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Abstract

Ordered lists of integers are of great importance in many fields of science. We
look at these sequences from a broader perspective and lay down a set of bench-
marking tasks that help machine learning models develop a conceptual under-
standing of the underlying rules governing such sequences. Additionally, we
strengthen that view by introducing a rich set of different model architectures,
both neural and classical. Our results showed that despite our models having
some level of understanding, our neural models lack the ability to outperform
our baseline models. Working towards the long term goal of creating sequence
algorithm learning systems, this study gives a general and hierarchical overview
of the implications of this broader perspective.
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CHAPTER 1

Introduction

Integer sequences are often a good natural representation of fundamentally dis-
crete abstractions. These sequences are present in many fields of science, for
example describing the number of electrons in an atomic shell following Hund’s
rules or population growth, abiding the rules of discrete geometric growth.

If the reader were asked to continue the sequence 1,1,2,3,5,... it is certainly
tempting to immediately answer 8, originating from the famous Fibonacci se-
quence F; = F;_1+ F;_5. But a more natural answer which arises from chemistry
is 9. Representing the number of possible isomers in carbon alkanes.

How can we measure the quality of different suggestions? Especially if the
answer does not come from a human but from a artificial intelligence system.

Understanding the structure and underlying rules of such sequences to its
full extent is still hard for a machine learning model. Thus, as a long term
goal, following the first stepping stones in the work of [1], we aim to develop an
algorithm learning system that progresses in the direction of not only memorising
a set of examples but rather identify straightforward universal abstractions that
explains a given sequence.

To accomplish this goal, in chapter 3 we introduce a set of bench-marking-
tasks that assesses the understanding of governing concepts behind the evolution
of integer sequences. In sections 4.1 and 4.2 we propose to use several model
architectures to give a baseline to our benchmarks. Furthermore, in section 4.3
we explain the methods and metrics applied to evaluate the quality of our models.
We develop the dataset in chapter 2, on which they get trained on. For that,
we use the famous OEIS-dataset [2] (Online Encyclopedia of Integer Sequences).
Finally, we present our results in chapter 5 and in chapter 6 we explore potential
future work on this topic.
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1.1 Related Work

In [3] the OEIS-dataset was also used for a subset of our bench-marking-tasks.
But in contrast to our work, the author utilized three different, but more so-
phisticated model architectures, whereas we try to give a more general view by
applying a wide variety of individual models.

In 2016, the Kaggle data science community launched a competition [4], chal-
lenging people in creating a machine learning algorithm that is capable of guessing
the next number in a given integer sequence. Likewise using the OEIS dataset.
The results submitted to this challenge are in full conjunction to one of our
bench-marking-tasks.

On the side of traditional architectures, [5] analyses how Dense-Neural-Networks
learn to abstract. This view is in line with our goal of understanding the under-
lying rules of a given sequence.

1.2 Our contribution

Our contributions are:

e a wide variety of bench-marking-tasks designed to evaluate the model com-
prehension of conceptual patterns in integer sequences with a clearly estab-
lished order of difficulty,

e a rich set of different baseline models, both classical and neural, to accom-
plish seamless experimentation and

e 3 collection of evaluation metrics tailored to the above tasks to asses model
performance.



CHAPTER 2

Dataset

The dataset we worked with is a collection of two datasets. On the one hand,
we have OEIS [2| (Online Encyclopedia of Integer Sequences) and on the other
hand, FACT (Finitary Abstraction Comprehension Toolkit). In previous work
[1], the OEIS dataset was studied and a broad set of classification methods were
introduced. Our effort builds heavily on the results of this work. Described in
Chapter 3, these labels are the building blocks of our evaluation data in our
machine learning tasks.

2.1 OEIS dataset

OEIS [2] is a collection of noteworthy integer sequences. OEIS was founded in
1966 by Neil Sloane. At the time of writing the dataset contains over 340,000
entries. Each entry holds 18 fields, following the style sheet of [6]. A brief
explanation of the 18 fields is given in Appendix B. The length of each sequence
is of high variance, ranging from less than 10 entries up to over 200,000. We have
processed it specifically for the use in machine learning in line with the license
requirements.

2.2 FACT dataset

FACT introduces a dataset consisting of over 3.6 million synthetically generated
integer sequences. The dataset was developed by Ard Kastrati and Peter Belcak
in 2022. It is an extension to the OEIS dataset while abiding the structure
and nature of the stem encyclopedia entries and providing carefully engineered
automatic annotations wherever possible. Figure 2.1 gives an overview of the
final dataset containing both OEIS and FACT entries.
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Figure 2.1: The categories in our dataset. It is composed of synthetic and OEIS
entries. Each group in synthetic part consists of 500,000 sequences, whereas
the size of the OEIS groups vary. Dotted regions represent the main categories
identified in the dataset. Ellipses define the sub-categories from our processing
step in OEIS. Red dots mark groups that are augmented with synthetic data
(and used in our bench-marking setup).
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2.3 Structure

2.3.1 Categories

Both datasets introduce 10 categories, namely polynomial, exponential, trigono-
metric, periodic, finite, modulo, prime, bounded, increasing and unique. Some
categories are inclusive, whereas most of them are exclusive. Meaning that a
sequence s can either be both a polynomial and increasing but not a polynomial
and a exponential at the same time.

