e
P
m Y e

Distributed ;,’

Eidgendssische Technische Hochschule Ziirich . (\
Computing 5%

Swiss Federal Institute of Technology Zurich

SSA Data Flow Information for
Semantic Code Tasks

Bachelor’s Thesis

Tobias Stocker

tstocker@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Peter Belcék, Florian Grotschla
Prof. Dr. Roger Wattenhofer

July 31, 2022

Abstract

Capturing semantic information in representations of code is an ongoing chal-
lenge in machine learning for code-related tasks such as code search, completion,
classification, explanation, or clone identification. Using Semantized Abstract
Syntax Trees, we will explore the capabilities of graph neural networks on code-
based graphs. After introducing the concept of Semantized Abstract Syntax
Tree (SAST), we develop a graph neural network (GNN) model featuring differ-
ent GNN types, residual connections, and jumping knowledge. We evaluate our
model by solving two graph tasks, namely the task of node type prediction and
link prediction, which form the basis of more complex models that might have
the potential to solve code-related machine learning tasks in the future. We get
promising results that are reflected when predicting the use of variables in code
examples.

Contents

Abstract i

1 Introduction 1

2 Background 3
2.1 Machine Learning on Graphs 3
2.1.1 Graph Convolutional Network (GCN) 4

2.1.2 Graph Isomorphism Network (GIN) 5

2.1.3 Graph Attention Network (GAT) 5

2.2 Abstract Syntax Trees (ASTs) 6

3 Creating Graphs from Code 7
3.1 Semantized Abstract Syntax Trees (SASTs) 7
3.2 Dataset Generation 0L 8
3.2.1 Tracking of Variable Assignments 8

3.2.2 Converting an AST toa SAST 11

3.23 DataExporto 12

3.3 Limitations of SAST 12

4 Semantic Node Type Prediction 14
4.1 Task Description 14
4.2 Data, Training and Evaluation 14
4.2.1 'Training the Modelo 15

4.2.2 Evaluating the Model 15

4.3 Model Architecture 15
4.3.1 Node Encoder 16

4.3.2 Graph Neural Network 16

4.3.3 Node Decoder 18

i

CONTENTS

4.3.4 Optimizer and Loss Function
4.3.5 Backward Edges
4.4 Results. e

5 Semantic Link Prediction
5.1 Task Description Lo
5.2 Data, Training and Evaluation
5.2.1 Training the Model
5.2.2 Evaluating the Model
5.3 Model Architecture
5.3.1 Node Encoder and Graph Neural Network
5.3.2 NodeDecoder
5.3.3 Optimizer and Loss Function
534 Master Node
54 Results.
5.4.1 Graph Classification Approach
5.4.2 Node Classification Approach
5.4.3 Concrete Code Examples

6 Future Work

7 Conclusion

Bibliography

A Semantic Node Type Prediction Results

B Semantic Link Prediction Results

iii

18
19
20

23
23
23
23
24
24
24
25
26
26
27
27
28
29

31

32

CHAPTER 1

Introduction

Machine learning has gained a lot of attention in computer science over the past
decade. While terms like "machine intelligence" or "artificial intelligence" have
quickly become buzzwords used for advertising, machine learning has advanced
many fields in computer science such as speech recognition, natural language
translation and recommendation algorithms just to name a few. With the steady
growth of the software industry over the last years, there has also been a constant
increase in the amount of public and private source code repositories. This large
amount of available code data gives rise to many code related machine learn-
ing tasks such as code search, completion, classification, explanation or clone
identification.

It is natural to use some sort of natural language processing (NLP) models to
solve code-related machine learning tasks as one might understand source code
as some special kind of natural language. In fact, quite some work has gone into
solving code-related machine learning task using NLP models [1], [2]. However,
working with source code can impose some additional challenges compared to
natural languages. Some code-related tasks require zero error rate. In the task
of completing code, for example, a single misprediction can lead to the entire
code not compiling anymore. Further, with code we can write programs that
do the exact same thing yet they are written in a completely different way. It
can be very hard for a natural language model to understand this. As a result,
researchers have enhanced NLP models for example by extending the model’s
input with data flow information [3].

Similarly, Liu et al. very recently used graph neural networks on graphs
based on the abstract syntax tree of some source code combined with multi-
head attention applied on the source code to solve the problem of code search [4].
Inspired by this work, we want to explore the capabilities of graph neural networks
(GNNSs) to solve code-related machine learning tasks only using graphs generated
from code. GNNs have only recently gained a lot of attention by the machine
learning community. While they have been used to solve many graph related
tasks in biology and chemistry, there has only been little research conducted in
graphs related to code.

1. INTRODUCTION 2

The goal of this work is to generate graphs from source code using the tree
structure that is naturally given by its abstract syntax tree and extend them
with more semantic information. We then build a GNN based model architecture
and investigate its capabilities by solving simple graph tasks that form the basis
for more complex tasks that might once be used to solve code-related machine
learning tasks.

CHAPTER 2

Background

Let G = (V, &) be a directed graph, where V is the set of vertices of G and £ is the
set of directed edges (u,v) for u,v € V. Further N (u) denotes the neighborhood
of some node u € V, i.e. N (u) ={v|ve VU (v,u) €&}

2.1 Machine Learning on Graphs

The challenge of applying machine learning on graph-structured data is that the
traditional deep learning approaches do not apply. For example, convolutional
neural networks (CNNs) are only applicable to grid-structured inputs and recur-
rent neural networks (RNNs) are only applicable to sequential data. Further,
simply flattening the adjacency matrix of the graph and feeding it through a
multi-layer perceptron (MLP) is not a good approach either as the result of the
model would depend on the arbitrary order of the nodes in the adjacency matrix.
That is why we will follow the approach proposed by [5] and demand that our
methods satisfy the following properties:

First, as pointed out by the approach from above, we want our machine
learning models to be independent of the order in which the graph is stored, i.e.
we want the models to be permutation-invariant. In mathematical terms:

f(PAPT) = f(A) (2.1)

where f is any function that takes an adjacency matrix A and P is a permutation
matrix. Further, the goal of our machine learning model is to take an input graph
G = (V,) along with a set of node features X € RV*Vl as well as a set of edge
features Y € R% ¢l and use them to generate node embeddings z,, Vu € V.

The general framework that we will be using is called a Graph Neural Network
(GNN). The defining feature of a GNN is that it uses a form of neural message
passing in which vector embeddings are passed along edges and updated using
neural networks. To be more specific, we start with some initial embedding h(uo)
for each node uw € V. During each message passing iteration the hidden embedding

2. BACKGROUND 4

hgk) of each node w € V is then updated based on information aggregated from
the neighbors of u denoted as N (u). One such update step can be expressed as

[5]:

—

h(+D) = UPDATE® (h(¥), AGGREGATE® (h(F), Vo € N (w)))

_ k) (k) e (K)

= UPDATE® (b, m()
where UPDATE and AGGREGATE are arbitrary differentiable functions (i.e.
neural networks) and superscripts denote the message passing iteration. After
all message passing iterations the final hidden embeddings are the resulting node
embeddings, i.e.

(2.2)

e &

z, = h) vu e V. (2.3)

One message passing step is commonly implemented as a layer of a GNN.
With one layer, a node may only learn from its direct neighbors, and with each
additional layer a node may learn from the nodes that are an additional edge
further away. On the contrary with too many layers GNNs often suffer from
over-smoothing [6], which means that after too many update iterations the node
representations can become very similar. This means that choosing the right
amount of layers is important in a GNN.

By specifying the UPDATE and AGGREGATE functions used in the message
passing process we fully define concrete GNN types. In the following subsections
we introduce some common GNN types.

2.1.1 Graph Convolutional Network (GCN)

Graph Convoluational Networks (GCNs) were first proposed by Kipf and Welling
in 2016 |7] and are one of the most popular baseline GNN types.

The most basic neighborhood aggregation operation would be to simply sum
up all hidden embeddings of the neighborhood, i.e.

veN (u)
However this approach is highly sensitive to the node degree as HmN(U)H >>
[[mpr(y || if deg(u) >> deg(v). A simple solution to this issue is to just take the
average instead of the sum, i.e.

ZUEN(U) h,

A Graph Convolutional Network (GCN) employs a similar approach called
symmetric normalization:

(2.6)

h,
e %:() VNN @)

2. BACKGROUND 5

It also uses self-loops which means that it omits the UPDATE function and
instead adds the own hidden embedding to the hidden embeddings received by
the neighbors, i.e.

h{**+) = AGGREGATE® (h(®) Vo € N (u) U u) (2.7)

Finally, after adding an activation function we get the definition of a GCN:

h+D — 5 [W) (2.8)

P

where ¢ is an activation function such as ReLLU or tanh and W®*) is a trainable
parameter matrix.

