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Abstract

Generative models for graph-structured data have various use cases in real-life ap-
plications such as chemical synthesis, circuit design, and telecommunications. As
a novel approach, we introduce a generative framework for graphs by combining
vector-quantized variational autoencoders (VQ-VAEs) and generative adversar-
ial networks (GANs). The reasoning behind this is to learn an embedding space
in which the graph generation process is hopefully easier. In a greedy fashion,
we train the VQ-VAE first and use learned posterior categorical distributions for
vertices as embedding space during the training of the GAN. Our model has in-
herently desirable characteristics of permutation equivariance on graph vertices
and one-shot generation capability. However, the experiments on three types of
well-known graph types show that the model is insufficient for realistic graph
generation. We discuss the possible problems in the framework and the means
of improvement for future work.
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Chapter 1

Introduction

1.1 Graph Preliminaries

In this project, we work on a new paradigm for the graph generation. Formally,
a graph G = (V, E) consists of two main sets of elements: a set of vertices
V = {vi}Ni=1 and a set of edges E . A vertex constitutes the main element of
a graph, which is also called as a node, while an edge represents a connection
between two nodes: E = {ei,j = (vi, vj)|vi, vj ∈ V }.

The classical way to represent the edge relations in a graph is using an adja-
cency matrix A, where the i, jth entry of the matrix defined whether there is an
edge from vertex vi to vertex vj or not. This matrix representation comes with
a requirement of node ordering π that maps nodes to rows and columns. Natu-
rally, we can define N ! possible node orderings and we could define all possible
orderings as a set of permutations Π.

In its most general form of graphs, which is known as a weighted directed
graph, the edges are defined independently from each other by weight wi,j and a
missing edge is defined by 0. Whereas for our work, we focus on only unweighted
undirected graphs, where the edges are defined by their presence only, all of
them are symmetric, and self-loops are forbidden. In this setting, we can define
an adjacency matrix under a node ordering Aπ ∈ RN×N formally as

Aπ
i,j = 1[(π(vi), π(vj)) ∈ E ] (1.1)

such that Aπ
i,j = Aπ

j,i and Aπ
i,i = 0.

1.2 Problem Definition

The purpose of constructing a generative model for graphs is to learn a distribu-
tion over graphs based on a set of observed instances G = {Gi}si=1 taken from a
predefined data distribution p(G). Such models are useful in real life applications
and various research areas such as chemical design [1] [2] [3], network science [4],

1



1. Introduction 2

and circuit design [5]. For the assessment of a graph generative model, we can
consider the following properties [6]:

1. Permutation Equivariance: a graph with N number of nodes could be
described by N ! orderings. A model should consider each ordering with the
same probability for a particular graph, i.e.: pΠ(πi) = 1

N ! for i = 1, 2, ..., N !.
For a function f , the permutation equivariance property on a set of vertices
V is satisfied if

f(πi(V)) = f(πj(V)) for i, j = 1, 2, ..., N !. (1.2)

2. Scalability: a model should be able to handle the type of graph distribu-
tion with any number of nodes. Moreover, it also should be able to handle
a large number of graphs in a reasonable time span with an achievable
computational complexity.

3. Expressive Power: a model should correctly learn about the structural
details and patterns, represented both locally and globally in graphs.

4. Novelty: a model should be able to generate graphs that are not observed
in the training set.

Although the above properties are difficult to achieve together, we fulfil the
first two by using a permutation equivariant model which generates graphs in one-
shot manner. Overall, we propose a generative model for graphs by combining
vector-quantized variational autoencoders (VQ-VAEs) and generative adversarial
networks (GANs). The model is trained in a greedy fashion by training the VQ-
VAE first on the graph reconstruction task and then the GAN for generation in
the latent space of the VQ-VAE.

The remainder of the thesis is organized as follows: Chapter 2 consists of
a short literature survey regarding generative approaches for graphs. In Chap-
ter 3, our proposed framework and training procedure are explained in detail.
We present our findings by evaluating our proposed framework on three graph
datasets in Chapter 4. Finally, we discuss possible problems with the framework
and the means of improvement in Chapter 5.



Chapter 2

Related Work

2.1 Traditional Approaches

The early approaches for graph generation are mathematical models. As one of
the firsts, Erdős–Rényi–Gilbert model [7] [8] is based on a statistical analysis of
graphs which constituted the founding stones of random graph theory. In many
years, random graph models have been studied in network science [9], social
sciences [10], and physics [11]. Although these approaches are fundamental in our
understanding of graph generation, they lack the expressive power and novelty
required for real-life applications.

2.2 Recent Approaches

Thanks to the recent progress in data-driven deep learning models, deep gen-
erative solutions have been successfully implemented for a wide range of tasks
in various domains such as computer vision, natural language processing, and
industrial design [12]. With the advance in deep learning models for graph data
with the introduction of the graph neural networks (GNNs) [13] and specific GNN
architectures such as graph convolutional networks (GCNs) [14], and graph atten-
tion networks (GATs) [15]; researchers can apply the deep learning frameworks
to achieve state-of-the-art results in graph generation.

In this sense, two possible classifications of these methods are as follows:
likelihood-based vs. implicit generative and autoregressive vs. one-shot.

2.2.1 Likelihood-Based vs. Implicit Generative Methods

We can compare likelihood-based and implicit generative approaches with their
respective successful representatives in today’s deep learning research: variational
autoencoders [16] (VAEs) and generative adversarial networks (GANs) [17], re-
spectively. Briefly, the former aims to learn the latent representation of a dataset

3



2. Related Work 4

via reconstruction of the true data while the latter proposes new samples and dis-
criminates them from the true distribution in an adversarial framework to learn
the data distribution. One important advantage of VAEs over GANs is their
stability and convenience during training [18]. In general, Graph VAEs are able
to learn the latent representation of small graphs such as molecules [19] [20] [3]
[21] but they are mostly insufficient for large graph synthesis. On the contrary,
it is known that implicit generation stimulates higher diversity, which results in
better performance in large graph generation [22]. In consequence, GANs have
been used with various settings and configurations in the last few years for graph
generation [23] [24] [25] [26] [6].

In our work, we employ both a likelihood-based and an implicit approach to
graph generation. We use a vector quantized VAE (VQ-VAE) to learn the latent
representation of the nodes and then used a GAN in the latent space to generate
new samples.

2.2.2 Autoregressive vs. One-shot Methods

Mathematically we can define the autoregressive graph generation process as
below

p(G) =
N∏
i

p(vi, E(vi)|V<i, E(V<i)) (2.1)

where each node and its connections are generated considering the nodes and
edges already generated for that particular graph [2] [6] [27]. Due to the additive
nature of this iterative process, it circumvents the scalability issues that coin-
cided with fixed-size methods. Moreover, such a structure allows for the better
management of the generation process regarding its divide et impera approach.
One major flaw of this process is the requirement of an order on the nodes, which
makes the generation process permutation sensitive. Although there are various
ways to alleviate the issue such as using canonical orderings according to the
graph structure, there is no stable canonical ordering. Moreover, the iterative-
ness of the process makes both training and inference times longer and unable
to use computation parallelization techniques which induces scalability problems
eventually.