2.3.2 Composition and Preprocessing

Table 2.1 gives a detailed overview of the composition of the dataset. In total
the OEIS contains 342,304 integer sequences of which we excluded 51,557 entries,
which were either invalid or were too large and produced an integer64 overflow.
Leaving us with a total of 290,747 OEIS entries. The FACT dataset on the other
hand (From here on we will use the notation of synthetic sequences for the FACT
dataset and oeis sequences for the OEIS dataset.) contains a total of 3,337,000
integer sequences. No integer64 overflow was produced. Next, to generate valid
tensors we cut all sequences to a uniform length of 50 and excluded the shorter
once. Leaving us with a total of 174,266 oeis and 3,075,240 synthetic sequences.

| Synthetic | OEIS

Polynomial 500,000 4,808
Exponential 319,402 912
Trigonometric 500,000 4,432
Periodic 338,000 1,789
Finite 418,838 0

Modulo 499,000 9,029
Prime 500,000 | 36,054
Bounded | 1,164,939 | 41,882
Increasing | 2,346,262 | 73,247
Unique | 1,211,607 | 74,842

Total | 3,075,240 | 174,266

Table 2.1: Dataset structure

2.3.3 Training, Evaluation and Testset

We split the synthetic dataset into three parts. The training-set, containing % of
all entries, the evaluation- and the test-set containing 1—10 each. The training-set
consists only of synthetic sequences, whereas the evaluation- and test-set were
joined with % of the oeis dataset respectively.



CHAPTER 3

Benchmark

With the dataset given, we established a set of 5 different bench-marking tasks.
Namely Sequence Classification, Sequence Similarity, Next Sequence-Part Pre-
diction, Sequence Continuation and Sequence Unmasking.

3.1 Task Hierarchy

The benchmark consists of tasks with an increasing order of difficulty over two
dimensions: the tasks type and scope. Each task is performed over two different
scopes: within and across categories. In within categories, we already know from
which category the sequence originates and therefore the first scope is simpler
then the second. Nevertheless, our baselines (cf. 4) are oblivious to this infor-
mation and instead treat the category scope as if nothing was known about the
data. Figure 3.1 displays a hierarchical view of the difficulty and scope of our
tasks. In the following section we give a detailed explanation of the different
types of tasks.

R N
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Classif. 0,1,2,0,1,2... Periodic

Figure 3.1:  Our tasks ordered by the level of difficulty over two dimensions:
type and scope.
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3.2 Task Types

3.2.1 Sequence Classification

The first task in our benchmark is classifying a sequence to which category it
belongs. Since our dataset contains non-exclusive categories we divide this task
into two subtasks:

e Omne-vs-Rest (OvR): Identifying if a sequence belongs to a specific category
or not. For each category we provide a balanced dataset of half the se-
quences who are actually belonging to the specific category and half the
sequences sampled from the rest of the categories. Since this is a binary
classification task, we use binary-accuracy as a evaluation metric.

e Multiclass classification: In this subtask we seek to predict for every se-
quence in the dataset to which categories it belongs. This poses the prob-
lem of an inbalanced dataset, especially in the OEIS-part. Therefore, we
use the macro average F1l-score as a metric.

precision - recall

N
2
macro average Fl-score = N Z (3.1)

— precision + recall
1=

3.2.2 Sequence Similarity

The sequence similarity task aims to group together sequences that are similar in
its type (e.g. agree on the same category) and properties (e.g. both are periodic
and bounded). To achieve this, we create an embedding space Z and train our
models to place the sequences in Z in a meaningful way.

Evaluation is done with the Recall@k score, where k-m candidates for a sequence
s are proposed, by sampling k sequences from each of the m categories and then
ordering all candidates by their euclidean distance to s in Z. As a metric we
finally use top-k-accuracy where we look at the top-k candidates whether one of
them is in the same category of s or not.

Our choice of evaluation metrics is motivated in generalizing sequence classifica-
tion.

3.2.3 Next Sequence Part Prediction

Given two sub-sequences s; and so, the goal of the next sequence-part prediction
task (NSPP) is to determine if the sub-sequence sy is a valid continuation of
s1 or not. On each category we take a balanced dataset, whereas across all,
we take members from all categories with its counterparts. This is a binary
classification task and thus performance is measured in binary-accuracy. This
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task is strictly more difficult than the similarity task, since the model not only
has to understand the key properties of a given sequence but also has to possess
the ability to differentiate between feasible and unfeasible combinations.

3.2.4 Sequence Continuation

The forth task in our difficulty hierarchy is to predict the next entries in a given
sequence s. This task goes beyond making simple binary decisions but to make
active suggestions, and as such this task demands a better understanding of the
underlying rules governing sequences, than in Next Sequence-Part-Prediction.
We divide this task into two subtasks:

e Single-shot: In single-shot continuation, we predict only a single candidate
as the next entry. This is done by regression and as such we use the mean-
squared-logarithmic error (MSLE) as a metric.

e Multi-shot: Here we provide more than a single candidate by using the same

embedding space Z from the similarity task, but with a different measure-
ment for comparison. Given to sequences s1 and so we are interested in
the fraction of agreement on the first entries of these two sequences (e.g.
[1,2,3,4],[1,2,4,8], agreement is 2).
For evaluation we use the top-k-root-mean-squared error - the root-mean-
squared error (RMSE) across the top k candidates. Given k predictions
of a model {§; }ief1,...kxy and ground truth y, we define the top-k-RMSE as
mine(1 k) RMSE(y, ;). In other words, given all generated predictions
we report the RMSE of the prediction closest to the ground truth.

3.2.5 Sequence Element Unmasking

At the peak of our complexity hierarchy is the sequence element unmasking task.
Sequence continuation can be viewed as a special case of unmasking, where only
the last elements are masked. Here we utilize the same methods as in the se-
quence continuation multi-shot approach but not limiting ourselves to the last
candidates. Hence we also mask entries all over a sequence s. As an evaluation
metric we use the top-k-RMSE defined above.