2.1.2 Graph Isomorphism Network (GIN)

Graph Isomorphism Networks (GINs) are inspired by the Weisfeiler-Lehman
(WL) graph isomorphism test [8]. The WL test is sometimes able to tell that
two graphs are non-isomorphic (i.e that the two graphs do not have the same
structure). However, if it does not decide that two graphs are non-isomorphic it
does not imply the two graphs are isomorphic. As the WL test works very similar
to how GNNs learn, Xu et al. [9] designed a new GNN architecture (GIN) for
which they proved it to be as expressive as the WL test. One message passing
iteration works as follows:

h(*) = MLP® | (1+6) - + > hP) (2.9)
veN (u)
where € € R can be learnable but may also be fixed and MLP stands for multi-
layer perceptron which can be any kind of fully connected neural network.

2.1.3 Graph Attention Network (GAT)

Graph Attention Networks (GATS) were first proposed by Velickovié¢ et al. in
2017 [10]. The basic idea of GATs is to use attention to assign an importance to
each neighbor and itself:
h(*) = o,)+ Y ayuhlk) (2.10)
veN (u)
where «, , denotes attention coefficients computed as:
N exp(c(a’ [Wh, @ Wh,)))

“ Z’UIEN(U)U{U} exp(o(a’[Wh, & Why]))
where a is a trainable attention vector, W is a trainable parameter matrix, @ is
the concatenation operation and o denotes a LeakyReLU activation function.

(2.11)

2. BACKGROUND 6

2.2 Abstract Syntax Trees (ASTSs)

An abstract syntax tree (AST) is a tree representation of some source code that
describes the structure the code. When converting a piece of code to the AST
representation only structural and content related information is kept and any
additional information is discarded.

Parsing code into an AST usually happens in two stages: First, during lexical
analysis, the source code is converted into a list of tokens that describe the code.
During the second step, called the syntactical analysis or parsing, that list of
tokens is then turned into a tree.

Mojiu[e
Bod
Ards A E\dymdy

def f(a,b): / v‘ \
c=a+b @ o
return c Name=f Arg-a g=b' Slg\x Retu%x
Target Iue Vlue

python source code

“&

Name— c' in| Na me— 'c!

Left Op Right
@ (»
Name='2' Add Name="b'

AST representation

Figure 2.1: An example showing the AST representation of some python source
code. Tokens generated from the code are turned into nodes and linked together
according to the syntax of python.

CHAPTER 3

Creating Graphs from Code

3.1 Semantized Abstract Syntax Trees (SASTs)

Parsing source code into its abstract syntax tree representation makes for a sim-
ple way of generating a graph out of code. However, while this approach nicely
represents the syntactic structure of the source code, it lacks semantic informa-
tion. For example, it is hard to find out where the value of a variable assignment
is used and where a used variable is defined.

Semantized ASTs (SASTs) try to combat the lack of semantic information by
replacing variables with invariables in the static single assignment (SSA) form
[11]. As in the SSA form, a new invariable is created for each assigned variable
in the code (green nodes in figure 3.1) and thus an invariable is only assigned
once. Each invariable is further connected to all variable uses that are influenced
by that invariable using a new type of edge (orange edges in figure 3.1).

def f(a,b):
c=a+b
return c

Moime python source code

AR N\

Name=f Arg=a’ Arg=b' /A"s;'s‘n‘gn ReIm
/o
/0
4 Y
/,Eﬁwt)\\ Name='c'Name="c’
/ N\
/ N\
/ + \
¥ L

Name=a' Add Name="b'

AST representation

[ID: 0, TYPE: 'Module', od‘tscope_mvanames_m: o
, L tSoan
[ID: 1, TYPE: 'Eunction’, outstape_invariables_in: {}]
N ~

V'S B ~
y T
[ID: 2, TYPE: ‘Invariable', name: b @

[ID: 3, TYPE: ‘nvariable, name: a (ID: 10, TYPENReturn]

[ID/y'fY/PE\\~ykss\gn'] \.
,pav‘ef/r\{‘pg ‘Add"] [ID: 8, TYPE: ‘Name] [ID: 11, T¥PE: ‘Name']
L, /
4 vy Y
[ID: 7, TYPE: "Name'] [}
[ID: 5, TYPE: "Name'] [ID: 9, TYPE: 'lnvariable', name: c]
SAST graph

Figure 3.1: Example showing the conversion of python source code into its AST

and then SAST representation.

3. CREATING GRAPHS FROM CODE 8

As not every variable assignment is certainly executed, an invariable might be
defined by multiple different invariables. In SSA this is solved using ¢-functions.
In SAST graphs we can simply connect all invariable nodes to the node repre-
senting the variable use (see figure 3.2).

ID: 0, TYPE: "Module', outscope_invariables_in: {}]

def f(x): Y
a=0
if x < @: [ID: 1, TYPE: "Funcion’/outécopéinvariables_in:]
a=1 »
return a @ N
1 TYPE: "invariable’ A
[D: 2, TYPE: tnvariable’, name: 5]/ X {ID: 16, TYPE: Tolum
python source code >
1103, TYPEN Assign] [I0: 7, TYPE: [I0: 17, TYPE: Name]
& h! a
[ID: 5, TYPE: 'Name'] [ID: 4, TYRE: "Constant’,value: 0] b [ID: 12, TYPE: "Assign’]
def f(vo): 4 [ID: 8, TYPE: "And’, comparisonPairs: [{lid" 9, ‘tybe": 'Lt}]]
vi =0 [ID: 6, TYPE: nvariable’. name: a] e y A
if vo < @: Ti0: %TVPE] [ID: 14, TYPE: "Name’] [ID; 13, TYPE: ‘Constant’, value: 1]
va =1 ” 4
return ¢(vi,va) [ID: 11, TYPE: ‘Constant’, value: 0] [ID: 10, TYPE: "Name]] ID: 15, TYPE: “Invariabla’, name: a]
thon source code in SSA form
Py ’ SAST graph

Figure 3.2: Example: SAST graph when multiple variable assignments effect its
use. The two corresponding invariables (marked in red) both share an edge to
the node representing the variable use.

In the subsequent section, we explain how our approach to generating SAST
graphs from source code. We will use the implementation from previous work
conducted on SAST graphs by Jakob Flunger [12] and adapt it to the form in
which we use it.

3.2 Dataset Generation

We will use python source code in this work for a number of reasons. First,
python already provides a module that converts python source code into its AST
representation and also provides methods to traverse the AST. Furthermore, there
is a big amount of python source code freely available on different online sources
such as GitHub or StackOverflow.

To collect the required source code, we use a GitHub crawler [12]| that col-
lects all python files from the most visited GitHub repositories. With this tool
we collected 242 repositories from which we extracted around 400,000 python
functions.

3.2.1 Tracking of Variable Assignments

In order to be able to convert an AST into an SAST, we need to know for every
variable which assignments might have modified it at any given point in the
program. The basic idea is that we register every variable assignment with its

3. CREATING GRAPHS FROM CODE 9

name and invariable in a class while also tracking the scope. We call this class the
CoMPASSMANAGER. Tracking the scope is important as not every assignment
is certainly executed and thus does not always change the value of the assigned
variable. An assignment inside an if-clause, for example, might not always be
executed.

The COMPASSMANAGER is a tree like data structure consisting of COMPASS
and COMPASSCONTAINER instances. COMPASS instances store all registered vari-
able assignments in their scope with the corresponding invariable. COMPASS-
CONTAINER instances may hold multiple COMPASS or COMPASSCONTAINER in-
stances. We refer to them as subcompasses. We further differentiate between
parallel and sequential COMPASSCONTAINERS depending on their context. The
COMPASSMANAGER tree initially contains only a Compass instance as its root.
Any new variable assignments are always registered to the COMPASS representing
the current context. We will call the COMPASS representing the current context
active.

CompassManager
sequential CompassContainer
def f(a): /[’.’.J\
b=20
if a < @:
; =0 [Compass parallel CompassContainer
=1 {’b’: vo}
else:))).J\
c=1
python source code Compass Compass
{’c’: v1,’b’: v2} {’c’: vs}

active

Figure 3.3: Example COMPASSMANAGER of some python source code. For any
further diagrams we will mark the active Compass in blue.

When initiating a branch, the active COMPASS is added to a sequential COM-
PASSCONTAINER. Further, a parallel COMPASSCONTAINER containing a new
CoMPASS is also added to the sequential COMPASSCONTAINER. The new CoOM-
PASS now represents the current context and thus is active (see figure 3.4).

¥
[sequential CompassContainer]

Compass [parallel CompassContainer]

[T]

Figure 3.4: COMPASSMANAGER: Initiating a branch.