Learning to generate all edges in one step circumvents both the scalability
issues and the requirement of an order on the nodes. Such methods are known
as one-shot. Most of the likelihood-based [19] [20] [21] and implicit methods [23]
[24] [25] [6] discussed in Section 2.2.1 are one-shot approaches. Although one-shot
is mathematically more pleasing, in general, it requires more elaboration on the
model and the training process. In our work, we also use a one-shot approach to
generate graphs.
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2.2.3 Other Methods

Other than the above categorizations, we can discuss unconventional approaches
to graph generation. One of them is using the graph normalizing flows [28], where
a permutation-invariant reversible graph neural network with small memory re-
quirements is proposed. Another method focuses on a specific loss function based
on annealed Langevin dynamics [29], which is known for its use in the mathemati-
cal modelling of molecular systems. We can also consider NetGAN [25], a random
walk-based generative model for molecular graphs as an interesting approach for
the task at hand.



Chapter 3

Methodology

3.1 Model

Reconstructed

Generated

Permutation Equivariant Permutation Invariant

Real

Fake

Real

Fake
Ground
Truth

Figure 3.1: Overall architecture of our model.

To generate novel graphs based on a set of graphs with particular charac-
teristics, we follow a node embedding-based approach and use two well-known
generative deep learning frameworks: VQ-VAEs [30] and GANs [17]. Inspired
by Taming Transformers by Esser et al. [31], the main idea is first teaching
a node-embedding autoencoder to reconstruct the adjacency matrices and then
training a GAN on node embeddings to generate novel graphs by decoding using
the pretrained autoencoder. We use posterior categorical distributions q of the
VQ-VAE as the node embeddings to employ the power of vector quantization.

As described in Fig. 3.1, we use two different configurations regarding the
input of the discriminator: a bottleneck discriminator (F b

ψ) which takes node
embeddings and a decoder discriminator (F d

ψ) which takes adjacency matrices as
input, each configuration using only one of them. The encoder (Eϕ), bottleneck
(Bζ), decoder (Dθ), and generator (Gγ) models are permutation equivariant on
nodes whereas both of the discriminator (Fψ) models are permutation invariant.

6



3. Methodology 7

3.1.1 Autoencoder

First introduced as a nonlinear principal component analysis method by Kramer
[32] in 1991, an autoencoder aims to learn efficient and possibly informative
codings of unlabeled data by constructing nonlinear features. The architecture
consists of two parametrically defined components: an encoder (Eϕ) and a de-
coder (Dθ), which are mappings from the data space (X ) to encoding space (Z)
and from the encoding space (Z) to the reconstruction space (X̂ ), respectively.

In its most general sense, the model parameters are tuned such that

ϕ∗, θ∗ = argmin
ϕ , θ

∑
x∈X
∥x−Dθ(Eϕ(x))∥. (3.1)

One of the main issues with autoencoders for graphs is their permutation
dependency: they learn and encode the graphs with the ordering of the nodes
in the input adjacency matrices. To avoid this problem, we embed the nodes as
independent vectors in the latent space using a permutation invariant encoder
and decoder. In this setting, for an undirected graph of N nodes, the data, latent,
and reconstruction space can be defined as

X = {0, 1}
N(N−1)

2 , X̂ = [0, 1]
N(N−1)

2 , Z = RN×dz (3.2)

where dz is the latent space dimension and in order to achieve differentiability for
backpropagation, the reconstruction space is defined continuously as the natural
mapping from the original discrete one.

Encoder

Regarding the permutation equivariance requirement, we use a Graph Isomor-
phism Network (GIN) [33] in the encoder. It is a cascaded network of unit
structures using convolution and fully connected layers:

x′
i = MLP

xi +
∑

j∈N (i)

xj

 (3.3)

where N (i) is a set of indices of vertices neighbour to vertex i. This relation can
be represented in the matrix form as

X′ = MLP ((A+ I) ·X) (3.4)

which is a GIN convolution succeeded by a node-wise multi-layer perceptron
(MLP). For the initial node embeddings, we used a vector consisting of ones and
zeros for masked and non-masked nodes, respectively. Using always the same
output dimension per node, the final output is computed as the sum of all unit
outputs. A detailed representation of the encoder architecture is visualized in
Fig. 3.2.
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GIN

Conv MLP

GIN

Conv MLP

GIN

Conv MLP

MLP

ReLU FCFC BN ReLU FCBN

Figure 3.2: Architecture of the encoder.

Decoder

Conv 1D

no Bias

Conv 1D

with Bias

Remove
Mean

FC

ReLU

Conv 2D

1x1

ReLU Transpose

Sigmoid

Figure 3.3: Architecture of the decoder.

For the decoder part of the autoencoder, we use Set2Graph (S2G) [34] model
regarding its permutation equivariance on graph vertices. It consists of three
networks: D̃θ = ΣD ◦ βD ◦ ΓD where ΣD is a set-to-set network applied to the
node embeddings, βD is a non-learnable broadcasting set-to-graph layer, and ΓD
is a graph-to-graph network.

In addition to these three networks, we also use a non-learnable output layer
OD that symmetrizes and normalizes the elements of the reconstructed adjacency
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matrix as well as sets diagonals to zero

OD(A) = diag0

(
σ

(
A+A⊤

2

))
(3.5)

where σ(x) = (1 + exp(−x))−1 is a sigmoid and diag0 sets diagonal elements
of the matrix to zero. A detailed description of the decoder architecture can be
found in Fig. 3.3.

For the training of the vanilla autoencoder, we use two types of binary cross
entropy losses, namely standard and normalized cross entropy loss:

LAE
ϕ,θ(E) =

∑
(vi,vj)∈E

log(Ai,j) , L
AE
ϕ,θ(E ′) =

∑
(vi,vj)/∈E

log(1−Ai,j) (3.6)

LAEstandard
ϕ,θ =

LAE
ϕ,θ(E) + LAE

ϕ,θ(E ′)
|E|+ |E ′|

(3.7)

LAEnormalized
ϕ,θ =

|E ′|LAE
ϕ,θ(E) + |E|LAE

ϕ,θ(E ′)
2|E||E ′|

(3.8)

where E and E ′ are the set of matrix elements in the original adjacency matrices
describing an edge or no edge, respectively. Details about the use of these loss
functions can be found in Section 3.2.1.

Bottleneck

Although the vanilla autoencoder is a good backbone for embedding graph ver-
tices, we require a regularized latent space with generative capabilities for the
GAN part. To achieve these properties, we use a vector quantized bottleneck
layer (Bζ) [30] that quantizes the latent space into a one hot encoding using a
codebook (C) of latent vector elements. These encodings are known as posterior
categorical distributions (q). Such mapping from the encoder outputs, which are
also called logits (ℓ), to a probability space can be achieved by using a softmax
activation function. To have a continuous backpropagation during the training,
the sampling process is a weighted sum such that

z =

|C|∑
i=1

qi · Ci (3.9)

while during the inference, it is changed to an argmax operation

z = Ci∗ , i∗ = argmax
i

qi. (3.10)



3. Methodology 10

1
2
3

#

1

Figure 3.4: Bottleneck structure using codebook C and Gumbel-Softmax with
temperature τ and random samples g.