CHAPTER 4

Baseline model performance

To provide a baseline on our tasks, we employ a total of 24 different models
across our benchmarks, namely four neural models, 9 classical classifiers, and
11 standard regressors. The following sections describe the architecture of these
models.

4.1 Neural Models

4.1.1 Dense Neural Network (DNN)

The densely connected neural network is composed of three hidden layers with
64, 32 and 16 neurons each, and an input layer with 50 neurons, correspond-
ing to the first 50 integers of the sequence. Each hidden neuron is activated
with the rectified function (ReLU). The last layer is activated with the sigmoid
function in case of classification tasks, and linearly activated in case of regres-
sion. In multi-class-classification, 10 output neurons with sigmoid activation (one
for each main class) are used. In terms of hyperparameter optimization, we fo-
cused on the depth layout and kernel regularization. Our grid search contained
the following discrete ranges for each parameter: L1 € [0.005, 0.01, 0.02}7 L2 €
[0.0001,0.001, 0.01], depth-layout € [(64,32,16,8,4), (64,32, 16), (16, 16,16)]

4.1.2 Recurrent Neural Network (RNN)

The architecture of our recurrent model consists of three Long Short-Term Mem-
ory [7] layers, each with 64, 32 and 16 units respectively. The first two layers
produce the whole sequence, whereas the last layer only yields the last output.
The units of the last layer are fed into a dense-layer with a sigmoidal or linear
activation. No dropout was used for RNNs. The hyperparameter-grid-search
included: L1 € [0,0.001,0.01], L2 € [0,0.001,0.01], Dropout € [0,0.1]. Fig-
ure 4.1 gives a graphical overview of the hyperparameter optimization process
achieved with the Weights & Biases software (8] (wandb).
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4.1.3 Convolutional Neural Network (CNN)

Here we used a simple stack containing a convolutional layer with kernel size
2, 10 filters and a pooling-layer of size 2, with unit strides. The network was
composed of three of these stacks, terminating in a dense layer with the same
activation as above. The hyperparameter-tuning focused on filter and kernel size:
filters € [1,5, 10], kernel size € [2,4, 6], stack depth € [2,3]. The graphical
overview can be found in Figure 4.2.

4.1.4 Transformer

We followed the transformer architecture of [9] with only the normalisation layers
excluded. We use six transformer blocks for the encoder and three for the decoder.
Each multi-headed attention unit consists of 20 attention heads and the output
dimension of the embedding and feed-forward layers is 12. In Figure 4.3 we
focused on the number of attention heads as well as the embedding dimension in
our grid search: heads € [5, 10, 20, 40], embedding dimension € [3, 6,12, 24].

4.2 Classical Models

Table 4.1 summarizes all standard classifiers and regressors we utilized. Each
standard model is implemented with the scikit-learn [10] library for python. For
each model we applied its default parameters. We use the classical models exclu-
sively in the sequence continuation single-shot and sequence classification tasks
to give a comparison benchmark to the neural models.

Classifiers Regressors
KNNC k-Nearest Neighbors | KNNR  k-Nearest Neighbors
GNBC Gaussian naive Bayes | LIR Linear Regressor
LSVC  Linear Sup. Vector Machine | RIR Ridge Regressor
DTC Decision Tree | LAR Lasso Regressor
RFC Random Forest | ENR Elastic Net
GBC Gradient Boosting | DTR Decision Tree
ABC AdaBoost | RFR Random Forest
XGBC XG Boost | GBR Gradient Boosting
DYC Dummy Classifier | ABR AdaBoost
XGBR XGBoost
DYR Dummy Regressor

Table 4.1: Standard Models
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Figure 4.1: RNN hyperparameter optimization
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Figure 4.3: Transformer hyperparameter optimization
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Max # of Epochs 20
Optimizer Adam
DNN L1 regularizer 0.001
DNN L2 regularizer 0.0001
RNN L1 regularizer 0.001
RNN L2 regularizer 0.0001
RNN dropout probability 0
CNN filter count 10
margin distance 1

Table 4.2: Additional general training hypterparameters

4.3 Loss and Metrics

Table 4.2 lists all general and additional training parameters we finally choose,
after the optimization described in the previous chapter.

4.3.1 Classification Loss

For our classification tasks, sequence classification and next sequence part pre-
diction, we used binary-cross-entropy defined in equation 4.1 as our loss function.

N
1 ) ;
L=-+ > yilog(i) + (1 — yi) log(1 — ) (4.1)
i=1

Where N is the number of categories and y; the ground-truth label of the i-th
category and ¢; the predicted label from our models.

As a evaluation metric we went with the root mean squared error (RMSE) in se-

quence unmasking and sequence continuation multi-shot, whereas mean squared
logarithmic error (MSLE) was used in sequence continuation single-shot.