/

3. CREATING GRAPHS FROM CODE 10

When initiating an alternative branch, we add a new COMPASS to the parallel
CoMPASSCONTAINER, which is the parent of the active COMPASS, and set the
new COMPASS as the active one (see figure 3.5).

i i
A4 2
[parallel CompassContainer] [parallel CompassContainer]

[T]

AN

Figure 3.5: COMPASSMANAGER: Initiating an alternative branch.

Finally, when we conclude a branch, we simply add a new COMPASS to the
sequential COMPASSCONTAINER, which is the parent of the parallel COMPASS-
CONTAINER that is holding the active COMPASS (see figure 3.6).

A2 A4
sequential CompassContainer sequential CompassContainer
[---9] [.omel
. parallel CompassContainer parallel CompassContainer Compass
-9l -9l

Figure 3.6: COMPASSMANAGER: Concluding a branch.

Querying the invariables that might have modified a variable from the CoM-
PASSMANAGER is done by recursively querying the tree. Upon query, a COM-
PASS returns whether a variable has been registered in their scope, i.e. whether
it has certainly modified the variable. If a variable has certainly been modified,
the CoMPASS also returns the corresponding invariable. Upon query, a COM-
PASSCONTAINER returns if a variable has certainly been modified based on its
scope and the subcompasses it is holding. It also returns all invariables that
might have modified the variable. A parallel COMPASSCONTAINER, representing
a branch context, only returns that a variable certainly has been modified if all
subcompasses return that the variable has certainly been modified. The invari-
ables returned are all invariables returned by the subcompasses. A sequential
CoMPASSCONTAINER, representing a sequential context, returns that a variable
certainly has been modified if any subcompasses returns that it has certainly
modified the variable. The invariables returned are the ones returned by the sub-
compasses up to the first one that certainly has modified the variable in reverse
sequential order.

If a variable has not been assigned for certain by the invariables registered

3. CREATING GRAPHS FROM CODE 11

[sequential CompassContainer]hasCertain\yModiﬁed:True

5 modifiers: [vi, v2
def f(a): /[:.—.J\ []
b=o20
if a < @:
c=0 [Compass parallel CompassContainer | hasCertainlyModified: False
b=1 {’b’: vo} 5 modifiers: [v:]
else:). .‘]\
c=1
o =b — Compass Compass
python source code {’c’: v1,’b’: v2} {’c’: vs}

Figure 3.7: COMPASSMANAGER Example: Querying all invariables that might
have modified variable ’b’. First, when queried the parallel COMPASSCONTAINER
returns that it does not have certainly modified variable 'b’ together with all po-
tential modifiers. As variable 'b’ has not yet been certainly modified, the CoM-
PASS directly connected to the sequential COMPASSCONTAINER is also queried.
It returns that it has certainly modified variable b’ together with the modifier.
Finally the COMPASSMANAGER returns that variable b’ has certainly been mod-
ified together with all potential modifiers.

in the COMPASSMANAGER, we add an outscope invariable and add it to the list
of potential modifiers. Qutscope invariables imply that the variable might be
defined outside the function definition for which we are creating the graph. They
are not further interesting for our work.

3.2.2 Converting an AST to a SAST

Now that we have a way of retrieving all invariables that might have modified
a variable, we have all the tools needed to convert the source code of a python
function into an SAST graph. Reading the source code and parsing it into its
AST representation can easily be done using python’s pathlib and ast modules.
After generating the AST, we iterate through it starting from the root node while
traversing nodes in the sequential order of the code.

We leave most of the tree untouched, except for renaming some types, and
only process the following nodes. For each variable that is assigned, we replace
the node representing the variable with a new Invariable node and register the
assignment and invariable in the COMPASSMANAGER. For each variable that
is loaded, we replace the variable node with a Name node and query from the
COMPASSMANAGER all invariables that might have modified the variable. All
potential modifiers are then connected via an edge to the Name node. For each
If-, While-, For-, and Try-nodes we will initiate and conclude branches in the
COMPASSMANAGER.

3. CREATING GRAPHS FROM CODE 12

3.2.3 Data Export

We export each SAST graph as a dictionary that contains the following keys:

e num_ nodes and num_ edges describe the number of nodes and edges re-
spectively.

e edge_index is a 2 X |&| matrix E, where the matrix elements e;; and eg;
for i € 1,...,|€]| describe a directed edge from mq; to ma;.

e cdge_type is a list of length |E| that describes the type of each edge in the
graph encoded as an integer.

e cdge ast is alist of length |€| that describes if an edge is part of the original
AST.

e node_type is a list of length |NV| that describes the type of each node in the
graph encoded as an integer.

e invar_tdcs is a list that contains all indices of invariable type nodes.

e nvar_netghbor idcs is a list that contains all potential neighbors indices
of invariable type nodes.

We randomly split the set of all generated graphs into a training data set
and a validation data set. All types are encoded as an integer using a mapping.
Finally, any other information such as the syntactic name of the variables is
discarded.

3.3 Limitations of SAST

SAST’s biggest limitation currently lies in the approach used for tracking the
variables. Tracking variable assignments while traversing the AST makes it hard
to find invariables that are only created after a variable is loaded. A simple
example is shown in figure 3.8 where the current approach misses an edge. It
might be possible to extend the current approach using some form of jumping
back after scopes that have the potential of producing invariables that potentially
effect variable loads happening earlier in the program (e.g. loops). Another
potential approach would be to make use of the dominance frontier algorithm
[13] that is commonly used in compilers to convert code into SSA form.

3. CREATING GRAPHS FROM CODE

def f(x):
while x < 10
X +=1

Y
©

A 4
[ID: 0, TYPE: 'Module', oiscopefinvariablesﬁin: {1

o

A
[ID: 1, TYPE: 'Function', outscope_invariables_in: {}] python source code
o~

[ID: 2, TYPE: 'Invariable’, name: x|

@

[ID: 6, TYPE: 'Name'] [ID: 7, TYPE: 'Constant', value: 10] [ID: 12, TYPE: 'Invariable', name: X

SAST graph

13

Figure 3.8: Code example where the SAST graph generation approach fails
to connect the Invariable node with index 12 to to the Name node with index
6 (red dashed edge). The mentioned Invariable and Name nodes represent the
assignment inside the while-loop (line 3) and the use of variable z in the loop-
header (line 2) respectively. The error occurs because the assignment of variable
x happens after its use. Thus at the time when the variable use is processed the
mentioned invariable has not yet been created and therefore also not been added

to the COMPASSMANAGER even though it potentially modifies the use.

CHAPTER 4

Semantic Node Type Prediction

4.1 Task Description

The goal of this task is to predict the type of any node in a SAST graph. To be
more precise, we are given a SAST graph in which we do not know the type of a
node. We want our model to predict the type of that node based on the rest of
the graph.

4.2 Data, Training and Evaluation

We use python functions that are crawled from GitHub repositories as described
in section 3.2. From each function a SAST graph is generated and stored in the
form explained in section 3.2.3.

We create a small data set that contains 10,000 graphs and a larger data set
that contains 100,000 graphs. It is split into into 95% (9,500) training graphs
and 5% (500) validation graphs randomly and we use it to initially try out new
ideas. The large data set is split into 99% (99,000) training graphs and 5% (1,000)
validation graphs randomly. We use it to evaluate and fine-tune our models.

Before we can use the graphs of a data set to train or evaluate our model
we have to turn them into PyTorch Geometric Data [14] objects. In this step,
we might also pre-transform the graphs depending on how we are planning to
use them during training or evaluation. Creating basic PyTorch Geometric Data
objects is easy as the edge index is already in the correct form and so are the
node attributes. We only combine the two edge features we have collected, i.e.
edge type and is-AST attribute, because they are commonly stored together as
edge attributes. Finally, we use the DATALOADER from PyTorch Geometric [15]
which automatically splits the data objects into batches.

14

4. SEMANTIC NODE TYPE PREDICTION 15

4.2.1 Training the Model

We train the model by masking a random node in every graph before every
epoch. Masking a node is performed by setting the node type as masked (a new
additional node type) while remembering the original node type. As the masked
node is a different one in every epoch, we create the training graphs without
pre-transforming them, i.e. we create a basic data object for every graph in our
training data set. Masking is then performed right before passing the graph into
the model. After a graph is passed through the model, we apply the loss function
on the predicted type and the original type.

4.2.2 Evaluating the Model

In contrast to training, when evaluating our model we do not want to randomly
select a masked node as this would make the results less comparable between
different evaluations due to the randomness involved. Thus we create one graph
data object for every node in the original graph and mask the corresponding
node while creating the graph. This way we get a more consistent result that
tells us how the model is performing. The downside of this approach is that we
create around 20 to 100 graphs out of a single validation graph enlarging the
total number of validation graphs. A simple solution to this issue would be to
pre-select some nodes and thus reduce the number of nodes we test while keeping
the results consistent.