In our implementation of VQ-VAE, we employed categorical reparameteriza-
tion with Gumbel-Softmax [35] to achieve a simulated annealing effect as well as
introduce stochasticity for variation in training:

qi = σgsm(ℓi, τ) =
exp( ℓi+gi

τ )∑|C|
j=1 exp(

ℓj+gj
τ )

(3.11)

where τ is a temperature parameter and σgsm is the Gumbel-Softmax function,
which is an altered version of the softmax function with input (ℓ + g)/τ . The
elements of vector g are random samples from the Gumbel distribution

PGumbel(µ, β)(x) =
1

β
e−(z+e−z) , z =

x− µ
β

(3.12)

with µ = 0 and β = 1. Starting from an initial temperature τ0, the temperature
is decreased by a multiplicative factor of α at each epoch k until reaching a final
temperature τ∞ such that

τk = max{αkτ0, τ∞}, 0 < α < 1, 0 < τ∞ < τ0. (3.13)

This cooling process makes the probability distribution steeper by each epoch
to eventually become an argmax operation. This procedure aims to encourage
the model to learn a discrete latent space with a small number of latent codes.
A visualization of the bottleneck structure can be found in Fig. 3.4.

In order to level the selection of the codebook elements, VQ-VAE framework
introduces an additional loss function, namely codebook loss. It uses the KL
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divergence between the temperature-independent posterior categorical distribu-
tions and the uniform distribution (u) such that the overall loss for VQ-VAE
becomes

LVQ-VAE
ϕ,θ,ζ = LAE

ϕ,ζ,θ + λklDKL(q̄||u) (3.14)

where
q̄ = σmax(ℓ), (3.15)

and λkl is the scale of the KL divergence from the uniform distribution. We select
the scale λkl to be 0.0005 throughout the project.

3.1.2 Generative Adversarial Network

First introduced by Goodfellow et al. [17] in 2014, GANs are generative models
that use two submodels, namely a generator (Gγ) and a discriminator (Fψ), in
a competitive setting to generate samples learned from an input distribution.
Throughout the training, the discriminator is trained to distinguish between real
and fake samples while the generator tries to deceive the discriminator with
fake samples, using random samples from a predefined distribution as input.
These two submodels are trained in an alternating fashion until the generator
can generate samples that are indistinguishable from the real ones. The loss
function for the overall model is

LGAN
γ,ψ (x, ξ) = Ex∼px [Fψ(x)] + Eξ∼pξ [1− Fψ(x̃)] (3.16)

where x̃ = Gγ(ξ) is the output of the generator, Fψ(x) is the discriminator
output, px and pξ are the data and random generator input distribution. The
discriminator is trained to increase the loss while the generator is trained to
decrease it such that

γ∗, ψ∗ = argmin
γ

argmax
ψ

LGAN
γ,ψ (x, ξ). (3.17)

Considering the common problems in GAN training, especially vanishing gra-
dients and mode collapse, we add a hinge gradient penalty term to the loss such
that the overall loss becomes

LWGAN
γ,ψ (x, z) = LGAN

γ,ψ (x, ξ) + λgpEx̂∼px̂ [(max{0, ∥∇x̂Fψ(x̂)∥2 − 1})2] (3.18)

where λgp is set to 5 throughout our experiments and x̂ is a random interpolation
between input and the generated samples such that

x̂ = ηx+ (1− η)x̃, η ∼ Uniform(0, 1). (3.19)

This version of GAN is known as a Wasserstein GAN (WGAN) [36] and the
term introduced is Wasserstein gradient penalty [37]. The main advantage of this
approach is the regularization of the gradient flow for the discriminator, which
results in escaping from local minima and avoiding a vanishing gradient.

A visualization of the GAN can be found in Fig. 3.5.
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Figure 3.5: Overall GAN architecture.

Generator

For the generator part, we use a 2-layer transformer encoder with 8 heads, suc-
ceeded by a softmax layer along each node. The graph generator implementation
has two different outputs: the codebook probabilities q̃ and the mask for the
nodes m̃. The masks are generated statistically according to the distribution of
the number of nodes N of the training set (see Fig. 4.1) and the last Nmax −N
nodes are masked:

m̃ = [ones(N) || zeros(Nmax(GTR)−N)], N ∼ p(N |GTR) (3.20)

where we can derive the mask for the adjacency matrix as M̃ = m̃m̃⊤. The
generator takes an input noise sampled from a Gaussian distribution with mean
0 and variance 1.

Discriminator

For the discriminator part, we construct two different versions: namely bottleneck
and decoder discriminators. The bottleneck discriminator aims to discriminate
the posterior categorical distributions (F b

ψ) while the decoder discriminator dif-
ferentiates the adjacency matrices (F d

ψ). Both discriminators are permutation
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invariant on graph nodes. This is achieved by using multiple pooling functions
(P) on nodes, which is inspired by the pooling mechanism in principal neighbour-
hood aggregation by Corso et al. [38]. We use four types of pooling functions,
namely maximum, minimum, summation, and standard deviation. The pooling
is applied over only the non-masked nodes.

3.1.3 Module Details

Transformer Encoder and Attention Mechanism

The rationale behind the attention is to introduce a mechanism which defines the
importance of the information for a given task. In this sense, the attention func-
tion highlights or downplays some characteristics of an input value (v) according
to the cosine similarity of a query (q) and a key (k) set:

y = Attention(q,k,v) = σmax

(
qk⊤
√
dk

)
v (3.21)

where the key vector is divided by the square root of the dimension in order to
normalize its variance. Although there are various methods, in its most known
version of self-attention, these three inputs are computed from the input (x) using
linear layers:

q =W⊤
q x, k =W⊤

k x, v =W⊤
v x. (3.22)

Furthermore, we can use numerous self-attention units simultaneously with dif-
ferent query qi, key ki, and value vi vectors owing to the parallel computational
power of GPUs. Next, a linear layer outputs the concatenated results of these
outputs.

y =W⊤
o [y1 || y2 || ... || yh]. (3.23)

This parallelization of the self-attention mechanism is referred to as multi-
head attention (MHA). This method is beneficial because it extracts higher-level
features by focusing multiple attentions on different input data structures.

As explained in [39], a transformer encoder layer is a structure of residual
multi-head attentions followed by residual feedforward networks (FFNs), with
layer normalization (LN) in between. Thus, the output of the ith encoder layer
can be represented mathematically as:

yi =LN(zi−1 + MHA(W⊤
q zi−1,W

⊤
k zi−1,W

⊤
v zi−1)),

zi =LN(W⊤
2 (W⊤

1 yi + b1) + b2 + yi).
(3.24)
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3.2 Training Procedure

For the training of the overall model, we follow a greedy approach: First, we
train the VQ-VAE part of the model and then we teach the GAN part. For the
configuration with the bottleneck discriminator (F b

ψ), the autoencoder weights
are frozen while the GAN weights are trained. For the configuration with the
decoder discriminator (F d

ψ), only the decoder weights of the autoencoder are
trained together with the GAN.

