAE

The KL-divergence from the β-VAE can be further divided into a sum of a index-
code mutual information term, a total correlation term, and a dimension-wise KL
term. Important is the total correlation part which measures the dependencies
between the individual latent variables [8].

DKL[q(z)||
∏
j

q(zj)]

It is argued that the β-VAE only disentangles its latent variables because this
term is included in the KL divergence DKL(qϕ(z|x)||p(z)). Therefore to improve
disentanglement while not loosing information capacity we want to punish the
total correlation term and not the index-code MI term.

However, the total correlation term is difficult to calculate because it is based
on the entire training data set. Although it can be estimated by minibatches.

q(z) = Ep(n)[q(z|n)] ≈
1

M

M∑
i=1

[log
1

NM

M∑
j=1

q(z(ni)|nj)]

Note that z(ni) is a variable drawn from the distribution q(z|ni). From this, one
can calculate the total correlation term. We want to punish this total correlation
term and leave the index code MI and the dimension KL weighted with one. For
a more straight forward implementation we can take the β-VAE loss and add the
total correlation term weighted with a hyper-parameter β − 1.

Lβ−TCV AE = Lβ−V AE − (β − 1) ∗DKL[q(z)||
∏
j

q(zj)]
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2.1.4 JL1-VAE

The JL1-VAE loss is a β-VAE loss regularised with the L1 term of the Jacobi
matrix from the latent values to their mean [9].

LJL1−V AE = Lβ−V AE − γEqϕ(z|x)[ ∥Jg(z)∥1 ]

γ is a hyper-parameter that determines how strong the regularisation is. Due to
the computational complexity of computing the full Jacobian, ∥Jg(z)∥1 is calcu-
lated from a sample z from the distribution qϕ(z|x) and the whole Jacobi matrix
is only estimated from this.
It was shown that the regularisation term locally disentangles the latent vari-
ables better because each latent direction is made to represent groupings of pix-
els. Therefore, this method works best if the ground truth factors induce some
confined local changes in the pixel space. Since this is often the case in games
the L1 regularisation may also help us in our aim to find a good disentangled
representation in games.

2.2 Deep-Q Net1

Reinforcement learning consists of a set of states of the environment, an agent
that interacts with the environment, and a set of actions for each set of states.
The goal is to assign an action to each element in the set of states so that the
final reward is maximised. To achieve this we can learn a function which maps
a given state-action pair to a value. This is called Q-learning. With a learned
Q-function Q(st, at) we then simply take the action at with the highest Q-value
given a state st. We learn this Q-function with a deep neural net.

Figure 2.2: Interaction of the environment and the agent[10]

To train our Q-function we store a buffer of experiences e with et = (st, at, rt, st+1)
and train on random samples from this buffer. This has two main advantages:

1This work is strongly oriented towards the idea and implementation of the DQN from
’Playing Atari with Deep Reinforcement Learning’[1]
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first we can sample each step potentially several times which leads to a greater
sample efficiency. Second, we have a strong correlation between the samples
stemming from the fact, that the same action is often used for a comparatively
long time before switching to another. Randomizing over the experience buffer
breaks those correlations and decreases the variance of the updates. To ensure
some variance in the chosen actions and therefore to explore new paths we ig-
nore the currently known best action with a probability of ϵ and chose an action
at random. This epsilon should get smaller over time reducing the random ex-
ploration of new paths and letting the training fine tune the Q-function on the
knowledge gained during exploring.

As input for the Deep-Q net one can either use a direct observation of the
environment [1] or some abstraction or features of it. In this thesis we will train
DQNs on all three different kinds of inputs. First we will train it directly on
raw images of the observations of the environment using a convolutional neural
network as DQN. Secondly, we will train a DQN on the latent space of several
different VAEs giving us some abstracted features. Lastly we will train a DQN
directly on handcrafted features of an observation like the positional data of the
objects.



Chapter 3

Methodology

To investigate whether disentangled inputs help in reinforcement learning, we
first need VAEs with good disentanglement and reconstruction performance. In
a first step, we will train different VAEs and compare their performances. Then
we will take the best of these VAEs and apply them as a preprocessing step in our
reinforcement learning environment. By doing so, we allow the agent to directly
take advantage of the extracted features, instead of the agent working on raw
pixel inputs. To have comparisons, we will also train our DQN with a VAE with
good reconstruction but poor disentanglement performance, the ground truth
factors, and with the original approach[1]. The ground truth factors give us the
possibility to simulate perfect disentanglement if the VAEs do not manage this.
In order to have some diversification we will do the analysis for the two Atari
games Pong and Breakout.