We use accuracy as the metric to evaluate the performance of our models.
Accuracy is defined as:

TP+TN
TP+ FP+TN+FN

accuracy = (4.1)

Further to get an idea about where the model needs improvement we also
make use of confusion matrices. A confusion matrix compares the model’s pre-
diction with every original node type. Let n be the number of node types. In a
confusion matrix we have n rows and n columns each representing a node type.
The value at the i-th row and j-th column is the percentage the model has pre-
dicted type j when the original type was i compared to all predictions made for
type i (see figure 4.1).

4.3 Model Architecture

The model architecture is heavily inspired by the example code provided for the
ogbg-code2 [16] data set from the Open Graph Benchmark (OGB) [17]. We use
PyTorch Geometric (PyG) [18] which is build upon PyTorch [19] to implement

4. SEMANTIC NODE TYPE PREDICTION 16

LT T T 1Fsum=100%

original type i

predicted type j

Figure 4.1: One row of a confusion matrix.

our models in Python. A diagram of the complete model architecture can be
found at the end of this section.

4.3.1 Node Encoder

The node encoder is used to generate an initial embedding for each node in the
graph. Ideally, it creates the initial embedding based on the information avail-
able for each node. Such information may be the node type (including the un-
known/masked type), any additional node attributes, the structural information
about the node in the graph, etc.

In this work we use a simple PyTorch EMBEDDING [20] layer as our node
encoder. EMBEDDING layers are no more than a lookup table for a fixed size. In
our case the size is the number of different types and the resulting embedding is
based only on the node type of the SAST graph.

Generally, the node encoder may also be a more sophisticated algorithm or
a neural network. What is important is only that it generates an embedding of
the correct size for each node.

4.3.2 Graph Neural Network

The GNN is the core of our model. In this part the initial node embeddings are
passed through the GNN layers resulting in the final node embeddings.

As we have collected edge information (i.e. edge type and the is-AST edge
attribute) during the SAST graph generation, we want our model to make use of
this information. The basic idea is to generate an embedding for each edge and
include it during the message passing process. In this work we use two PyTorch
EMBEDDING layers to encode both the type information and the is-AST edge
information and sum them up. Once again, as for the node encoder, one might
choose a more sophisticated approach to encoding the edge information such as
a neural network.

The GNN consist of multiple GNN convolution layers. A GNN convolution
layer may be of any type described in section 2.1, i.e. GCN, GIN or GAT,

4. SEMANTIC NODE TYPE PREDICTION 17

though we need to adapt them slightly to incorporate our edge embedding. In
the following paragraphs, we explain the changes made to each GNN type. We
use h* to denote the resulting hidden embeddings of the GNN convolution as we
further pass them through a batch normalization layer, an activation layer as well
as a dropout layer. Optionally, one can add residual connections to the model as
shown in figure 4.2.

Y

\ 4
[Batch Norm]

RelLU]
Y
Dropout

[GNN Convolution

Figure 4.2: Diagram depicting a single GNN layer.

To GCN (see section 2.1.1) we apply the following changes: We first pass each
hidden embedding trough a linear layer and then add the edge embedding before
applying a ReLLU activation function. The GCN convolution can mathematically
described by

k) k)
B Z Y ReLU(W®) . h{¥) 1 o) (42)
N (u) IV (v)]

vEN (u)U{u}
where h is the hidden embedding and e is the edge embedding.

We adapt GIN (see section 2.1.2) by using GINE from [21] which is already
implemented in PyTorch Geometric [22|. GINE is a variation of GIN that incor-
porates an edge embedding by summing up the hidden embedding and the edge
embedding before applying a ReLLU activation function. Mathematically we can
describe the convolution as

hy) = MLP®) | (1+¢)-hP + >~ ReLU(LY + elf) (4.3)
veN (u)
where h is the hidden embedding and e is the edge embedding.

Instead of the original GAT (see section 2.1.3) we use GATv2 [23] which
improves the standard version. GATv2 is already implemented in PyTorch Geo-
metric [24]. Mathematically we can describe the convolution as:

h+ = o, ,h(F) 4+ Z vy »h) (4.4)
veEN (u)

4. SEMANTIC NODE TYPE PREDICTION 18

where «,, , denotes attention coefficients computed as:

exp(a’ LeakyReLU(W® [b{" & h{" & ell))))
> e (wutey Xp(aT LeakyReLU(W® L & bl @ el))]))

(4.5)

a’u,’U =

where a is a trainable attention vector, W is a trainable parameter matrix, ®
is the concatenation operation, h is the hidden embedding and e is the edge
embedding.

Finally, we implement three different ways of computing the final node em-
beddings. The first option is to simply use the node embeddings after the last
layer. The other two options include jumping knowledge |25], i.e. the model com-
bines the node embeddings resulting from every GNN layer. Combining them can
be taking the mean embedding or summing all embeddings up (see figure 4.3).

first GNN layer last GNN layer

— mi —>

Figure 4.3: The three different jumping knowledge options shown on one node.
Sum and mean aggregate the embedding of resulting from every GNN layer while
last simply takes the embedding resulting after the last GNN layer.

4.3.3 Node Decoder

After computing the final node embeddings in the GNN part of our model, we
select the final embedding of the masked node and pass it through a small neural
network to predict the type of the node. We call this neural network the decoder.

Let the final node embedding be of size emd_dim. Our decoder consists
of one hidden layer with size 2 - emb_dim as well as a final layer of size # of
node types. One might also choose to use a more complex neural network as the
decoder. While this might improve the model we want to focus on the GNN in
this work and thus keep the decoder simple.

4.3.4 Optimizer and Loss Function

We use the ADAM optimizer provided by PyTorch [26] with the default parame-
ters except for the learning rate which we set to 5- 1075 (see section 4.4). As we

4. SEMANTIC NODE TYPE PREDICTION 19

= LR
I

NN

E emb_dim 2 emb_dim # types

Decoder

Figure 4.4: Diagram of the Semantic Node Type Prediction model. The model
takes a graph with a masked node as the input. First, the NODEENCODER
generates the initial node embeddings. Then, the GNN layers compute the final
node embeddings. Finally, the decoder, a small neural network, predicts the type
based on the final node embedding of the masked node.

are performing a classification task with our model, we use cross-entropy as our
loss function.

4.3.5 Backward Edges

SAST graphs are directed graphs and thus nodes that are close to the root can
only learn from the few nodes that are even closer to the root. All nodes further
down the tree that do not have a path that leads back to some node further up
the tree will never share any information with that node. A simple yet effective
solution that we apply in this work is to add an edge (v,u) for every edge (u,v)
in the graph. We call those edges backward edges. Backward edges allow a node
to learn from nodes in the data flow direction as well as the opposite data flow
direction. We also add another edge attribute that indicates if an edge is a
backward edge or not. This ensures that the graph still contains the information
about the original data flow direction.

4. SEMANTIC NODE TYPE PREDICTION 20

4.4 Results

Backward Edges

Transforming the graph by adding backward edges as described in section 4.3.5
results in big performance increases for all GNN types. Thus all of the remain-
ing results are computed using backward edges enabled. Table A.1 shows the
difference between using backward edges or not.

Learning Parameters

It has proven to be beneficial to use a learning rate that is lower than the default
parameter set by the ADAM optimizer. Using the default learning rate, all models
tend converge after a few epochs and then start to fluctuate slightly. A learning
rate of 5 - 1075 works best for us. Figure A.1 shows convergence the different
learning rates we tested.

Dropout does not improve our models. With or without dropout the models
show no sign of overfitting. Adding dropout rather slows down the convergence of
the models, especially the more complex ones such as GAT. However, we still add
dropout to the MLPs used by the GIN layers. A comparison between different
dropout ratios can be seen in table A.2.

Model Parameters

A larger embedding dimension increases the model’s performance. However, with
increasing size of each embedding the model’s memory footprint increases as well.
Thus we choose to use an embedding dimension of 300 (see table A.3).

As mentioned in the section about machine learning on graphs (see sec-
tion 2.1) the number of GNN layers effects from how many different nodes a
node can learn. For this task the impact of the number of layers is different for
each GNN type. Using GCN the impact is very little even if only one layer is
being used. Generally, more layers perform slightly better. For GIN the impact is
again very little but the sweetspot seems to lay at around three layers. For GAT
the benefit of having more layers is more noticeable especially between using one
or two layers. It performs the best with five to six layers. For all models resid-
ual connections improve performance slightly. The effect of residual connections
becomes more noticeable with more layers (see table A.4).

The jumping knowledge option does not influence the model’s performance
by a lot. Further, for each GNN type a different jumping knowledge approach
performs best (see table A.5).

4. SEMANTIC NODE TYPE PREDICTION 21

Performance Visualization

The confusion matrices show the different node types ordered in descending num-
ber of appearances. The top 13 most frequent types, which make up 70% of all
node types, are all well predicted by the models. After that, we can see that
the models have some small problems differentiating between the Tuple and List
types. The two node types can have a very similar neighborhood in the SAST
graph and thus it is hard for the model to differentiate the two types. This is a
recurring theme throughout the confusion matrix. As an example the types Add,
Mult and Sub are also mistaken often.