3.2.1 Autoencoder

During the training of the autoencoder, we use the loss described in Eq. 3.14.
After a series of hyperparameter searches, we decide on two main settings for
the autoencoder training, namely validation (VL) and training (TR). The former
is our standard configuration, which uses the normalized binary cross entropy
(Eq. 3.8) for the vanilla part of the VQ-VAE loss and considers the highest F1

score in the validation set for early stopping. In contrast, the latter is mainly
used to understand the possible outcomes of overfitting for the GAN training.
In this sense, in the TR configuration, we use the training set for validation
and the standard binary cross entropy (Eq. 3.7) for the vanilla part of the
overall loss, which is not regularized compared to the normalized version. In our
experiments, we see that the normalized binary cross entropy is better for both
edge and no-edge precision while the standard one achieves better recall values
and mostly better F1 score. The evaluation of the autoencoder is done on a
test set using the autoencoder weights in the epoch with the best F1 score for
validation and training sets in the VL and TR configurations, respectively. A
detailed description of the metrics used in autoencoder training can be found in
Section 4.1.1.

For both configurations, we use an AdamW optimizer [40] with a learning rate
of 0.0003, betas {0.5, 0.9}, and weight decay of 0.1. We train the autoencoder for
30 000 epochs with a batch size of 20. We use a cosine warm-up scheduler with
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3 000 epochs of warm-up duration. For the Gumbel-Softmax, we select starting
and final temperature pair of {2.0, 0.2} with a cooling rate of 0.9998. A detailed
set of hyperparameters for the VQ-VAE can be found in Table B.1.

3.2.2 Generative Adversarial Network

As described in Sections 3.2.1 and 3.1.2, there are already two configuration
decisions with two options: the type of the autoencoder training process and
the placement of the discriminator. With the two additional options for the
temperature selection of Gumbel-Softmax, overall 8 different configurations are
considered for the GAN training:

1. Autoencoder type: Validation (VL) vs. Training (TR)

2. Discriminator type:
Discriminator at Bottleneck (DAB) vs. Discriminator at Decoder (DAD)

3. Temperature selection:
Constant (CST) vs. Desired Mean of Max (DMM)

Algorithm 1 Temperature for Desired Mean of Max
Require: training set GTR, encoder Eϕ, tolerance ϵ, desired mean of max m̂
Ensure: temperature τ
1: Calculate logits for the training set: L← Eϕ(GTR)
2: Set initial temperature: τ ← τ0
3: while True do
4: Computing posterior categorical distribution with logits over temperature:

Q̃← σmax(L/τ)
5: Taking max of posterior categorical distribution: m← maxi Q̃i

6: Taking mean of max of posterior categorical distribution:
m← |V(GTR)|−1 ·

∑
j mj

7: Calculating the difference with desired: ∆← m− m̂
8: if |∆| < ϵ then
9: break

10: end if
11: Update temperature: τ ← τ · exp(∆)
12: end while
13: return τ

In the constant temperature configuration, we use the default temperature of
1.0 throughout the training while we set the temperature to achieve a DMM of
posterior categorical distributions of 0.2 on the training set, where we select the
value after a grid search of possible DMMs of {0.2, 0.5, 0.8}. For a set of graphs
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with nodes V = V |G|
i=1 = {vi}|V|i=1, we can define the mean of max of posterior

categorical distributions as:

mean_of_max(q̃) =
1

|V|

|V|∑
j=1

max
i=1:|C|

{q̃i}j (3.25)

where the Gumbel random vector has been omitted in the calculation of posterior
categorical distributions for statistical stability

q̃i = σmax(
ℓ+ E[g]

τ
) = σmax(

ℓ+ 0

τ
) = σmax(

ℓ

τ
). (3.26)

Overall, posterior categorical distributions not only have the information of
the node embeddings but also represent the relationship between codebook ele-
ments. In the extreme case of very low temperature, where the mean of max is
close to 1, the information on codebook characteristics becomes intractable by
the GAN. In the other extreme case of very hot temperature, where all the dis-
tributions become almost uniform, no information remains at all. The rationale
behind the use of DMM is that defining the mean of max directly to avoid both
extrema is a more convenient approach instead of defining a random temperature
and hoping it is not too cold or hot.

We use an iterative process to achieve this temperature with a tolerance value
of 0.001. The algorithm for the DMM is described in Alg. 1.

For the GAN, we use the loss described in Eq. 3.18. The optimization is done
with an AdamW optimizer [40] with a learning rate of 0.0001, betas {0.5, 0.9},
and weight decay of 0.0001. We train the GAN for 10 000 epochs with a batch
size of 20. A detailed set of hyperparameters of the model can be found in Table
B.2.



Chapter 4

Evaluation

4.1 Metrics

4.1.1 Reconstruction

For the evaluation of the reconstructed graphs, we consider the error on each non-
diagonal element of the reconstructed hard adjacency matrix, where the elements
of the adjacency matrix are forced to be 1 or 0 according to their closeness, using
the following metrics:

• Precision: We use two types of precisions, one for the edge elements and
one for the no-edge elements. They are defined as TP/(TP + FP) and
TN/(TN + FN), respectively.

• Recall: For the recall, we consider only the edge elements for the sake of
simplicity. We use the following definition: TP/(TP + FN).

• F1 Score: We use the following standard definition:
2× Precision(Edge)× Recall/(Precision(Edge) + Recall).

where TP, TN, FP, and FN are the number of true positives, true negatives, false
positives, and false negatives, respectively.

4.1.2 Generation

For the evaluation of generated graphs, we use Maximum Mean Discrepancy
(MMD) which is also used by Martinkus et al. [41] on three different graph
characteristics. The MMD is a distance measured between two distributions and
is defined as

MMDk(P,Q) := ∥µP − µQ∥H , µP :=

∫
k(·, x)dP (x) (4.1)

17
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whereH is a Reproducing Kernel Hilbert Space (RKHS) [42]. We used a Gaussian
total variation (TV) kernel with a variance (σ2) of 1:

kH(X,Y ) = exp

 1

2σ

(∑
i

|pi(X)− pi(Y )|
2

)2
 . (4.2)

where pi(X) is the ith index of the discrete probability distribution. The graph
characteristics used for the MMD are:

• Node Degree d:
d(vi) =

∑
j

Ai,j (4.3)

which is the number of edges incident to node vi.

• Local Clustering Coefficient c:

c(vi) =
2T (vi)

d(vi)(d(vi)− 1)
(4.4)

where T (vi) is the number of triangles including node vi.

• Laplacian Spectra λ(L̄): Eigenvalues of normalized Laplacian matrix (L̄)

L̄ = D−1/2(D−A)D−1/2 (4.5)

where D is the diagonal matrix of node degrees (d).