(a) Pong (b) Breakout

3.1 Reinforcement Learning

To interact with the environment of our two Atari games we can load and interact
with the Arcade Learning Environment [11]. From this environment our agent

8



3. Methodology 9

gets a buffer of four preprocessed 84x84 images. Four consecutive images are
used so that the agent receives further information, such as movements of the
objects, without having to use a recurrent neural network approach. In the
original approach, these four images are passed along to a convolutional DQ-net
as the color channel. When using VAEs, we first want to preprocess the images
with a VAE and forward the latent variables of the encoded images to a trainable
DQ-net. Since VAEs can learn better on a single image than on buffered images,
we will encode the input images one by one through the VAE onto the latent
space and then stack these four latent variables into a buffer. These stacked
latent variables are then passed to the DQ-net.
The DQ-net calculates estimates of the Q-values of each action. Our agent then
executes the action with the best Q-value with a probability of 1 − ϵ. On the
other hand a random action is chosen with a probability of ϵ. This should help
the agent to try out new paths. Since we want to try out many new paths at the
beginning and only few at the end of training, we introduce an ϵ-decay. We start
with a ϵ of 1, i.e. completely random moves, and go down to an ϵmin of 0.02.
As mentioned in section 2.2 we use a replay buffer. This replay buffer should be
quite large. We will use a size of 10’000. All DQ-nets will be trained for 1 million
frames in order to get to a more or less stable regime.

3.1.1 DQN-Setup in the Original Approach [1]

In order to train directly on the stack of four input images, we use three convo-
lutional layers, each with shrinking kernel size and stride. After the convolutions
we have four images of size 28x28. These four images we consolidate into one
input vector and forward it into two dense layers. These dense layers have a size
of 512 in between and the number of actions as output size. As an activation
function we use the ReLu function between all layers.
As an ϵ-decay we use an exponential decay with a decay constant of 85 ∗ 10−6.

3.1.2 DQN-Setup with a Variational Autoencoder

In order to get the latent variables of an image we use the encoder part of the
pretrained VAEs. We give the pretrained encoder the four images and then flatten
all the latent variables next to each other into a vector.
If we assume that the convolutional layers in the original approach only do feature
extraction and learn the position data of the objects in the image, it should
be possible to keep only the linear layers from the original DQ-net. The latent
variables also contain the position data of the objects as well as other information.

In chapter 4 Results it is explained that these two linear layers are not suffi-
cient to train a good agent. Therefore, the DQ-nets are each enlarged by three
linear layers of size 3136 which is the input size of the original DQ-net. In be-
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tween each layer an Instance-norm is performed and a ReLu activation function
is used. Since we expect a faster convergence to a good solution we do not need
to try as many random paths as the original approach. Therefore we can use a
faster ϵ-decay of 85 ∗ 10−5.

3.1.3 Preprocessing

In order to be able to use the same training methods for all games, all pictures
are first scaled down to 84x84. Then we remove certain remnants such as borders
at the bottom of the image. Finally, we convert all images to one color channel
and scale the values between zero and one, such that the objects are all one and
the background is all zero. We keep this preprocessing identical for all training
runs.

3.2 Variational Autoencoder

In order to test our VAEs with all metrics from 3.2.1 we need ground truth labels.
Since we cannot get these from the ALE environment, we build our own data
set where we can control where the objects are located within the image. This is
advantageous, given that we ensure that the objects do not overlap which should
help to disentangle the objects. A disadvantage, however, is that the images
from the ALE are not always exactly the same. As one can see in picture (a),
sometimes the shape of the ball or the size of the paddles changes. An example
being evident in the game of Pong. These changes are not captured by my data
set. Thanks to the generalisation ability of the VAEs, this still works well.

The structure of the VAEs is chosen in such a way that the encoder part cor-
responds to the DQN of the original approach with the change that the output
layer has twice the size of the latent space (once for the mean and once for log-
variance). The decoder is then the same structure as the encoder but in reverse.
Additionally, the convolutional layers are replaced with convolution transpose
layers. Between all layers we perform a batch normalisation. The activation
function between all layers is the ReLu function. As a last step, the output of
the decoder is fed into a sigmoid function. The VAEs are trained for 100 epochs
with 100k images each. The hyperparameters β and γ for the JL1-VAE are cho-
sen in such a way that we achieve near perfect reconstruction and the highest
possible disentanglement value.