Overall the confusion matrices show us that the models are very confident
about types that occur often. However, types that occur very little in the data
set are often predicted as more common ones by the models.

Below, figure 4.5 shows the confusion matrix of the best performing model.
The confusion matrix of the best performing models for the other GNN types
can be found in the appendix - see figure A.2 for GIN and figure A.3 for GAT.

4. SEMANTIC NODE TYPE PREDICTION 22

Confusion Matrix - GCN

Compreheng’lag

Reies

n

AugAssi |§|
ListCo

ExceptHanSdSF

Join?{gg{
s

Generat; a);”
Importﬂpg%ort?é]au%
AnnR\/\sYllleﬂg
FloorDi
ol

tor

|

et gmﬁ
Asyncﬁun%é%ﬂ
itXq

a

NRLYRIERY
AsyncCompré}égc{m%

Figure 4.5: Confusion matrix, as described in figure 4.1, of the best performing
model. Rows that do not have any entries indicate that the type never occurred
in any validation graph. We see that the top 13 most common types are predicted
very well. After that, types with similar graph neighborhoods (e.g. Add, Mult
and Sub nodes) tend to be confused more often.

CHAPTER 5

Semantic Link Prediction

5.1 Task Description

The goal of this task is to reliably predict the edges a random invariable shares
with other nodes in the SAST graph. To be more precise, we are given an
invariable that is only connected to the SAST graph via a directed edge coming
from the node that defines the invariable. We then want our model to predict
for a given node if the invariable shares an edge to it or not.

5.2 Data, Training and Evaluation

The basic approach of creating the training and validation graphs is the same as in
the Semantic Node Type Prediction task (see section 4.2). The main differences
are in the pre-transformation of the training and validation graphs.

Once again we use python functions that are crawled from GitHub repositories
as described in section 3.2. From each function a SAST graph is generated and
stored in the form explained in section 3.2.3.

We create a data set that contains a total of 1000 graphs and split it into
70% (700) training graphs and 30% (300) validation graphs. This data set is a lot
smaller than the one we use to test the Semantic Node Type Prediction models
due to the training approach we choose to use (see section 5.2.1). We also create
a bigger data set containing 5000 graphs and split it into 90% (4500) training
graphs and 10% (500) graphs. We will only use this data set to test the effect of
using more training graphs on the models.

5.2.1 Training the Model

To simplify the training we only train our model on invariable and node pairings
that can be connected via an edge, i.e. we do not consider any node types that are

23

5. SEMANTIC LINK PREDICTION 24

never connected to an invariable node. We call the node types that potentially
share an edge with an invariable potential neighbors in this chapter.

Testing has shown that randomly selecting an invariable and a potential neigh-
bor for each graph per epoch leads to far worse results (see section 5.4) than train-
ing every possible combination of invariable and potential neighbor per graph.
Thus we create one graph (i.e. data object) for every combination of invariable
and potential neighbor. All outgoing edges from the corresponding invariable are
removed leaving only the ingoing edge. Further, the corresponding invariable and
potential neighbor nodes are marked. This results in a significant enlargement
in the number of training graphs which increases training time and limits the
amount of different training graphs.

5.2.2 Evaluating the Model

To get an evaluation score that represents the performance of our model as con-
sistently as possible we do not want any randomness involved. In contrast to the
Semantic Node Type Prediction task, this is already not the case during training.
Thus we can use the same strategy to create the evaluation graphs as in training.

As the metrics to evaluate the performance of our models we again use ac-
curacy and confusion matrices. Additionally, as the model only decides between
edge and no edge, we further compute the fl-score. The fl-score is defined as:

2 - precision - recall

f1-score = (5.1)

preciston + recall

) L. o TP . TP
where: precision = TPLFP and recall = TPIFN

5.3 Model Architecture

The architecture of the model used for this task is very similar to the model used
for the Semantic Node Type Prediction task (see section 4.3). Thus we will only
focus on the differences.

5.3.1 Node Encoder and Graph Neural Network

We adapt the node encoder slightly by adding another EMBEDDING layer to
encode the marked node attribute. The initial node embedding is now the sum
of the type embedding and the mark embedding.

There is no need to change anything in the GNN and we thus use the
same GNN architecture as in the Semantic Node Type Prediction task (see sec-
tion 4.3.2).

5. SEMANTIC LINK PREDICTION 25

5.3.2 Node Decoder

The biggest changes compared to the Semantic Node Type Prediction model are
in the decoder. We implement two different approaches - one based on graph
classification and the second one based on node classification.

The first approach using a graph classification approach creates a graph em-
bedding from the final node embeddings using a pooling function. Simple pooling
functions include summing up all final node embeddings, taking the maximum or
mean final node embedding. A more complicated pooling method is to compute
an attention score for each embedding and then summing up the embeddings
after the attention score is applied. Another more complicated pooling method
is the Set2Set approach [27]. After having computed the graph embedding, we
pass it through a small neural network similar to the Sequential Node Prediction
task as described in figure 5.1.

2 emb_dim 2

Dense Dense E

Figure 5.1: Diagram of the decoder using the graph classification approach.
The second approach using a node classification approach, selects the final
node embedding from both the marked invariable and the marked neighbor. It
then first passes both embeddings through the same small neural network result-

ing in two tensors of size 32. Finally the two tensors are concatenated and passed
through a dense layer resulting in the final tensor (see figure 5.2).

E emb_dim
Dense
% Dense

Figure 5.2: Diagram of the decoder using the node classification approach.

1 2 emb_dim

/ 64)
Dense] / /

Dense

OO OTI1711]
5
3
B
M

5. SEMANTIC LINK PREDICTION 26

Decoder edge
B: no edge

Figure 5.3: Diagram of the Semantic Link Prediction model. The model takes a
graph with a marked invariable (without any outgoing edges) and a marked po-
tential neighbor as the input. First, the NODEENCODER generates an embedding
for each node. Then the GNN layers compute the final node embeddings. Finally,
the decoder generates a tensor with two values from the final node embeddings
depending on the approach. If the first value is bigger than the second one the
model predicts an edge otherwise it predicts no edge.

5.3.3 Optimizer and Loss Function

As in the Semantic Node Type Prediction task, we use the ADAM optimizer
provided by PyTorch [26] with the default parameters except for the learning rate
which we set to 5- 107 for the graph classification approach (see section 5.4.2)
and 5-107° for the node classification approach (see section 5.4.2). We will once
again be using cross-entropy as our loss function because we are performing a
classification task.

5.3.4 Master Node

As the invariable for which we want to predict the edges is only connected to the
graph via the edge to the node that defines it, it is hard for the node to learn
anything about the graph and it takes many GNN layers. A potential solution
to this issue is to add an additional node that is connected to every node in the

5. SEMANTIC LINK PREDICTION 27

graph. We will call this node the master node. The idea is that every node can
learn from every other node via the master node. In order to tell the model that
an edge is connecting a node in the graph to the master node we will set the type
of all those edges to a new additional type.

5.4 Results

Training Approach

We first tried training the models using the same approach used in the Semantic
Node Type Prediction task, i.e. we choose a random invariable and potential
neighbor pairing per graph per epoch. However, this approach results in very
poor results regarding the fl-score no matter the exact model type. Training the
model on all pairings of an invariable and a potential neighbor, as described in
section 5.2.1, results in far better results even though we cannot train it on as
many different graphs as in the first approach. Table B.1 shows the performance
differences using the two training approaches.

Generally, using a bigger data set does not change the performances of the
models significantly while increasing the training time drastically. Thus, due to
resource limitations we will use the smaller data set containing 1000 graphs for
all further experiments.

Backward Edges and Master Node

As backward edges are crucial for the model’s performance in the Semantic Node
Type Prediction task, we will also use them in this task without further conduct-
ing any experiments.

When using the graph classification approach, adding a master node to the
graph, as described in section 5.3.4, increases performance for GCN and GIN sig-
nificantly but not GAT. Using the node classification approach, the performance
increases only slightly for each GNN type. We will use the approach of adding
master nodes for all further experiments as it almost always improves the model’s
performance.

5.4.1 Graph Classification Approach

Generally, while achieving good performance results, all models using the graph
classification approach suffer from a lot of instability. Some models start very
well only to get worse after one epoch until suddenly improving again. The
initialization seems to play a big role on the overall performance of the models.
This is different for the node classification approach (see section 5.4.2).

5. SEMANTIC LINK PREDICTION 28

Training Parameters

We use a learning rate of 5-107°. There is not a big difference to using a
slightly higher learning rate of 1-107%. Using a lower learning rate results in
slow convergence without improving the final result (see figure B.1).