Other than these three, we look for the ratio of the generated samples that are
nonisomorphic to all graphs in the compared set, which we defined as novelty
measure. Moreover, we check the ratio of how many graphs are considered as
valid via the specific algorithms for the graph type.

As a general measure of success, we use the ratios of MMDs where the nom-
inator is the MMD between generated graph and the set of ground truth graphs
while the denominator is the MMD between the training set and the ground truth
set. We take the average of the ratios

RMMD(G̃||GS) =
1

3

∑
M∈{d,c,λ}

MMDM(G̃,GS)

MMDM(GTR,GS) + ϵ
(4.6)

where ϵ is a small constant (10−5) which is added to the denominator to avoid
division by zero.
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4.2 Datasets

Throughout our work, we use three procedurally generated datasets consisting of
500 nonisomorphic graphs. All datasets are separated into training, validation,
and test sets including 320, 80, and 100 samples, respectively.

• Tree is any acyclic graph without a cycle. We generate tree graphs with
100 nodes.

• Lobster is any tree graph where all nodes are within a distance of 2 from
the defined central path, which is also known as the backbone. We generate
lobsters with an average number of 75 nodes. The minimum number of
nodes is 50 and the maximum number of nodes is 100. We use 0.7 for both
the probability of adding an edge to the backbone and the probability of
adding an edge one level beyond the backbone.

• Stochastic Block Model (SBM) graphs are random graphs with a ten-
dency to have many small densely connected components, which are also
known as communities. We build SBMs randomly with [2, 5] communities
and [10, 20] nodes, which effectively gives the maximum number of nodes
100. The inter-community edge probability is 0.3 and the intra-community
edge probability is 0.05.

All the graphs used in the datasets are generated procedurally using the
Python NetworkX [43] library. The distribution of the number of nodes in the
graph datasets can be found in Fig. 4.1.
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Figure 4.1: Normalized histograms of the number of nodes in the graph datasets.
The blue, orange, and green bars show the number of nodes in the training,
validation, and test sets, respectively.
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Dataset Comparison Degree Clustering Spectral
Lobster TR-VL 1.372E-04 0.000E+00 7.601E-04
Lobster TR-TE 2.845E-04 0.000E+00 5.944E-04
Lobster VL-TE 7.183E-05 0.000E+00 8.967E-04
SBM TR-VL 2.886E-04 1.537E-02 2.978E-03
SBM TR-TE 1.181E-04 1.358E-02 3.690E-03
SBM VL-TE 6.918E-04 2.160E-02 6.572E-03
Tree TR-VL 6.667E-05 0.000E+00 3.457E-03
Tree TR-TE 4.298E-05 0.000E+00 1.681E-03
Tree VL-TE 7.027E-05 0.000E+00 4.527E-03

Table 4.1: MMD results between the sets of graph datasets. TR, VL, and TE
are abbreviations for training, validation, and test sets.

4.3 Results

4.3.1 Reconstruction

For the reconstruction part of the project, we train the VQ-VAE in two different
configurations: training (TR) and validation (VL), as described in Section 3.2.1
in detail. Considering the results showed in Table 4.2, 4.3, and 4.4, the former
configuration is more successful in recall and mostly in F1 score while the latter is
better at precision. Regarding the datasets, we can order the datasets from easiest
to most difficult to construct as lobster, tree, and SBM. In conclusion, because the
errors in the reconstruction could be overridden or used as a randomness source in
the generation part and the general structure of the graphs is somewhat preserved,
especially in the TR configuration, we can say that the graph reconstruction
might be enough for our requirements but it is not satisfactory in general.

The values of reconstruction metrics during training is given in Fig. 4.2, A.1,
A.2, and A.3. Moreover, a visualization of randomly selected samples can be
found in Fig. 4.3, A.4, and A.5.

Set Type Configuration F1 Score Recall % Precision
Training Set Training 0.923 0.927 91.9-99.8
Training Set Validation 0.705 0.545 99.7-97.9
Validation Set Training 0.769 0.740 80.0-99.3
Validation Set Validation 0.701 0.541 99.6-97.9
Test Set Training 0.775 0.755 79.5-99.3
Test Set Validation 0.692 0.531 99.5-97.7

Table 4.2: Results of the graph reconstruction experiments using the VQ-VAE
on the lobster dataset.
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Set Type Configuration F1 Score Recall % Precision
Training Set Training 0.919 0.926 91.3-99.4
Training Set Validation 0.495 0.331 98.1-82.8
Validation Set Training 0.439 0.443 43.4-95.2
Validation Set Validation 0.495 0.332 98.0-82.6
Test Set Training 0.423 0.427 42.0-95.3
Test Set Validation 0.475 0.314 97.9-82.0

Table 4.3: Results of the graph reconstruction experiments using the VQ-VAE
on the SBM dataset.

Set Type Configuration F1 Score Recall % Precision
Training Set Training 0.765 0.801 73.3-99.6
Training Set Validation 0.586 0.424 95.1-97.4
Validation Set Training 0.652 0.659 64.4-99.3
Validation Set Validation 0.558 0.396 94.3-97.1
Test Set Training 0.665 0.669 66.2-99.3
Test Set Validation 0.564 0.403 94.2-97.2

Table 4.4: Results of the graph reconstruction experiments using the VQ-VAE
on the tree dataset.

4.3.2 Generation

For the graph generation, we use 8 different configurations per dataset, regarding
the training type of the VQ-VAE, discriminator type, and temperature selec-
tion during GAN training. The details of these configurations are previously
mentioned in Section 3.2.2. Considering the results showed in Table 4.5, 4.6,
and 4.7, the average MMD ratios calculated according to Eq. 4.6 suggest that
the generated graphs are not successful in expression of the ground truth graph
structures. Considering the validity of graphs, our model is better at preserving
the general structure of the lobster and tree graphs while this is not the case
for SBM. However, it should be noted that the generated graphs for lobster and
tree graphs have very few nodes since the isolated nodes are removed at the end
of the generation process. This increases the chance of a random graph being
considered a valid one. In addition to these, contrary to the success of the TR
configuration in reconstruction, the lowest MMD ratio is always achieved with the
VL configuration for test sets. This is most possibly due to the non-overfitting
behaviour of the VQ-VAE in the VL setting which allows a more generalizable
understanding of the graph type to generate. There is no significant relationship
between the success of the model and the selection of temperature. We can make
a similar observation for the discriminator type. Finally, as a side product of the
inexpressiveness of the overall framework, the ratio of the novel graphs is 1.0 in
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(c) SBM in Validation Configuration
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(d) SBM in Training Configuration
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(e) Tree in Validation Configuration
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(f) Tree in Training Configuration

Figure 4.2: Epochs vs. F1 Scores achieved by the VQ-VAE for different configu-
rations and datasets. Validation, training, test results, and best epoch are shown
in colours blue, red, green, and grey, respectively.

all of the experiments.