3.2.1 Metrics

Each trained VAE is evaluated according to different metrics. The most impor-
tant metric is the visual assessment of the reconstruction. If the decoder cannot
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(a) Image from ALE environment (b) equivalent own image

Figure 3.2: Possible differences between the original images and the self made
ones

reconstruct all objects, we can assume that this information is not contained in
the latent variables. This would make it impossible for the DQ-net to use the
object while training. Therefore, we will use the models with highest disentan-
glement scores having good reconstruction. For the different VAEs used as a
preprocessing step to the DQ-net of the game Pong we get the following scores.

Model β γ Latent Dim DCI Completeness MIG

β-VAE 5 - 10 0.253 0.160 0.011
β-VAE 0.001 - 10 0.022 0.014 0.017

βTC-VAE 2 - 10 0.237 0.168 0.081
βTC-VAE 1.1 - 64 0.275 0.173 0.068
JL1-VAE 1 0.01 10 0.453 0.300 0.050

Table 3.1: Metrics for the VAEs used as a preprocessing step in the game Pong

Since all VAEs in the game Pong have a bad MIG but a higher DCI score, we
can judge that most latent variables learn a single ground truth factor. How-
ever, all ground truth factors are learned by multiple latent variables. Perfect
disentanglement would require independence in both directions, latent space to
ground truth and ground truth to latent space. Therefore, we do not achieve
perfect disentanglement. However, compared to the bad disentanglement of the
bad β-VAE with β = 0.001, we can see that our models can disentangle in one
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direction. Additionally, the JL1-VAE disentangles much better than the others.
This makes sense because the JL1-VAE works especially well with small objects
in an image like we have in the game of Pong.

Model β γ Latent Dim DCI Completeness MIG

β-VAE 0.6 - 32 0.427 0.414 0.308
β-VAE 0.0001 - 32 0.026 0.026 0.010

βTC-VAE 0.1, TC=1 - 32 0.118 0.115 0.081
JL1-VAE 0.5 0.001 32 0.296 0.288 0.198

Table 3.2: Metrics for the VAEs used as a preprocessing step in the game Break-
out

Since the game Breakout with 28 ground truth factors requires a significantly
larger latent space, we use VAEs with 32 latent variables each. It is all the more
astonishing that the β-VAE with β = 0.6 performs so well, even in comparison
to the VAEs used for the game Pong. This was probably a exceptionally good
run, because neither the βTC-VAE nor the JL1-VAE could deliver equally good
results here. Not surprisingly, the JL1-VAE performed better than the βTC-
VAE, as it did for the game of Pong. The high MIG compared to the VAEs in
3.1 is also remarkable. This means that, in the best case of the β-VAE, around
a third of the ground truth factors were learned from only one latent variable.
Which in total would mean that even tough we had to learn a lot more ground
truths than at the game of Pong some of our VAEs are much better.

It is also worth noting that a correlation between DCI disentanglement and
performance in the games is more likely than a correlation with the MIG score as
this paper [12] has found in a comparable context. Therefore, the low MIG scores
in the game of Pong are undesirable but not a big deal. If there is a correlation
between MIG scores and performance in the game Breakout, further research
could be conducted in this direction.



Chapter 4

Results

At the beginning of this thesis we asked ourselves the following four questions

i) Whether we can achieve better final results in the games when using dis-
entangled inputs.

ii) Whether the agent converges faster to a good result when using disentangled
inputs.

iii) Whether we achieve a faster training time per frame with the VAE as a
preprocessing step

iv) Whether we can overall use a smaller model

We investigate this in comparison with increasing disentanglement and to the
original RL agent in the two games Pong and Breakout.

Game Model Mean Max Reward Achieved after Absolute Max Times

Pong
βTC 2-VAE 18.4 598k 20 2
βTC 1.1-VAE 19.6 692k 20 4
β 5-VAE 18.0 648k 21 2

Bad β-VAE 18.0 782k 20 1
JL1-VA 15.4 676k 20 1

Ground Truths 10.0 714k 16 1
Original Approach 19.4 679k 20 2

Breakout
Bad β-VAE 26.8 480k 29 1
β 0.6-VAE 22.6 616k 27 1

β0.1 TC 1-VAE 20.2 877k 22 2
JL1-VAE 25 390k 31 1

Original Approach 26.4 623k 28 2

Table 4.1: The mean max reward and the number of frames until it was achieved
is computed as a mean over 5 runs with different random seeds. The absolute
maximum is the highest maximum achieved at least by a single run e.g. a single
random seed. With times being how often this maximum was achieved