As already mentioned, the validation fl-scores for the graph classification
approach are generally very unstable. This is also the case when testing different
dropout ratios. The best fl-scores in table B.4 occur in the first or second epoch
except for GAT with a dropout ratio of 0.3. We will use a dropout ratio of
0.3 for all further experiments as this ratio resulted in the most stable scores
independent of a strong or weak start.

Model Parameters

For both the GIN and GAT models, as in the Semantic Node Type Prediction
task, a bigger embedding dimension improves the model’s performance. Again
with bigger embeddings the model’s memory footprint increases as well. What
is different is that for GCN the models with smaller embedding dimensions seem
to perform better (see table B.8.

Generally, the models perform well with four or more layers except for GAT
which has its performance peak at three layers. Residuals almost always improve
the models slightly (see table B.7).

For GCN every pooling method except for mean seems to perform fairly well
with the sum pooling method resulting in the best performance. For GIN the mazx
pooling method as well as the more complex ones result in good performance.
Finally, for GAT only the more simple pooling methods work well.

5.4.2 Node Classification Approach

While the models using the node classification approach achieve equally good
results as models using the graph classification approach, it has to be said that
the node classification approach achieves far more consistent results.

Training Parameters

For this approach we chose a learning rate of 5-107%. Using this learning rate
we get rather slow convergence compared to the other learning rates we tested.
However, once almost converged the model performs much more stable than using
other learning rates (see figure B.2).

Compared to the graph classification approach the best validation fl-scores
usually occur at around 6 epochs. The best scores are achieved with a dropout

5. SEMANTIC LINK PREDICTION 29

ratio of 0.3 and thus we will use this for all future experiments.

Model Parameters

A larger embedding dimension improves all models while also increasing their
memory footprint. We choose to use an embedding size of 300 (see table B.9).

For all GNN types using three GNN layers works well. GCN achieves the same
performance for all experiments using one up to five layers. For GIN and GAT
the best performing models use around three GNN layers. Residuals improve the
performance (see table B.10).

5.4.3 Concrete Code Examples

Visualizing the predictions on concrete code examples allows us to see in which
cases the model is accurate and where it struggles. The model performs well when
there are nodes in the graph that are missing a dataflow edge. An example for
this can be seen in figure 5.4 where the model is predicting all edges originating
from the invariable representing the argument variable a. We can see that the
model accurately predicts the edge that is missing. The predictions also indicate
that the model is sure that there are no further edges which is also correct.

0: [TYPE| Module]
[TYPE: _NONE_, AST: False]

def f(a,b):
c=1
return a * c + b

Predicting use of argument ‘a’

python source code

: [TYPE: Function]

TYPE: ArguO0%y AST. AT b TBE:T
[GUO0IEAAST ly‘%u‘]e\w[TME‘E TINONE _, f\%Eﬂ%NE,‘ AST: Falsa]

Ve b
3: [TYPE:Tny ariable] 2: [TYPE: InVariable] 8: [TYPE: Return] >
. 4; [PYPE: Rssign]

0.0%

0.0%\[TYPE:_NO/Q, AST: Faise]

[TYPE: Value; ASTTIRE; Target, AST: True]

" N\
O4%ryPE: NOREFAST.Falee]

0.0% \,
& 'S
Full SAST graph 100,0% 0.4% ZAPERE g, rypE: Constant ©: [DYPE: Name]
(ID: 0, TYPE: 'Module', outscope_invariables_n:] (1YPE: Lo ASTIIPETRN AST: Te]
7 IhtQST: True [TYPE: _NONE, AST: Faise]
Y a’ N
PN 10: [PYPE: Wl)
[ID: 1, TYPE:*Function', olitscope_invariables_in: {] VA ‘ 13: [TYPE: Namo]
[I\PE: Left/ AST:[TIRE: Right, AST: True] 77[TYPE: Invariable]
~ / [TYPE: _NONE~ AST: False]
,V “N . p ' ~p 4

(I0:3, TYPE: nvariable’ name: o] @y (ID: 8, TYPE: Return] [ID: 4, TYPE: Rosign] 9:(TYPE: Name] 1: [TYPE: Name]
p / .

[IB: 2, TYPE: 'Invariable', name: b] V'S

& N g A

[ID: 12 TYPE; 'Add'] ' >

/ \. [ID: 5, TYPE: 'Constant’, value: 1] [ID: 6, TYPE: 'Name']

p g
g g
[ID: 18, TYPE: 'Name'])
[ID: 'MYPE{WW] [ID: 7, TYPE ‘Invariable', name:]
\
h LW~

[ID: 9, TYPE: ‘Name'] [ID: 11, TYPE: 'Name']

Figure 5.4: A concrete code example showing the original SAST graph and the
model’s edge predictions for the invariable with index 3 in the modified graph.
The model correctly predicts all missing edges.

An example for which the model struggles to predict the correct edges can be
seen in figure 5.5. Here the model has to predict the edges originating from the in-
variable representing the assignment of variable b inside the if-clause. Compared

5. SEMANTIC LINK PREDICTION 30

to the previous example, there is no node in the graph that is missing a dataflow
edge as the node with index 17 has a second ingoing edge from the invariable
with index 6 in the original graph. While we see that our model anticipates the
original edge with a 9.5% probability, it fails to predict the edge. This example
nicely shows the general weakness of our models.

0: [TYPE! Module]

def f(a): [TYPE: 7N0N;7‘ AST: False]
b=a —
if b == 1: 1 [PYPE. Funclonl.___(TYPE-Avrgument, AST: True]
b=0 Predicting use of inner ’b’ [TYPE:_NONE”/AST: Falsd] [TYPE:_NONE...AST: Falo]
& [TYPE: _NONE, AST: False] < 2:[TYPE: Ihyariablo]
return b o \ A«\‘
7,HYPE 1] by 3:[TYPE\ASSINL.___[TYPE; _NONE_ AST: Falsc]
T FTYPE: Body, AST: True] @ PE: Valle, AST: True
python source code TYPE:Togt AST: True] 16: [TYPE: Return] [TYPE: Targa{ AST: True] .]‘
/ TYPE: _NONE. AST: Faise] M)
. 12: [TYPE: Acsign] o 9 4: [TYPE: Name]
). TYPE: Valus AST Trus). N g
8 [YPE: And] (TYPE: Targot, AST: True] 5: [TYPE Name]
Full SAST graph [TYPE: _NONE/, AST: False] -
grap / ©. _ 17: (TYPE: Namel_gyp NCWE ST Fase]
a 13: [TYPE: Constant]) TvPe: NONE /ST False]
o [WPE\Eq] 0:0% 14: [TYPE: Name] . N
TYPE: Righ, AST: Tre] 0.0%
' (VP Lef AT True] [TYPE:_NODI%AS ™ & [TYPE: Invariabl]
[a [TYPE: _NONE- s
1D: 0, TYPE: Modue, I
[ID: 0, TYPE; Modue‘ou:scope invariables_in: {}] 14: (TYPE Cwsmq ‘> o 0.0%
07%
P 10: (TYPE: Namo) 15: [TYPE:Tvariable]
[ID: 1, TYPE: Functiof, out$cope_invariables_in{}}
s N) -
/’{ \) @ [10:2 TYPE: invariable, narme: 2
11057/ TYPELIf] [ID: 16, TYPE ‘Return’] [ID: 3, TVP‘E Ass«qn]
RS p4 ~a ¥
(WPB psign] X b » e’
ID: 8, TYPE: 'And', cony{nsan?aws i e ly/a‘ [[D: 5, TYPE\Name'] [ID: 4, TYPE: ‘Name']
‘ [\D 17, TYRE) "Name']
io: }/TYPP{;‘] @ [I0: 14, TVF‘E “Name'] Y
/ ID: 13, TYPE: ‘Constant, value: 0] @
)
[ID: 11, TYPE: ‘Constant’, value: 1] Q=
{ID: 10, TYPE: ‘Name'] {ID: 15, TYPE: ‘Invariable’, name: b]

Figure 5.5: A concrete code example showing the original SAST graph and the
model’s edge predictions for the invariable with index 15 in the modified graph.
The model fails to predicts the missing edge.

CHAPTER 6

Future Work

While we conducted experiments on all hyper-parameters and tested their effect
on the model, we did not optimize every single aspect due to time limitations.
Thus with more extensive testing and potentially bigger data sets one might still
enhance performance.

Performance enhancements may also be achieved by changing the graph gen-
eration process. We have already mentioned some limitations of the SAST graph
generation procedure, that we use including potential methods to fix them (see
section 3.3). However, one might also choose to use a completely different graph
generation approach. An example would be to generate control flow like graphs
such as the ones used in compilers. Changes can also be more subtle ones such as
adding or changing attributes for both the nodes and edges to supply the model
with more information about the source code. One might include the value of
constants in the data set, something that is definitely needed if we want to solve
code classification tasks.