Other than the numeric results of the graph generation, we can also make a
visual inspection of the generated graphs showed in Fig. A.6, A.7, and A.8. It
is evident that the generated graphs are not similar to the ground truth graph
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(a) Sample from the lobster test set

(b) Sample from the SBM test set

(c) Sample from the tree test set

Figure 4.3: Reconstructions of the test graphs by the VQ-VAE. From left to right:
ground truth (blue), reconstruction in VL (red), reconstruction in TR (green).

structures for all three datasets. In contrast to our findings on numeric results,
generated graphs for SBM seem to have relatively better similarity to the ground
truth graph structure. It can be seen that there is a certain effort to construct
communities even though there is no connection between them. On the contrary,
both generated graphs for lobster and tree show a central structure as one or a
few nodes.
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AE Disc. Temp. Degree Clustering Spectral Ratio Valid Novelty
TR DAB CST 6.75E-02 4.33E-03 1.39E-01 2.97E+02 0.30 1.00
TR DAB DMM 8.57E-02 2.03E-02 1.39E-01 8.52E+02 0.24 1.00
TR DAD CST 8.84E-02 5.90E-12 6.58E-01 4.63E+02 0.07 1.00
TR DAD DMM 3.00E+02 5.90E-07 1.13E+03 9.66E+05 0.06 1.00
VL DAB CST 4.93E-02 2.01E-12 2.43E-01 1.90E+02 0.06 1.00
VL DAB DMM 1.28E-01 5.56E-02 1.51E-01 2.08E+03 0.03 1.00
VL DAD CST 4.65E-02 3.41E-12 3.78E-01 2.61E+02 0.04 1.00
VL DAD DMM 2.21E+02 2.00E+03 9.96E+02 6.75E+07 0.09 1.00

Table 4.5: Results of graph generation on the test set of the lobster dataset.

AE Disc. Temp. Degree Clustering Spectral Ratio Valid Novelty
TR DAB CST 3.63E+02 4.15E+00 8.27E+01 9.51E+05 0.00 1.00
TR DAB DMM 4.31E+02 5.03E+00 6.86E+01 1.13E+06 0.00 1.00
TR DAD CST 2.44E+03 1.98E+00 3.33E+01 6.35E+06 0.00 1.00
TR DAD DMM 8.70E+02 1.98E+00 1.59E+01 2.26E+06 0.00 1.00
VL DAB CST 5.49E+02 7.62E+00 5.97E+01 1.43E+06 0.00 1.00
VL DAB DMM 6.70E+02 2.12E+00 4.75E+01 1.75E+06 0.00 1.00
VL DAD CST 1.22E+03 1.97E+00 1.87E+01 3.17E+06 0.00 1.00
VL DAD DMM 1.14E-01 3.30E-02 1.64E-01 3.11E+02 0.00 1.00

Table 4.6: Results of graph generation on the test set of the SBM dataset.

AE Disc. Temp. Degree Clustering Spectral Ratio Valid Novelty
TR DAB CST 9.54E-02 7.17E-03 4.02E-01 9.19E+02 0.42 1.00
TR DAB DMM 5.78E-02 1.85E-02 3.90E-01 1.06E+03 0.14 1.00
TR DAD CST 2.29E-01 1.01E+00 1.82E-01 3.52E+04 0.00 1.00
TR DAD DMM 5.01E+03 5.02E-07 3.10E+02 3.16E+07 0.04 1.00
VL DAB CST 1.29E-01 2.42E-04 4.30E-01 9.03E+02 0.11 1.00
VL DAB DMM 9.29E-02 6.11E-03 3.91E-01 8.66E+02 0.19 1.00
VL DAD CST 4.85E+03 4.08E+03 3.20E+02 1.67E+08 0.06 1.00
VL DAD DMM 2.46E-01 7.81E-03 5.30E-01 1.91E+03 0.14 1.00

Table 4.7: Results of graph generation on the test set of the tree dataset.



Chapter 5

Discussion and Future Work

5.1 Discussion

Regarding the evaluation of our framework, we are aware of various problems
and weak points:

• Insufficiency of VQ-VAE: The results of the VQ-VAE are mostly insuf-
ficient and the main training setting, namely VL, seems over-regularized.
In this manner, selecting a more stable training procedure would have been
beneficial. Moreover, the expressive power of the GNNs in the VQ-VAE
is questionable, regarding the number of samples required to have a better
validation loss is relatively high compared to the other graph autoencoder
models. One cause for this is the imposed permutation equivariance, which
limits the flexibility, and eventually generalizability of the model to some
extent. Overall, the insufficiency of VQ-VAE results in an error accumula-
tion from the graph reconstruction process to the graph generation.

• VQ-VAE as an instability source for GAN: Training a GAN already
has difficulties due to the instability brought by the competitiveness be-
tween the generator and the discriminator. Although we use a Wasserstein
gradient penalty term to avoid such problems, it is possible that the bias
introduced by the VQ-VAE also becomes an instability source. As an ar-
gument in favour of this observation, we can show the successful results of
our GAN on Gaussian distribution generation described in Section C.1.

• Independent mask generation: The mask generation is independent of
the graph generation, which means that the mask generation is not aware
of the graph structure. This might result in unwanted artefacts in the
generated graphs.

• Complexity of one-shot generation: Compared to the autoregressive
approaches, one-shot methods require constructing a new sample from
scratch. This is a relatively more difficult task for the generator, espe-
cially in the use of a permutation equivariant model, where the relationship

25
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between the vertices should be learned only by the response of the discrim-
inator. In general, this requires longer training with more data and most
possibly a more expressive generator architecture.

• Lack of a thorough hyperparameter search: Due to the period of
the project and the high computational requirements of the framework, we
could not perform a thorough hyperparameter search. Instead, the search
is mostly done in a greedy fashion during the development of the modules,
along with the evaluation of the module themselves. Hyperparameter search
is especially crucial for the GAN, for which the training process is very
sensitive to hyperparameters.

5.2 Future Work

Considering the problems mentioned in the previous section, we discuss the pos-
sible improvements for future work:

• Regarding the error accumulation from the graph reconstruction process
to the graph generation, the VQ-VAE should be improved. One of the
problems with the VQ-VAE is the training procedure, considering the over-
regularization and over-fitting behaviour in TR and VL configurations, re-
spectively. Instead, a midpoint training configuration can be used to avoid
both extrema, such as using the standard binary cross entropy loss in the
VL configuration. Still, the results suggest that changing the training con-
figurations only most possibly would not be enough to achieve satisfactory
results in reconstruction. In this sense, an overall inspection of the VQ-VAE
architecture is also necessary.

• A possible, direct and easy-to-implement improvement on the VQ-VAE is
using more informative initial GIN vectors instead of the node mask vector.
These vectors might contain information such as the degree or spectral
properties of the nodes, which might allow the VQ-VAE to capture the
node properties better and eventually increase the overall expressiveness
of the model. Moreover, in a later stage, other permutation equivariant
GNNs can be tried both for the encoder and decoder parts. In the final
case, the overall framework should be rethought. In this sense, a possible
means of improvement can be introducing an independent decoder to be
used in GAN to compensate for the imperfect decodings of the VQ-VAE.