13
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From the table 4.1 we can see that in the game Pong all agents, except the one
trained directly on the ground truth labels, have reached a very high maximum in
at least one run. With 21 being the highest value possible in the game. Whereby
the agent who got the inputs from the βTC-VAE had at least one game with
20 points in 4 out of 5 random seeds. This is twice as often as the original
approach without the VAE-preprocesssing step. This is important because at
the maximum the training should be stopped and we would have an agent who
wins the game. Since this succeeds with 4 out of 5 of the random seeds tested,
we have a higher success rate than with the original approach. In the Breakout
game, the agent that gets the inputs from the JL1-VAE had the absolute highest
reward.

If one compares the average of the maximum rewards, a significant improve-
ment in any game using disentangled inputs compared to without, cannot be
observed. It should also be noted that there were four times more runs with
VAEs than without. Since the maximum rewards vary greatly and depend on
many factors as well as on the random seeds, we can say that it is not surprising
that in both games a VAE agent got the maximum reward. If we plot the depen-
dence of DCI Disentagnlement and MIG versus the average maximum rewards
4.1 it becomes even clearer that there is no dependence here. We are probably
reaching the limit of what is feasible for the original architecture. For better
results, one would not only have to change the inputs to the DQ-net but the
whole setup itself and probably use something other than deep-Q learning.

The second point is similar. From table 4.1 we note that the highest rewards
were found the fastest by a VAE agent for each game. However, there are also
VAE agents that took significantly longer than the original approach. Further
we look at the reward plots 4.4. From this we observe that there could only be a
correlation between DCI disentanglement and the time it takes to get an accept-
able result of 80% of the maximum achieved result. However, we can only see

Figure 4.1: Maximal achieved mean reward against the DCI disentanglement and
MIG scores corresponding to the VAEs used for preprocessing. All mean rewards
are normalised to allow a comparison between the games.
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this in the game of Pong and neither is it a strong trend. The threshold of 80%
for a good final reward is arbitrarily taken. It was verified that slightly changing
this threshold does not change the final orders.

(a) Full training length (b) First 250k frames

Figure 4.2: Average rewards over 10 games for Pong with a confidence interval
of 70% and smoothed out

(a) Full training length (b) First 250k frames

Figure 4.3: Average rewards over 10 games for Breakout with a confidence interval
of 70% and smoothed out

Finally, we can look at starting performance in 4.2 and 4.3. Here we observe
that most VAE agents do actually achieve higher rewards than the original ap-
proach at the very beginning. If we graph the starting performance versus the
disentanglement scores 4.5 we observe that there possibly is a connection between
the DCI disentanglement score and the starting performance. However, we have
too few VAEs with different disentanglement scores to state this conclusively
only from the plots. Additionally, the MIG scores were all too low to conclude
anything. Once the original agent has learned to extract features from the
pictures, its reward explodes significantly and grows much faster than all VAE
agents. Therefore, one might suspect that the faster increase of the VAE agents
at the beginning can be explained by the inputs lower dimensionality. To test
this assumption, we can use a normal autoencoder instead of a VAE. Appendix
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Figure 4.4: Mean of the number of frames it took until 80% of the maximal
reward was achieved. The axis first to 80% was normalised in such a way, that
lower number of frames are closer to 1 e.g. the higher the better.

Figure 4.5: Maximal achieved mean reward during the first 250k frames against
the DCI disentanglement and MIG scores corresponding to the VAEs used for
preprocessing. All mean rewards are normalised to allow a comparison between
the games.

C contains a clearer table and plots with the start performances of the VAEs and
the AEs than plots 4.2 and 4.3. Since the AE performs worse in the beginning
than the VAEs, we can conclude that the improvement of the rewards at the
very beginning of the training was derived by the VAEs and is not only related
to a dimensionality reduction. Together with the aforementioned findings we can
conclude, that disentanglement helps in the beginning of training to get better
rewards. However, as shown later, training with VAEs takes much longer. There-
fore, in our case it would be faster to use the original approach even with the
best VAE. This would be the quickest way to achieve the best possible result at
any time also at the very beginning. It is still unclear why the agent who got the
ground truths did so badly. I think there might be a bug in the way I calculate
the ground truths from the pictures. If you want to take a closer look at this you
should first try to get the ground truths directly from the environment instead
of calculating them from the pictures like I did.
We can summarise that there is a better starting performance with the VAE
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agents and this probably does weakly depend on the DCI disentanglement scores
of the used VAEs. Since the original approach still performs best it could be
exciting to use an encoder from a normal autoencoder as a DQN-net and train it
to learn the Q-function. This could have the same good starting performance as
we see with the VAE agents, but have the added advantage that the long-term
performance is the same as in the original approach.