Lryse = \/Zf\il(yz_yz)2 (4.2)

N

N . 2
Lysie = 2zt (log(yi +]1\; ~logly: 1)) (4.3)
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4.3.2 Flexible Contrastive Loss

In some tasks we used contrastive learning to achieve a desired embedding space
Z, namely sequence similarity, sequence continuation multi-shot and sequence
unmasking. There, we went for a contrastive loss described in the following
formula:

d, = mam(a —d, 0)2
d,, = d? (4.4)
L=(1—-MNd,+ X\,

where d is the euclidean distance between two sequences in the embedding space
and « is the margin-distance which penalises dissimilar pairs only if their distance
d is inside its radius. The goal of this loss is to embed similar sequences near
each other in terms of the euclidean distance and different ones further away.
The parameter A functions as a measurement of similarity. In each dynamic task
we define this measurement differently. In sequence similarity A is the indicator
function between two classes. In sequence continuation, A is the fraction between
the first n similar numbers of two sequences and its total length, whereas in
sequence unmasking A is the fraction of masked entries in a sequence paired with
its unmasked counterpart. With this approach we seek to build an embedding
space that learns to differentiate different sequences, according to our predefined
tasks.

4.4 Computational Resources and Code

Our program was entirely built in Python, wrapping around Keras [11] which
itself wraps around TensorFlow [12]. Keras is an open-source neural-network
library written in Python and founded by Francois Chollet. The entire code of
this thesis can be found in the GitLab repository [13].

Training of all our models was done on the Slurm cluster from the Computer
Engineering and Networks Laboratory (TIK) at ETH Zurich. Running mostly
on a single Nvidia Titan Xp, GTX Titan X or GeForce RTX 2080 Ti depending
on the resources available at the time of training. One experiment (One specific
task, one specific model and one specific category) lasted on average between 45
minutes and 5 hours each, but never longer than 16 hours.



CHAPTER 5

Results

In Table 5.1 we provide a simplified preview of the performance within the cat-
egory bounded on some of the baseline models. On the other hand, a complete
and detailed listing of our results, evaluated within and across all categories, can
be found in Appendix A.

Model | Dataset | Task
& & < S
& & & & S
,@&o & N S $ &@%
& X S X D S
o &“v & QOQ 00& &
[binary-acc.| [top-5-acc.| |[MSLE)| [top-5-RMSE)|
DNN oeis 0.815 0.749 0.43 0.519 0.250 2.878
synth 0.990 0.943 0.57 0.372 0.534 3.236
RNN oeis 0.860 0.833 0.45 0.506 0.406 2.757
synth 0.998 0.978 0.56 0.351 0.355 3.197
CNN oeis 0.800 0.566 0.59 0.686 0.296 2.260
synth 0.976 0.915 0.64 0.536 0.682 2.834
Transformer oeis 0.825 0.752 0.50 0.503 0.284 2.717
anstorne synth | 0.993 0.946 0.61 0.341  0.233 3.045
. oeis 0.793 - - 0.669 - -
k-Nearest Neighbors synth 0.994 0.433
oeis 0.782 - - 0.776 - -
Ada Boost synth | 0.958 - - 0.635 - -
.. oeis 0.820 - - 0.618 - -
Decision Tree synth | 0.995 - - 0.368 - -
oeis 0.843 - - 0.619 - -
Random Forest synth 0.998 _ _ 0.368 _ B
. " oeis 0.821 - - 0.578 - -
Gradient Boosting synth 0.990 3 3 0.420 B B

Table 5.1: Simplified preview. DNN, RNN, and CNN stand for dense neural
network, recurrent neural network, and convolutional neural network. Emphasis
and emphasis mark the best performing models in that task.
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CHAPTER 6

Discussion and Future Work

Analyzing the results in Chapter 5 and in Appendix A, we can denote a clear
winning model across most of the tasks. However, there are some tasks with
a high variance concerning the individual performance. Especially in sequence
classification, we notice strong performance of the random-forest-classifier in the
categories exponential, trigonometric, modulo, prime and bounded evaluated on
synthetic data, whereas the evaluation on the oeis dataset is scattered across
multiple classifiers. On most of the non-exclusive categories we recognize the
strong performance of the RNN, namely bounded, increasing, unique and across
all categories in both oeis and synthetic. In the next sequence part prediction
task, the RNN unsurprisingly dominates throughout all categories, as well as in
some categories in the sequence continuation single-shot task. There, we witness
a shift towards the Transformer on most of the categories except polynomial,
exponential, trigonometric and periodic. The transformer also entirely dictates
the sequence continuation multi-shot task, except for a few outliers. In sequence
similarity the results are distributed over all neural models on the oeis evalu-
ation, while the transformer leads on synthetic data. Surprisingly, in sequence
unmasking, the CNN model has the upper hand against the other models.

In general we can see a strong tendency on all models to perform better on

synthetic data than on the organic oeis. Overall, the models appear to show some
level of understanding of the underlying rules governing the evaluated sequences.
But there is still room for improvement, especially on multi-class classification,
as well as sequence similarity. We also do not want to neglect the fact, that the
neural models could not outperform the standard baseline models everywhere
and that their performance is already quit strong in absolute terms.
More sophisticated models with more layers and a deeper architecture might
improve neural model performance. The above results were all produced in a
“static” mode of operation on which the data was provided to the model upfront.
Perhaps a more natural occurring mode would be “dynamic”, where the model
is active in its learning, pooling for information until it is confident that it can
provide an answer. But this requires a more intricate set of evaluation metrics.
We believe that this setup deserves attention as it can provide valuable insights
into model’s reasoning.

15



CHAPTER 7

Conclusion

We were able to provide a broad set of bench-marking results across all our mod-
els. However, we saw that our neural models could understand some underlying
rules in the evaluated sequences but did not have a serious advantage over our
standard-models. Defining and creating more sophisticated architectures could
certainly improve model performance but on the other hand increase training
time by several magnitudes. It is therefore a trade-of between generalization
(having a broad band of tasks and models) and good performance.