• The transformer encoder used as the generator can be changed with a
transformer encoder-decoder. Similar to the Taming Transformers [31] and
GraphRNN [2], such an autoregressive generator could capture the rela-
tionship between the generated nodes better compared to the one-shot ap-
proach. Moreover, the mask generation process could be integrated into the
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graph generation process using an end token. Even though the generation
procedure itself is not permutation equivariant, thanks to the permutation
equivariance of the decoder, such structural change will not induce a loss in
the overall permutation equivariance of the framework [44]. The main dis-
advantage of using an autoregressive approach for generation is the increase
in the training and inference durations, which results in a compromise in
scalability, eventually.

• Increasing the size of the datasets is a natural solution to increase the
success of VQ-VAE and alleviate the instability introduced during GAN
training and overall error accumulation. A solution without changing the
total number of samples is training the VQ-VAE on a combined dataset
containing multiple graph types while training a different GAN for each
type after.

• To inspect the individual roles of the VQ-VAE and the GAN, we can train
the GAN on a different dataset from what the VQ-VAE is trained with.
This would allow us to see whether the relatively good results we see in
Fig. A.7 are the success of the GAN or the inherent bias of the VQ-VAE
to reconstruct the graphs. In addition, for the assessment of the inter-node
perception of the GAN architecture independent from the VQ-VAE, we can
conduct an additional study on two-dimensional distribution generation,
where the new dimension is defined as the node space.

• The hyperparameters of the overall framework can be tuned more thor-
oughly. This would allow us to find a better balance between the submodels,
especially between the generator and the discriminator.

5.3 Conclusion

In conclusion, we present a novel permutation equivariant framework to gener-
ate synthetic graphs using a VQ-VAE with Gumbel-Softmax and a GAN with
the Wasserstein gradient penalty. The training procedure of our model is done
greedily by training the VQ-VAE first and using the learned posterior categorical
distributions for vertices as embedding space during the training of the GAN.
For evaluation, we use graph datasets that are procedurally generated as three
well-known graph types: lobster, SBM, and tree. For the VQ-VAE part, we ob-
tain unsatisfactory results on graph reconstruction. Similar to the VQ-VAE, the
GAN part is not able to generate realistic graphs and the final results are far from
perfect. Still, the relatively good results we see in Fig. A.7 show that the model
might have some potential in the end. To fulfil this potential, the improvements
to the framework should be done in accordance with a careful inspection of the
individual modules it consists of.
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Appendix A

Additional Results

A.1 Reconstruction
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Figure A.1: Epochs vs. Recalls achieved by the VQ-VAE for different configura-
tions and datasets. Validation, training, test results, and best epoch are shown
in colours blue, red, green, and grey, respectively.
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Figure A.2: Epochs vs. Edge Precisions achieved by the VQ-VAE for different
configurations and datasets. Validation, training, test results, and best epoch are
shown in colours blue, red, green, and grey, respectively.
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Figure A.3: Epochs vs. No-Edge Precision achieved by the VQ-VAE for different
configurations and datasets. Validation, training, test results, and best epoch are
shown in colours blue, red, green, and grey, respectively.
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A.1.2 Visualization

(a) Sample from the lobster validation set

(b) Sample from the SBM validation set

(c) Sample from the tree validation set

Figure A.4: Reconstructions of the validation graphs by the VQ-VAE. From left
to right: ground truth (blue), reconstruction in VL (red), reconstruction in TR
(green).
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(a) Sample from the lobster training set

(b) Sample from the SBM training set

(c) Sample from the tree training set

Figure A.5: Reconstructions of the training graphs by VQ-VAE. From left to
right: ground truth (blue), reconstruction in VL (red), reconstruction in TR
(green).
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A.2 Generation

A.2.1 Scores

Validation Set

AE Disc. Temp. Degree Clustering Spectral Ratio Valid Novelty
TR DAB CST 6.96E-02 1.11E-13 1.37E-01 2.17E+02 0.29 1.00
TR DAB DMM 8.01E-02 6.02E-14 1.41E-01 2.43E+02 0.28 1.00
TR DAD CST 3.37E-02 3.45E-12 3.72E-01 2.37E+02 0.08 1.00
TR DAD DMM 3.80E-02 3.52E-12 3.79E-01 2.50E+02 0.03 1.00
VL DAB CST 3.03E-02 6.47E-13 1.25E-01 1.23E+02 0.05 1.00
VL DAB DMM 2.07E-02 1.14E-12 2.01E-01 1.34E+02 0.02 1.00
VL DAD CST 2.71E-02 2.13E-12 2.32E-01 1.62E+02 0.03 1.00
VL DAD DMM 5.55E-02 4.69E-12 5.12E-01 3.47E+02 0.11 1.00

Table A.1: Results of graph generation on the validation set of the lobster dataset.

AE Disc. Temp. Degree Clustering Spectral Ratio Valid Novelty
TR DAB CST 5.17E-02 5.29E-02 2.92E-01 9.14E+01 0.00 1.00
TR DAB DMM 5.18E-02 6.58E-02 2.61E-01 8.84E+01 0.00 1.00
TR DAD CST 3.41E-01 2.70E-02 1.29E-01 3.96E+02 0.00 1.00
TR DAD DMM 1.16E-01 2.70E-02 6.19E-02 1.37E+02 0.01 1.00
VL DAB CST 6.58E-02 1.32E-01 2.27E-01 1.02E+02 0.00 1.00
VL DAB DMM 8.28E-02 2.99E-02 1.85E-01 1.14E+02 0.00 1.00
VL DAD CST 1.86E-01 2.70E-02 6.92E-02 2.16E+02 0.00 1.00
VL DAD DMM 9.49E-02 3.02E-02 1.65E-01 1.25E+02 0.00 1.00

Table A.2: Results of graph generation on the validation set of the SBM dataset.

AE Disc. Temp. Degree Clustering Spectral Ratio Valid Novelty
TR DAB CST 6.52E-02 5.49E-03 4.16E-01 5.07E+02 0.35 1.00
TR DAB DMM 4.15E-02 1.55E-03 4.10E-01 2.71E+02 0.14 1.00
TR DAD CST 2.30E-01 1.01E+00 1.96E-01 3.47E+04 0.00 1.00
TR DAD DMM 2.44E-01 5.03E-12 5.42E-01 1.11E+03 0.05 1.00
VL DAB CST 1.19E-01 2.40E-03 4.31E-01 6.40E+02 0.11 1.00
VL DAB DMM 1.40E-01 3.96E-03 3.78E-01 7.76E+02 0.17 1.00
VL DAD CST 3.52E-01 6.00E-12 6.01E-01 1.59E+03 0.11 1.00
VL DAD DMM 2.00E-01 3.55E-02 5.10E-01 2.10E+03 0.11 1.00

Table A.3: Results of graph generation on the validation set of the tree dataset.
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Training Set

AE Disc. Temp. Degree Clustering Spectral Valid Novelty
TR DAB CST 3.09E-01 1.39E+00 3.06E-01 0.00 1.00
TR DAB DMM 1.76E-01 5.80E-01 5.54E-01 0.06 1.00
TR DAD CST 8.31E-02 5.91E-12 6.62E-01 0.03 1.00
TR DAD DMM 5.35E-02 5.56E-02 5.97E-01 0.05 1.00
VL DAB CST 3.95E-02 1.93E-12 2.33E-01 0.23 1.00
VL DAB DMM 3.45E-02 1.50E-02 1.54E-01 0.14 1.00
VL DAD CST 4.01E-01 1.02E+00 5.88E-01 0.00 1.00
VL DAD DMM 1.06E-01 1.03E+00 1.04E-01 0.00 1.00

Table A.4: Results of graph generation on the training set of the lobster dataset.