Since the original DQ-net consists of three convolutional layers followed by two
linear layers, one might think that the convolutional layers only extract features
such as the location of objects in the image. Therefore, when using the latent
variables as input to our DQ-net, our net could consist of only the two linear
layers. This would have made the training per frame faster than in the original
approach. However, we never achieved an acceptable performance in training
with this small network. Therefore, we can conclude that the small DQ-net did
not have enough capacity and more importantly, that the original DQ-net used
the convolutional layers not only for feature extraction, but also for Q-function
learning. Since these convolutional layers are omitted in our DQ-net, we have
to add more linear layers. Therefore, the DQ-net was enlarged until the average
rewards did not increase any more. With the larger DQ-net, however, we also lose
the possibility of a faster training time per frame, as we have practically the same
number of trainable parameters with the enlarged DQ-net. Additionally, we need
to encode each image, which is quite computationally intensive. To estimate the
difference in training time, the average training time was calculated in table 4.2.
There we can see that the original approach was indeed much faster. Although
all runs were carried out on the same resources, the training times varied greatly.
I suspect this had to do with a memory bottleneck on the cluster when it was
fully loaded. Therefore, we cannot give reasonable training times, only estimates
of how long it takes to train per frame.

Game Average Time per Frame

Pong VAE-Agent 16.08 ms
Original Agent 7.92 ms

Breakout VAE-Agent 18.64 ms
Original Agent 9.95 ms

Table 4.2: Mean training times per frame with all models trained on a Titan XP.



Chapter 5

Conclusion

In this work, we investigated the extent to which disentangled inputs have an
influence on reinforcement learning. We tested this with a Deep-Q approach
for the Atari games Pong and Breakout. We trained three different types of
variational autoencoders for both games respectively and took the VAE with
the highest DCI disentanglement score for each type. We used the encoders of
these VAEs as a preprocessing step for the DQ-net in our agent. Additionally
the same preprocessing was done with trained autoencoders. This gives us a
range of disentangled inputs for our agent and allows us to see which changes
in performance are due to the disentanglement and which would most likely be
found with similar pretrained feature extractors.

We have seen that encoding with a VAE generates a slight performance in-
crease at the beginning of the training. However, this does not affect the final
performance of the model. Furthermore, we could show that this performance
increase is related to disentanglement. But the performance increase is not suf-
ficient to offset the increased training time. One particular point that can be
further worked on is the effectiveness of the used VAEs. Theoretically, it should
be possible to train a VAE so that its latent variables are perfectly disentangled.
Although we have seen a trend in disentanglement to start performance, we can-
not rule out that with perfect disentanglement this trend will be even stronger
or flatten out. Therefore, one should continue to try to train VAEs with perfect
disentanglement.

Overall, we can conclude that even tough disentanglement can help, the pre-
trained features used in the VAE probably matter far more than their disentan-
glement. Therefore, I suggest that the next step is to take an encoder pretrained
by an AE as the DQ-net of the agent and train it to estimate the Q-function. The
fact that the encoder has already found features could improve the training time
and simultaneously, allowing us to keep the advantages of the original approach:
the agent can learn its features by itself and we have a smaller total net. I don’t
suspect that the final scores will improve, but the training time required and the
variance between the individual runs could be reduced.
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Appendix A

Model Architectures

Model Architecture

VAE for Pong

Encoder Decoder
Input: 84x84 1 channel Input: 10 values

Conv2d: 32, kernel 8, stride 4 Linear: 512
Conv2d: 32, kernel 4, stride 2 Linear: 6400
Conv2d: 64, kernel 3, stride 1 ConvT2d: 32, kernel 3, stride 1

Linear: 512 ConvT2d: 32, kernel 4, stride 2
Linear: 2* 10 ConvT2d: 32, kernel 8, stride 4

Sigmoid activation function
Batchnorm between all layers Batchnorm between all layers

VAE for Breakout

Input: 84x84 1 channel Input: 32 values
Conv2d: 32, kernel 8, stride 4 Linear: 512
Conv2d: 32, kernel 4, stride 2 Linear: 6400
Conv2d: 64, kernel 3, stride 1 ConvT2d: 32, kernel 3, stride 1