The focus on integer sequences allowed us to directly prioritize the prob-
lem of learning abstractions, without dealing with a large overhead of learning
modality-specific representations. Hence, our work was by design general and
hierarchically structured in contrast to the tasks that have appeared otherwise
isolated in literature [3, 5].

It is our hope that our work will help attract attention to the challenges
of designing models that perceive logical relationships, thus helping to facilitate
future advancements on the frontiers of general artificial intelligence.

16
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APPENDIX A

Baseline Model Performance

Model Dataset | Metric Scope
Within
T E £ &
E E 3 £ ¢ 2 2 T2 g
g g = et = < 2 = g g
g g s} = = 3 ) = o =]
g & § & % & ® %5 § 5
a £ =
=
Sequence [top-F |
Similarity op--accuracy
Top-1 | 0.20 0.00 0.08 0.16 n.a. 0.09 0.12 0.07 0.09 0.08
oeis Top-3 | 0.23 0.00 0.19 0.16 na. 023 021 029 0.32 0.26
DNN Top-5 | 044 0.00 0.27 033 na. 030 034 043 045 048
Top-1 | 0.12 0.13 0.19 0.10 0.09 0.11 032 0.10 0.07 0.09
synth | Top-3 | 0.27 0.34 030 025 0.31 023 054 038 027 0.33
Top-5 | 043 046 044 044 040 0.57 0.69 057 0.44 048
Top-1 | 0.07 0.00 0.04 0.20 n.a. 0.13 0.14 006 0.06 0.11
oeis Top-3 | 0.25 0.00 0.27 0.50 n.a. 035 016 034 031 0.25
RNN Top-5 | 0.53 0.00 0.40 0.50 n.a. 041 034 045 044 042
Top-1 | 0.17 0.11 0.20 0.08 0.10 0.13 0.35 0.12 0.07 0.08
synth | Top-3 | 0.32 0.29 039 032 032 025 056 040 0.29 0.32
Top-5 | 041 0.38 047 042 047 049 0.70 056 041 0.51
Top-1 | 0.15 0.00 0.06 0.00 mna. 006 0.16 0.14 0.07 0.15
oeis Top-3 | 0.34 0.12 031 000 n.a. 0.38 0.32 0.43 0.26 0.36
ONN Top-5 | 0.34 0.75 041 040 na. 047 0.46 0.59 0.39 0.50
Top-1 | 0.09 0.14 0.16 0.07 0.13 0.11 0.32 0.17 0.08 0.10
synth | Top-3 | 0.37 0.39 037 0.42 0.29 0.32 0.61 049 0.30 0.39
Top-5 | 0.50 041 0.60 048 0.47 051 0.66 0.64 0.44 0.60
Top-1 | 0.03 0.00 0.13 0.00 na. 005 0.18 0.11 0.09 0.09
oeis Top-3 | 0.31 0.00 0.39 0.10 na. 033 028 042 0.29 0.38
Top-5 | 0.48 0.66 0.43 020 mna. 049 040 050 043 0.55
Transformer
Top-1 | 0.21 0.13 0.31 0.12 0.17 0.10 0.36 0.13 0.07 0.10
synth | Top-3 | 0.44 0.32 0.41 041 0.37 0.32 0.56 0.50 0.32 0.35
Top-5 | 0.67 0.52 0.63 0.51 0.52 0.55 0.65 0.61 0.44 0.58