Further, the node- and edge-encoder as well as the decoder are all parts of the
model we did not further investigate in this work. Using more powerful encoders
may improve the model’s performance significantly. One might train an auto
encoder first and then use it as the encoders as an example. This might even
be necessary if one were to use more attributes for both nodes and edges as our
approach may no longer work

Finally, the results of this work may be extended to create models that solve
more complex code-related tasks such as code completion or code classification.
A code completion model might predict nodes and links for an incomplete SAST
graph in an iterative way in order to complete the graph. A code classification
model might use a graph classification approach similar to the one applied in
the Semantic Link Prediction task. As the model is based on data flow graphs
it could allow it to understand the code in a semantic way. To solve such tasks
one might have to combine the GNN based models used in this work with other
machine learning methods. Such methods include natural language based models
that could be directly applied to the source code as well as path based approaches
that can be applied to the generated graphs.

31

CHAPTER 7

Conclusion

In this work we have adapted the SAST graph generation approach to create
graphs that represent both the syntactic structure as well as the semantic data
flow information of some source code. We presented a GNN model architecture
that solves the task of predicting a node type in a SAST graph and adapted
this architecture to solve the task of predicting links for an invariable in a SAST
graph. Our node type prediction models achieved 97.6% accuracy on a data set
consisting of python functions crawled from GitHub. We showed the importance
of adding backward edges and analyzed the effects of different hyperparameters on
our models. Adapting the model architecture as well as the training approach, we
achieved 94.5% F1-score on the Semantic Link Prediction task using two different
decoder approaches. We analyzed the impact of adding a master node and found
that it can help some models to reach the performance that other models attain
without a master node. It remains to be seen what the full potential of the
model architecture is when using superior encoders and decoders that encode
more information in a more efficient way and interpret the results of the GNN in
a more meaningful way respectively.

32

[1]

2]

3]

4]

[5]

[6]

7]

8]

19]

[10]

Bibliography

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained
model for programming and natural languages,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.08155

A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” 2020. [Online|. Available:
https://arxiv.org/abs/2001.00059

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert:
Pre-training code representations with data flow,” 2020. [Online|. Available:
https://arxiv.org/abs/2009.08366

S. Liu, X. Xie, J. Siow, L. Ma, G. Meng, and Y. Liu, “Graphsearchnet:
Enhancing gnns via capturing global dependency for semantic code search,”
2022. [Online|. Available: https://arxiv.org/pdf/2111.02671

W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning, vol. 14, no. 3, pp. 1-159.

D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving
the over-smoothing problem for graph neural networks from the topological
view,” 2019. [Online|. Available: https://arxiv.org/abs/1909.03211

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016. [Online|. Available: https://arxiv.org/abs/
1609.02907

B. Weisfeiler and A. Leman, “A reduction of a graph to a canonical form
and an algebra arising during this reduction,” 1968.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” 2018. [Online|. Available: https://arxiv.org/abs/1810.00826

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017. [Ounline|]. Available:
https://arxiv.org/abs/1710.10903

33

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2001.00059
https://arxiv.org/abs/2009.08366
https://arxiv.org/pdf/2111.02671
https://arxiv.org/abs/1909.03211
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1710.10903

BIBLIOGRAPHY 34

[11] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers
and redundant computations,” in Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
'88. New York, NY, USA: Association for Computing Machinery, 1988, p.
12-27. [Online|. Available: https://doi.org/10.1145/73560.73562

[12] J. Flunger, “Graph pattern mining in code,” https://pub.tik.ee.ethz.ch/
students/2021-HS /BA-2021-35.pdf, 2022.

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“An efficient method of computing static single assignment form,” in
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’89. New York, NY, USA:
Association for Computing Machinery, 1989, p. 25-35. [Online|. Available:
https://doi.org/10.1145/75277.75280

[14] “Pytorch geometric data documentation,” https://pytorch-geometric.
readthedocs.io/en/latest /modules/data.html#torch geometric.data.Data,
accessed: 2022-07-13.

[15] “Pytorch geometric dataloader documentation,” https://pytorch-geometric.
readthedocs.io/en/latest /modules/loader.html#torch geometric.loader.
Datal.oader, accessed: 2022-07-13.

[16] “Ogb code2 example on github,” https://github.com/snap-stanford/ogb/
tree/master /examples/graphproppred /code2, accessed: 2022-07-11.

[17] “Open graph benchmark website,” https://ogb.stanford.edu/, accessed:
2022-07-11.

[18] “Pytorch geometric website,” https://www.pyg.org/, accessed: 2022-07-11.
[19] “Pytorch website,” https://pytorch.org/, accessed: 2022-07-11.

[20] “Pytorch embedding documentation,” https://pytorch.org/docs/stable/
generated /torch.nn.Embedding.html, accessed: 2022-07-22.

[21] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and
J. Leskovec, “Strategies for pre-training graph neural networks,” 2019.
[Online|. Available: https://arxiv.org/abs/1905.12265

[22] “Pytorch geometric gine documentation,” https://pytorch-geometric.
readthedocs.io/en/latest /modules/nn.html#torch _geometric.nn.conv.
GINEConv, accessed: 2022-07-12.

[23] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” 2021. [Online|. Available: https://arxiv.org/abs/2105.14491

https://doi.org/10.1145/73560.73562
https://pub.tik.ee.ethz.ch/students/2021-HS/BA-2021-35.pdf
https://pub.tik.ee.ethz.ch/students/2021-HS/BA-2021-35.pdf
https://doi.org/10.1145/75277.75280
https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.Data
https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.Data
https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.DataLoader
https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.DataLoader
https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.DataLoader
https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/code2
https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/code2
https://ogb.stanford.edu/
https://www.pyg.org/
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://arxiv.org/abs/1905.12265
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GINEConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GINEConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GINEConv
https://arxiv.org/abs/2105.14491

BIBLIOGRAPHY 35

[24] “Pytorch geometric gatv2 documentation,” https://pytorch-geometric.
readthedocs.io/en/latest /modules/nn.html#torch geometric.nn.conv.
GATv2Conv, accessed: 2022-07-12.

[25] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann,
“Graph neural network-based android malware classification with jumping
knowledge,” Jan. 2022. |Online|. Available: https://arxiv.org/pdf/2201.
07537

[26] “Pytorch adam documentation,” https://pytorch-geometric.readthedocs.
io/en/latest /modules /nn.https://pytorch.org/docs/stable/generated /torch.
optim.Adam.html, accessed: 2022-07-13.

[27] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to sequence
for sets,” 2015. [Online]. Available: https://arxiv.org/abs/1511.06391

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GATv2Conv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GATv2Conv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GATv2Conv
https://arxiv.org/pdf/2201.07537
https://arxiv.org/pdf/2201.07537
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://arxiv.org/abs/1511.06391

APPENDIX A

Semantic Node Type Prediction
Results

Note: All experiments were conducted on the data set containing 100,000 graphs
described in section 4.2. All test scores come from a single test run due to time
and resource limitations. Thus one has to interpret the results with some care.

GNN type GCN GIN GAT
without backward edges | 0.8285 0.7322 0.7204
with backward edges 0.9764 0.9740 0.9708

Table A.1: Comparing best validation accuracies with or without using backward
edges.

Learning rate - GCN trained on 95'000 graphs

0.95 /&

o
©
o

Accuracy

o
©
vl

—— Irle-3 train_acc

Irle-4 train_acc
—— Ir5e-5 train_acc
—— lIrle-5 train_acc
—— Ir5e-6 train_acc
—— lIrle-6 train_acc

0.80

0.75

0 1 2 3 4 5
Epoch

Figure A.1: Convergence of training accuracies using different learning rates and
GCN as the GNN type.

A-1

SEMANTIC NODE TYPE PREDICTION RESULTS

Dropout | None 0.3 0.5

GCN 0.9733 0.9694 0.9649
GIN 0.9688 0.9661 0.9615
GAT 0.9650 0.8705 0.4535

A-2

Table A.2: Comparing the best validation accuracies for different dropout ratios
and GNN types.

Embedding Dimension

50

100

300

600

GCN
GIN
GAT

0.9675 0.9732 0.9764 O

0.9584 0.9693

0.9747

0.9570 0.9677 0.9732

0.9749

9760

oom

Table A.3: Comparing the best validation accuracies for different embedding
dimensions and GNN types. ’oom’ indicates that the model ran out of memory.