Linear: 512 ConvT2d: 32, kernel 4, stride 2
Linear: 2* 32 ConvT2d: 32, kernel 8, stride 4

Sigmoid activation function
Batchnorm between all layers Batchnorm between all layers

AE for Pong

Input: 84x84 1 channel Input: 4 values
Conv2d: 32, kernel 8, stride 4 Linear: 512
Conv2d: 32, kernel 4, stride 2 Linear: 6400
Conv2d: 64, kernel 3, stride 1 ConvT2d: 32, kernel 3, stride 1

Linear: 512 ConvT2d: 32, kernel 4, stride 2
Linear: 4 ConvT2d: 32, kernel 8, stride 4

Sigmoid activation function
Batchnorm between all layers Batchnorm between all layers

AE for Breakout

Input: 84x84 1 channel Input: 32 values
Conv2d: 32, kernel 8, stride 4 Linear: 512
Conv2d: 32, kernel 4, stride 2 Linear: 6400
Conv2d: 64, kernel 3, stride 1 ConvT2d: 32, kernel 3, stride 1

Linear: 512 ConvT2d: 32, kernel 4, stride 2
Linear: 32 ConvT2d: 32, kernel 8, stride 4

Sigmoid activation function
Batchnorm between all layers Batchnorm between all layers

Table A.1: All final VAE and AE model architectures used in this thesis.
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Model Architectures A-2

Model Architecture

Original
DQN

Input: 84x84 4 channels
Conv2d: 32, kernel 8, stride 4
Conv2d: 32, kernel 4, stride 2
Conv2d: 64, kernel 3, stride 1

Linear: 512
Linear: number of actions

DQN for
VAE

Input: latent space * 4
Linear: 3136
Linear: 3136
Linear: 3136
Linear: 512

Linear: number of actions
Instance norm between all layers

Table A.2: All final model DQN architectures used in this thesis.



Appendix B

Insight into the Generalisation
Ability of VAEs

I mistakenly trained a batch of 5 runs on the game Pong with a VAE trained on
the game Breakout. Interestingly, the agent learned to play the game surprisingly
well. We can compare this to the blue line which represents a training with a
VAE who did not learn to represent the ball. So if the latent variables could not
extract enough information, like the ball from the wrong image, we should see
something similar to the blue line. However, the orange line is much better which
means that even though we are using the wrong VAE, the latent variables have
all the necessary information for both games.

Further, we can compare the runs with the green one, where a too small net
of three layers was taken as the DQ-net. We see that while the green line flattens
out and can no longer store more information in the net, the orange line continues
to rise. Together with the red run with a correct VAE we can conclude that it
is much harder for the agent to use the variables, but the necessary information
is stored in them. Actually, this could be an indication that the training perfor-
mance does depend on the structure of the latent variables. Since we have shown
in Results that the performance does not depend on disentanglement, it must be
a different kind of linkage within the latent variables.
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Insight into the Generalisation Ability of VAEs B-2

Figure B.1: Four different set of runs trained on the game Pong. The badly
reconstructing VAE is a β 5-VAE which did not manage to learn the ball. The
too small DQ-net has two linear layers less then our DQ-net has. The orange
VAE was trained on the game Breakout and then used in the game of Pong.
Finally, the correct JL1-VAE is the same as in the results table.



Appendix C

Simplified Reward Plots and
Tables

Game Model Mean Max Reward Absolute Max Reward Achieved after

Pong
βTC 2-VAE -4.26 4.3 230k
βTC 1.1-VAE -4.8 3.4 230k

β 5-VAE -5.5 1.6 234k
Bad β-VAE -7.9 0.8 242k
JL1-VA -2.5 5 222k

Ground Truths -14.8 -13.1 166k
Original Approach -3.2 0.5 250k

Autoencoder -7.9 -3.6 228k

Breakout
Bad β-VAE 22 28 148k
β 0.6-VAE 18.4 23 121k

β0.1 TC 1-VAE 16.4 19 169k
JL1-VAE 19.6 23 109k

Original Approach 18.2 21 171k
Autoencoder 19 20 156k

Table C.1: Mean maximal rewards over 5 runs with different random seeds and
the absolute maximum achieved by at least a single run during the first 250k
frames as well as the number of frames it took to achieve this.
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Simplified Reward Plots and Tables C-2

Figure C.1: Combining all VAEs to show the difference between preprocessing
with VAEs and AEs for the game Pong.

Figure C.2: Combining all VAEs to show the difference between preprocessing
with VAEs and AEs for the game Breakout.
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