Table A.1: The accuracy results for the sequence similarity task, evaluated both
within categories and across the whole dataset. Emphasis and emphasis mark
the best performing models for the OEIS and synthetic data, respectively.
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Model ‘ Dataset ‘ Scope
Within Across
= = 2 o0 2
S & g =t = bS] 8= = ] g Lg
,—;ﬁ < g 5 ‘E g a [} g = —
2 E 5 = = 2 £ 2
Sequence [bi | If1 |
Classification inary-accuracy -score
DNN oeis 0.634 0.575 0.621 0.451 n.a. 0458 0.545 0.815 0.666 0.776 0.330
synth | 0.784 0.754 0.815 0.746 0.748 0.801 0.876 0.990 0.857  0.959 0.430
RNN oeis 0.588 0.712 0.456 0.474 n.a. 0489 0.586 0.860 0.840 0.834 | 0.370
synth 0.790 0.788 0.828 0.764 0.755 0.825 0.907 0.998 0.954 0.976 0.530
CNN oeis 0.569 0.550 0.619  0.470 n.a. 0.483 0.514 0.800 0.575 0.694 0.220
synth | 0.769 0.704 0.792 0.727 0.736 0.769 0.843 0.976 0.752  0.793 0.390
Transformer oeis 0.599 0.672 0.524 0464 n.a. 0475 0.578 0.825 0.661 0.793 0.330
synth 0.791 0.763 0.817 0.759 0.753 0.814 0.883 0.993 0.882 0.905 0.440
KNNC oeis 0.650 0.615 0.545 0.489 n.a. 0484 0559 0.793 0.693 0.756 0.330
synth | 0.760 0.765 0.797 0.707 0.713 0.810 0.896 0.994 0.883 0.890 0.410
GNBC oeis 0.626 0.276 0.560 0.464 n.a. 0474 0476 0.810 0.683 0.667 0.230
synth | 0.769 0.646 0.764 0.721 0.732 0.736 0.635 0.916 0.634 0.648 0.370
LSVC oeis 0.709 0377 0.646 0410 mn.a. 0485 0.508 0.763 0.546 0.637 0.310
synth 0.759 0.622 0.771 0.717 0.680 0.745 0.819 0.954 0.586 0.718 0.350
DTC oeis 0.618 0.607 0.497 0.480 n.a. 0483 0.558 0.820 0.624 0.727 0.360
synth | 0.722 0.754 0.807 0.690 0.677 0.812 0.887 0.995 0.918 0.949 0.490
RFC oeis 0.595 0.680 0.507 0.493 n.a. 0468 0.563 0.843 0.579 0.787 0.340
) synth | 0.789 0.791 0.837 0.759 0.749 0.830 0.908 0.998 0.938 0.963 0.510
GBC oeis 0.576 0.495 0.643 0.478 n.a. 0470 0.548 0.821 0.623 0.788 0.270
synth | 0.785 0.746 0.804 0.758 0.751 0.803 0.872 0.990 0.835 0.860 0.400
ABC oeis 0.617 0.392 0.658 0.470 n.a. 0.457 0.497 0.782 0.511 0.691 0.310
synth | 0.773 0.676 0.777 0.741 0.737 0.761 0.829 0.958 0.669 0.766 0.380
XGBC oeis 0.603 0.670 0.499 0.480 n.a. 0477 0.595 0.842 0.674 0.813 0.370
synth | 0.789 0.782 0.828 0.762 0.754 0.827 0.901 0.997 0.915 0.962 0.510
DYC oeis 0.500 0.500 0.500 0.500 n.a. 0.500 0.500 0.500 0.500 0.500 0.500
synth | 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Next Sequence [binary- l
Part Prediction nary-accuracy
DNN oeis 0.658 0.664 0.719 0.778 n.a.  0.760 0.744 0.749 0.753 0.726 0.733
synth | 0.941 0.927 0.940 0.943 0.939 0918 0.914 0.943 0.924 0.936 0.943
RNN oeis 0.869 0.890 0.827 0.849 n.a. 0.855 0.860 0.833 0.876 0.889 0.869
synth | 0.988 0.973 0.979 0.987 0.988 0.972 0.955 0.978 0.982 0.976 | 0.984
CNN oeis 0.526  0.520 0.540 0.566 n.a. 0.548 0.535 0.566 0.547  0.539 0.551
synth 0.893 0.912 0.922 0903 0.895 0.898 0.890 0.915 0.885 0.901 0.900
Transformer oeis 0.690 0.666 0.707 0.792 n.a.  0.759 0.747 0.752 0.744 0.737 0.736
S synth | 0.947  0.930 0.945 0.947 0.949 0927 0919 0.946 0.926 0.943 0.938

Table A.2: The results for the classification and next sequence part prediction
task, evaluated both within categories and across the whole dataset. DNN, RNN,
and CNN stand for dense neural network, recurrent neural network, and convo-
lutional neural network. Emphasis and emphasis mark the best performing
models for the OEIS and synthetic data, respectively.
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Model Dataset Scope
Within Across
E 3 £ & 2
E 0 £ £ s« 2 oz E O gl o3
S & g 2 3 2 A= E 3 .g =
E g g g & g ) g g g =
2 E 5 & = 2 £ = Cl
Sequence [ &l |
Continuation single mean-squared-tog error
DNN oeis | 0.750 0.700 0.588 0.576 mn.a.  0.567 0.617 0.519 0.600 0.614 | 0.597
synth | 0.496 0408 0.345 0485 0489 0.398 0.379 0.372 0.477 0.452 | 0.430
RNN oeis | 0.738 0.692 0.561 0.561 n.a. 0554 0.602 0.506 0.577 0.614 | 0.603
synth | 0.470 0.375 0.317 0.466 0.461 0.381 0.345 0.351 0.457 0.424 | 0.406
. oeis | 0.776  0.768 0.765 0.679 n.a.  0.727 0.758 0.686 0.730 0.737 | 0.733
synth | 0.586 0.550 0.498 0.585 0.581 0.557 0.623 0.536 0.599 0.612 | 0.579
Teansformer | 068 | 1632 1596 0.573 1113 na.  0.545 0.573 0.503 0.575 0.593 | 0.578
) synth | 2.051 1.420 0.308 1.978 0.452 0.365 0.335 0.341 0.449 0.415 | 0.395
KNNR oeis | 0.955 0.874 0.761 0.807 na. 0730 0.796 0.669 0.783 0.832 | 0.808
synth | 0575 0.451 0.373 0560 0.551 0459 0.401 0.433 0.564 0.513 | 0.486
LIR oeis | 0.872 0.784 0.723 0.880 mn.a. 0.710 0.846 0.704 0.786 0.821 | 0.797
' synth | 0.694 0.633 0.545 0.696 0.692 0.611 0.770 0.613 0.701 0.724 | 0.682
RIR oeis | 0.873 0.784 0.721 0.875 mna. 0713 0.846 0.703 0.786 0.822 | 0.797
synth | 0.692 0.632 0.546 0.695 0.692 0.613 0.769 0.613 0.701 0.725 | 0.682
LAR oeis | 0910 0750 0.727 1.012 na. 0734 0.882 0.743 0.798 0.856 | 0.827
synth | 0.750 0.703 0.615 0.754 0.748 0.688 0.812 0.683 0.765 0.783 | 0.747
ENR oeis | 0.886 0.756 0.722 0.951 mn.a.  0.723 0.862 0.724 0.793 0.840 | 0.814
synth | 0.722  0.672 0.583 0.727 0.723 0.656 0.794 0.651 0.734 0.754 | 0.716
DTR oeis | 0.868 0.801 0.693 0.741 mn.a.  0.663 0.731 0.618 0.695 0.749 | 0.730
synth | 0496 0.392 0.328 0.492 0487 0.391 0.351 0.368 0.490 0.445 | 0.427
RFR oeis | 0.871 0.797 0.696 0.740 n.a.  0.666 0.730 0.619 0.696 0.748 | 0.730
synth | 0496 0.393 0.325 0.492 0483 0.396 0.348 0.368 0.491 0.446 | 0.427
GBR oeis | 0.857 0.789 0.622 0.694 mn.a.  0.650 0.706 0.578 0.694 0.726 | 0.702
synth | 0.544 0459 0.377 0.540 0.535 0.446 0.420 0.420 0.545 0.510 | 0.484
ABR oeis | 0.907 0.868 0.782 0.894 na. 0754 0.837 0.776 0.796 0.878 | 0.842
synth | 0.635 0.621 0.542 0.667 0.659 0.594 0.652 0.635 0.658 0.672 | 0.662
. oeis | 0.869 0.796 0.679 0.726 n.a.  0.651 0.707 0.607 0.688 0.735 | 0.719
' synth | 0499 0.400 0.330 0497 0.490 0400 0.360 0.372 0496 0.452 | 0.433
DYR oeis | 0972 0.770 0.821 1.202 na. 0788 0912 0.883 0.860 0.930 | 0.923
synth | 0.832 0.868 0.807 0.847 0.844 0.858 0.877 0.866 0.876 0.871 | 0.877
Table A.3: The MSLE results for the sequence continuation single-shot task,