AE Disc. Temp. Degree Clustering Spectral Valid Novelty
TR DAB CST 1.28E-01 3.91E-02 1.33E-01 0.00 1.00
TR DAB DMM 1.08E-01 6.16E-02 2.56E-01 0.00 1.00
TR DAD CST 3.13E-01 1.88E-02 1.19E-01 0.00 1.00
TR DAD DMM 1.55E-01 1.88E-02 6.25E-02 0.00 1.00
VL DAB CST 1.37E-01 5.17E-01 2.26E-01 0.00 1.00
VL DAB DMM 1.57E-01 1.88E-02 7.40E-02 0.00 1.00
VL DAD CST 2.93E-01 1.89E-02 1.17E-01 0.00 1.00
VL DAD DMM 1.44E-01 3.93E-02 2.03E-01 0.00 1.00

Table A.5: Results of graph generation on the training set of the SBM dataset.

AE Disc. Temp. Degree Clustering Spectral Valid Novelty
TR DAB CST 1.02E-01 8.15E-01 2.89E-01 0.03 1.00
TR DAB DMM 2.51E-01 3.95E-01 4.33E-01 0.05 1.00
TR DAD CST 6.34E-01 1.01E+00 5.00E-01 0.00 1.00
TR DAD DMM 7.11E-01 1.51E+00 6.56E-01 0.00 1.00
VL DAB CST 1.81E-01 1.18E+00 2.96E-01 0.01 1.00
VL DAB DMM 7.69E-02 1.03E+00 2.58E-01 0.00 1.00
VL DAD CST 7.82E-01 2.00E+00 6.59E-01 0.00 1.00
VL DAD DMM 7.26E-01 1.07E+00 6.10E-01 0.00 1.00

Table A.6: Results of graph generation on the training set of the tree dataset.
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A.2.2 Visualization

Figure A.6: Examples from the generated random lobster graphs.
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Figure A.7: Examples from the generated random SBM graphs.
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Figure A.8: Examples from the generated random tree graphs.



Appendix B

Hyperparameters

Table B.1: Hyperparameters for the VQ-VAE

Symbol Name Value Description

dz embedding
dimension

512 dimension of the node
embeddings

|C| # codebook
elements

256 number of elements in
the dictionary

τ0 initial
temperature

2.0
initial temperature for
the Gumbel-Softmax
distribution

τ∞ final temperature 0.2
final temperature for
the Gumbel-Softmax
distribution

α cooling rate 0.9998 multiplier of tempera-
ture at each epoch

dEθ encoding
dimension

128 hidden dimension of
GIN encoder

|L(Eθ)| # encoder layers 20 number of layers in the
GIN encoder

pE encoder dropout 0.7 probability of dropout
for each encoder layer

dΣD s2s dimensions {512, 256,
128}

dimensions of layers in
the set-to-set network

dΓD g2g dimensions {256, 64,
16, 4}

dimensions of layers in
the set-to-set network

λkl KLD scale 0.0005 scale of the KL diver-
gence term for VQ-VAE
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Table B.2: Hyperparameters for the GAN

Symbol Name Value Description

dz embedding
dimension

512 dimension of the node
embeddings

|C| # codebook
elements

256 number of elements in
the dictionary

|L(Gγ)| # generator
layers

2 number of layers in the
generator

hGγ # heads in
generator

8 number of heads in the
generator

|L(FTrEnc)| # transformer
layers of discr.

2 number of layers in the
GIN encoder

|L(FGIN)| # GIN layers of
discr.

10 number of layers in the
GIN of discriminator

dFGIN GIN dim of discr. 128 dimension of GIN in dis-
criminator

dFMLP MLP dims of
discr.

{512, 128,
32, 8, 2}

dimensions of MLP in
discriminator

hFψ # heads in discr. 8 number of heads in the
discriminator

pFGIN GIN dropout of
discr.

0.7
probability of dropout
for each GIN layer of
discriminator

pFMLP MLP dropout of
discr.

0.25
probability of dropout
for each MLP layer of
discriminator

P multi-pooling
operations

{sum, max,
min, std}

operations to perform
on the node embeddings

λgp gradient penalty
scale

5.0 scale of the gradient
penalty term for WGAN
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Additional Studies

C.1 Gaussian Distribution Generation

In order to evaluate the GAN independently from the VQ-VAE, we work on a
simpler problem of generating a Gaussian distribution shape on vectors. This
problem is selected regarding that the outputs we desire from the generator are
also categorical distributions. We use the same GAN architecture with the dis-
criminator at bottleneck configuration but we do not include the Wasserstein
gradient penalty during the training. In other words, we consider each sample as
a one-node graph. Moreover, we also try using an MLP instead of a transformer
encoder for the generator.

We use a dataset consisting of Gaussian probability vectors with a support
of [−7.0, 7.0] with a size of 512, which is the number of codebook elements in
the original experiments. The mean and standard deviation of the Gaussians are
selected uniformly in [−3.0, 3.0] and [0.1, 3.0], respectively. As a success measure,
we use the KL divergence between the generated vector and the corresponding
Gaussian distribution of the same mean and variance.

At the end of 183 runs with a ranging number of epochs and dataset sizes,
we find out that the transformer encoder is a better choice for the generator.
A visualization of the generated Gaussians by the best run in terms of the KL
divergence in Fig. C.1. For comparison, the results in early epochs and in the
case of a mode collapse are given in Fig. C.2 and C.3, respectively.

C-1
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Figure C.1: Generated 3 Gaussian distributions by the best run in terms of the
KL divergence.

Figure C.2: Generated 3 Gaussian distributions in the early epochs.

Figure C.3: Generated 3 Gaussian distributions in the case of mode collapse.



Appendix D

Technical Details

The scripts for the experiments were written in the Python language of version
3.9.7. The important packages used throughout the project and their versions
can be found below:

– PyTorch [45] version: 1.10.1

– Cuda Toolkit [46] version: 11.6 (Local), 11.3 (Remote)

– PyTorch Cuda [45] version: 11.3

– PyTorch Geometric (PyG) [47] version: 2.0.2

– NumPy [48] version: 1.22.3

– NetworkX [43] version: 2.8

The experiments were conducted on Linux machines with Tesla P100-PCIE-
16GB GPU provided by the Swiss National Supercomputing Centre (Italian:
Centro Svizzero di Calcolo Scientifico, CSCS). The total computational power
used for the experiments was 4212.3 node hours.

The results are stored and analyzed via Weights & Biases.
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