Layers 1 2 3 4 5 6

GCN 0.9703 0.9754 0.9764 0.9761 0.9760 0.9761
GCN (res) | 0.9711 0.9749 0.9764 0.9757 0.9768 0.9766
GIN 0.9713 0.9738 0.9740 0.9730 0.9727 0.9709
GIN (res) | 0.9704 0.9744 0.9747 0.9744 0.9738 0.9734
GAT 0.9571 0.9698 0.9708 0.9711 0.9733 0.9724
GAT (res) | 0.9613 0.9720 0.9732 0.9748 0.9754 0.9754

Table A.4: Comparing the best validation accuracies for different numbers of
GNN layers, with or without residual connections, and GNN types. ’(res)’ indi-
cates that residual connections were used.

Jumping Knowledge last mean sum

GCN 0.9764 0.9762 0.9743
GIN 0.9747 0.9748 0.9730
GAT 0.9732 0.9726 0.9762

Table A.5: Comparing the best validation accuracies for different jumping knowl-
edge approaches and GNN types.

SEMANTIC NODE TYPE PREDICTION RESULTS A-3

Confusion Matrix - GIN

List 8
ExceptHandGF

Join?fgg
el

GeneratqrEx

MpQrtFron
Importéro%‘ﬁ(@du@
ontinue

nnR |
e

NRm(rE] Xpr

AsyncCompr%é m%\

(2
Ny

1 AN N > ROR XOPRE PN
TR TN S R ‘
(S &

R
)) PR PR
R 3 &R
(.9& < 4 o?” ¥ (/o‘(\
@Q &
D N
¥

Figure A.2: Confusion matrix of the best performing GIN model. Confusion
matrix as described in figure 4.1. Rows that do not have any entries indicate
that the type never occurred in any validation graph.

SEMANTIC NODE TYPE PREDICTION RESULTS A-4

Confusion Matrix - GAT

List 8
ExceptHandGF

Join?fgg
el

GeneratqrEx

MpQrtFron
Importéro%‘ﬁ(@du@
ontinue

nnR |
e

NRm(rE] Xpr

AsyncCompr%é m%\

(2
Ny

1 AN N > ROR XOPRE PN
TR TN S R ‘
(S &

R
)) PR PR
R 3 &R
(.9& < 4 o?” ¥ (/o‘(\
@Q &
D N
¥

Figure A.3: Confusion matrix of the best performing GAT model. Confusion
matrix as described in figure 4.1. Rows that do not have any entries indicate
that the type never occurred in any validation graph.

APPENDIX B

Semantic Link Prediction Results

Note: All experiments were conducted on the data set containing 1000 graphs
described in section 5.2.1. All test scores come from a single test run due to time
and resource limitations. Thus one has to interpret the results with some care.
Especially, the results for the graph classification approach as the models are less
stable and more dependent on the initialization.

Graph classification approach
GNN type GCN GIN GAT
first training approach 0.4562 0.4470 0.3964
second training approach | 0.9410 0.9315 0.9270

Table B.1: Comparing best validation fl-scores using the first training approach,
i.e. selecting a random invariable and potential neighbor pairing per graph per
epoch, and the second approach, i.e. testing every possible pairing. For the
first training approach we used the same data set as in the Semantic Node Type
Prediction task.

Graph classification approach
GNN type GCN GIN GAT
without master node | 0.8801 0.8202 0.9408
with master node 0.9410 0.9315 0.9270

Table B.2: Comparing best validation fl-scores with or without using a master
node.

Node classification approach
GNN type GCN GIN GAT
without master node | 0.9451 0.9427 0.9435
with master node 0.9451 0.9451 0.9451

Table B.3: Comparing best validation fl-scores with or without using a master
node.

B-1

SEMANTIC LINK PREDICTION RESULTS B-2

Learning rate (f1 score) - GIN trained on 700 graphs

1.0

0.8 1

0.6 9

F1 score

0.4 4

0.2 4

0.0

Figure B.1: Convergence of training fl-score using different learning rates, the
graph classification approach and GIN as the GNN type.

Graph classification approach Node classification approach
Dropout | None 0.3 0.5 Dropout | None 0.3 0.5
GCN 0.8925 0.9400 0.9341 | | GCN 0.9421 0.9445 0.9451
GIN 0.9333 0.9089 0.9065 | | GIN 0.9419 0.9451 0.9433
GAT 0.9450 0.9447 0.0817 | | GAT 0.9428 0.9451 0.4151

Table B.4: Comparing the best valida- Table B.5: Comparing the best valida-
tion fl-scores for different dropout ra- tion fl-scores for different dropout ra-
tios and GNN types using the graph tios and GNN types using the node clas-
classification approach. sification approach.

Learning rate (f1 score) - GIN trained on 700 graphs

1.0

0.8

F1 score
o
o
L

=]
kS
L

0.2

0.0

Figure B.2: Convergence of training fl-score using different learning rates, the
node classification approach and GIN as the GNN type.

SEMANTIC LINK PREDICTION RESULTS

Graph classification approach

Embedding Dimension

50 100 300 600

GCN
GIN
GAT

0.9451 0.9451 0.8628 0.8001
0.9061 0.9265 0.9302 0.9389
0.5891 0.0000 0.9402 0.9451

B-3

Table B.6: Comparing the best validation fl-scores for different embedding di-
mensions and GNN types using the graph classification approach.

Graph classification approach

Layers 1 2 3 4 5

GCN 0.9408 0.8721 0.9078 0.9410 0.9410
GCN (res) | 0.9410 0.8233 0.9092 0.9410 0.9451
GIN 0.8749 0.9354 0.9315 0.9175 0.9360
GIN (res) | 0.8481 0.6602 0.8598 0.9315 0.9402
GAT 0.9449 0.9416 0.8558 0.7030 0.9365
GAT (res) | 0.7877 0.7839 0.9450 0.9270 0.8365

Table B.7: Comparing the best validation fl-scores for different numbers of GNN
layers, with or without residual connections, and GNN types using the graph

classification approach. ’(res)’ indicates that residual connections were used.

Graph classification approach

Pooling | mean

sum max attention set2set

GCN 0.9092 0.9451 0.9364 0.9395 0.9410
GIN 0.8598 0.9298 0.9410 0.9410 0.9445
GAT 0.9450 0.9442 0.9156 0.2373 0.8805

Table B.8: Comparing the best validation fl-scores for different pooling methods

and GNN types using the graph

classification approach.

Node classification approach

Embedding Dimension

50 100 300 600

GCN
GIN
GAT

0.9410 0.9410 0.9451 0.9451
0.8843 0.9410 0.9451 0.9451
0.6640 0.9442 0.9451 0.9451

Table B.9: Comparing the best validation fl-scores for different embedding di-
mensions and GNN types using the node classification approach.

SEMANTIC LINK PREDICTION RESULTS B-4

Node classification approach

Layers 1 2 3 4)

GCN 0.9451 0.9426 0.9444 0.9416 0.9448
GCN (res) | 0.9446 0.9451 0.9451 0.9451 0.9451
GIN 0.9410 09410 0.9442 0.2078 0.2181
GIN (res) | 0.9444 0.9448 0.9451 0.9451 0.9426
GAT 0.9406 0.9365 0.4558 0.0404 0.9419
GAT (res) | 0.9410 0.7971 0.9451 0.9410 0.9400

Table B.10: Comparing the best validation fl-scores for different numbers of
GNN layers, with or without residual connections, and GNN types using the node
classification approach. ’(res)’ indicates that residual connections were used.

	Abstract
	1 Introduction
	2 Background
	2.1 Machine Learning on Graphs
	2.1.1 Graph Convolutional Network (GCN)
	2.1.2 Graph Isomorphism Network (GIN)
	2.1.3 Graph Attention Network (GAT)

	2.2 Abstract Syntax Trees (ASTs)

	3 Creating Graphs from Code
	3.1 Semantized Abstract Syntax Trees (SASTs)
	3.2 Dataset Generation
	3.2.1 Tracking of Variable Assignments
	3.2.2 Converting an AST to a SAST
	3.2.3 Data Export

	3.3 Limitations of SAST

	4 Semantic Node Type Prediction
	4.1 Task Description
	4.2 Data, Training and Evaluation
	4.2.1 Training the Model
	4.2.2 Evaluating the Model

	4.3 Model Architecture
	4.3.1 Node Encoder
	4.3.2 Graph Neural Network
	4.3.3 Node Decoder
	4.3.4 Optimizer and Loss Function
	4.3.5 Backward Edges

	4.4 Results

	5 Semantic Link Prediction
	5.1 Task Description
	5.2 Data, Training and Evaluation
	5.2.1 Training the Model
	5.2.2 Evaluating the Model

	5.3 Model Architecture
	5.3.1 Node Encoder and Graph Neural Network
	5.3.2 Node Decoder
	5.3.3 Optimizer and Loss Function
	5.3.4 Master Node

	5.4 Results
	5.4.1 Graph Classification Approach
	5.4.2 Node Classification Approach
	5.4.3 Concrete Code Examples

	6 Future Work
	7 Conclusion
	Bibliography
	A Semantic Node Type Prediction Results
	B Semantic Link Prediction Results