evaluated both within categories and across the whole dataset. Emphasis and
emphasis mark the best performing models for the OEIS and synthetic data,

respectively.
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Model ‘ Dataset ‘ Metric ‘ Scope
Within Across
TE E E ) o o] o0 8
g g £ = 2 54 R 9 @
£ & ¢ & & § & & § § %
5] o S = = 2 k= =
=) 5] .20 -
=
Sequence Continuation multi |top-k-root-mean-square error|
Top-1 | 2.037 1.662 3.542 1.392 n.a. 1.867 1.432 0.850 2.488 1.300 | 2.668
oeis Top-3 | 0.931 1.662 0.442 0.390 n.a. 0.78 0.587 0.367 0.900 0.912 | 0.599
DNN Top-5 | 0.855 1.662 0.361 0.152 n.a. 0.696 0.433 0.250 0.561 0.912 | 0.301
Top-1 | 5.847 3261 5.616 2.790 2.695 1.597 1.896 3.951 2.153 2.302 | 2.144
synth | Top-3 | 0.870 0.927 0.365 1.192 1483 0475 1.246 0.534 1.130 1.900 | 1.690
Top-5 | 0.752 0.549 0.365 0.766 1.483 0.448 0.944 0.534 0.825 0.520 | 1.690
Top-1 | 2.089 2278 1.624 1.735 n.a. 1.326  1.831 1.264 1.473 1.450 | 1.367
oeis Top-3 | 1.038 1.025 0.677 0.661 n.a. 0.645 0.823 0.597 0.617 0.658 | 0.596
RNN Top-5 | 0.706 0.665 0.429 0.439 n.a. 0.435 0.585 0.406 0.427 0.457 | 0.383
Top-1 | 1.889 1.488 0.974 2.193 2331 1.034 1.210 1.290 1.453 1.604 | 1.509
synth | Top-3 | 0.784 0.566 0.405 0.954 1.033 0.448 0.508 0.589 0.654 0.713 | 0.667
Top-5 | 0.506 0.364 0.244 0.595 0.607 0.290 0.320 0.355 0.401 0.476 | 0.438
Top-1 | 3.117 2943 1.957 1.715 n.a. 2426 1.570 1.430 1.950 1.490 | 1.825
oeis Top-3 | 1.309 1.302 0.679 0.813 n.a. 1.046  0.702 0.501 0.579 1.003 | 0.807
ONN Top-5 | 0.631 0.646 0.585 0.521 n.a. 0.736 0.361 0.296 0.406 0.711 | 0.428
Top-1 | 2475 1.662 1.399 3.533 2.338 1.848 7.013 2.288 2333 2.033 | 2.348
synth Top-3 | 1.060 0.695 1.115 1.031 1.151 0.880 1.007 1.152 0.826 0.871 1.105
Top-5 | 0.664 0.440 0.836 0.777 0.697 0.647 0.648 0.682 0.463 0.613 | 0.643
Top-1 | 1.503 1.408 0.984 0.786 n.a. 0.977 1.161 0.663 1.022 0.935 | 0.847
oeis Top-3 | 0.746 0.748 0.398 0.382 n.a. 0.454 0.584 0.348 0.499 0.438 | 0.383
Top-5 | 0.529 0.524 0.253 0.287 n.a. 0.285 0.414 0.284 0.376 0.288 | 0.267
Transformer
Top-1 | 1.816 0.962 0.788 1.730 1.651 0.811 0.801 0.873 1.084 1.198 | 1.258
synth | Top-3 | 0.727 0.410 0.312 0.787 0.706 0.316 0.331 0.389 0.447 0.507 | 0.490
Top-5 | 0.448 0.248 0.202 0.484 0.418 0.225 0.205 0.233 0.270 0.331 | 0.284
Sequence Unmasking |top-k-root-mean-square-error|
Top-1 | 3.702 3.529 3.460 3.248 n.a. 3.451 3.451 3.274 3.307 3.315 | 3.384
oeis Top-3 | 3.305 3.163 2936 2917 n.a. 3.114 3.059 2976 3.061 3.027 | 3.061
DNN Top-5 | 3.125 3.000 2.748 2.779 n.a. 2972 2.880 2.878 2925 2903 | 2.918
Top-1 | 4.240 3.711 3.374 4.062 4.092 3.633 3.786 3.619 3.839 3.766 | 3.855
synth | Top-3 | 3.808 3.448 2958 3.710 3.744 3.353 3.321 3.356 3.547 3.470 | 3.524
Top-5 | 3.776 3.335 2.825 3.582 3.593 3.239 3.161 3.236 3.441 3.361 | 3.408
Top-1 | 3.789 3.720 3.548 3.314 n.a. 3.484 3499 3.320 3490 3.485 | 3.455
oeis Top-3 | 3.206 3.175 3.052 2.876 mn.a. 3.060 2998 2908 3.109 3.083 | 3.091
RNN Top-5 | 3.010 2.990 2.847 2.688 n.a. 2.808 2.830 2.757 2.925 2.909 | 2.944
Top-1 | 4.141 3765 3.368 4.094 4.115 3.535 3.775 3.696 3.674 3.913 | 3.855
synth | Top-3 | 3.663 3.463 3.082 3.639 3.663 3.254 3.314 3.346 3.328 3.515 | 3.511
Top-5 | 3473 3.291 2.961 3.472 3.507 3.140 3.162 3.197 3.208 3.370 | 3.379
Top-1 | 3.738 3.699 3.615 3.268 mn.a. 3.383 3.521 3.165 3.453 3.257 | 3.355
oeis Top-3 | 2.943 2.922 2.873 2.594 n.a. 2.683 2.785 2.510 2.727 2.643 | 2.690
ONN Top-5 | 2.689 2.631 2.577 2.370 n.a. 2.437 2.539 2.260 2.490 2.423 | 2.440
Top-1 | 3.906 3.584 3.223 3.791 3.886 3.500 3.646 3.531 3.627 3.702 | 3.611
synth Top-3 | 3.179 3.100 2.811 3.128 3.168 2.968 3.112 3.008 2.988 3.122 | 3.033
Top-5 | 2.931 2.799 2.642 2.891 2.898 2.784 2.890 2.834 2.747 2.899 | 2.812
Top-1 | 3.635 3.674 3.586 3.245 mn.a. 3.465 3.556 3.378 3.456 3.606 | 3.524
oeis Top-3 | 3.042 3.045 2951 2.798 n.a. 2991 2974 2903 2947 3.038 | 3.017
Top-5 | 2.820 2781 2.658 2.606 n.a. 2.808 2717 2717 2756 2.816 | 2.811
Transformer
Top-1 | 3.953 3.719 3.403 3.968 4.079 3.478 3.638 3.605 3.717 3.780 | 3.757
synth | Top-3 | 3.374 3.259 3.019 3.395 3475 3.190 3.115 3.226 3.293 3.359 | 3.291
Top-5 | 3.171 3.067 2872 3.161 3.259 3.041 2941 3.045 3.121 3.173 | 3.091

Table A.4: The top-k RMSE results for the sequence continuation multi-shot and
unmasking tasks, evaluated both within categories and across the whole dataset.
Emphasis and emphasis mark the best performing models for the OEIS and
synthetic data, respectively.



APPENDIX B

OEIS field names

In this section we give a brief explanation of the 18 fields in the OEIS dataset.
This is based on the style sheet provided by OEIS |[6].

e oeis_id
A unique 6 digit number preceded by an "A". For example A005735

e identification

This refers to the ID the given sequence had in one of the books A Handbook
of Integer Sequences[14] (M followed by a 4-digit number) or The Encyclo-
pedia of Integer Sequences|15] (N followed by a 4-digit number).

e value list

A list of comma separated integers. The actual sequence of interest. De-
pending on the sequence in question the length of this list can vary by some
orders of magnitude. For example A058445 contains only one element while
the value list of 4175320 has a length of 1578 727.

® name

A brief explanation of the sequence. Sometimes, when possible, this already
contains an easy to use formula to generate the sequence. For example
A005843 has the name The nonnegative even numbers: a(n) = 2n.

e comments

Further general details and side-notes about the sequence that would make
the name too long. Here we often can find alternative formulas to generate
the sequence or different places in all of mathematics where this sequence
pops up. For example one of the comments of sequence A000045, the
Fibonacci Numbers, is "Also the number of independent vertex sets and
vertex covers in the (n-2)-path graph.”

e detailed references

References to journal papers and books that can not be linked in the "links"
field.

B-1
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e links

References to material which can be accessed online.

e formulas
Generating functions, closed formulas and other methods to calculate the
sequence.

e examples
Examples of how to find a term of the sequence and how to interpret its
value.

e maple programs

Programs written in maple to generate elements of the sequence.

e mathematica programs

Programs written in mathematica to generate elements of the sequence.

e other programs
Programs written in programming languages other than maple or mathe-
matica (for example python) to generate elements of the sequence.

e cross_reference

References to other sequences in the dataset which are related in some way.

e keywords

Keywords from a short set of possibilities. For example nonn is used for se-
quences that have no negative values currently in their respective value list

field.
e offset a

Index of the first element in the walue list. For example A005843, the
aforementioned sequence of "The nonnegative even numbers: a(n) = 2n.",
has an offset _a of 0 because the first element is calculated by a(0) = 2 %0,
i.e. the index is 0.

e offset b

Index of the first element that has an absolute value larger than 1.

e author

Name of the original contributor and date of first contribution.

e extensions and errors

Used to claim credit for additions to the entry that can’t be properly ac-
knowledged in other fields.
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