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Abstract

"Grokking" is the phenomenon of late generalization, where machine learning
models jump to perfect accuracy after being in the overfitting regime for a long
time. Lacking any obvious explanation, understanding this phenomenon may lead
to new insights for modern machine learning theory. Grokking was discovered
fairly recently in 2022 by Powers et al. [1], and in this thesis, I replicated their
experiments to get a more in-depth understanding of this phenomenon. My
experiments and analysis uncovered irregular training loss spikes as a fundamental
part of grokking behaviour and I describe the details of their occurrence. In
addition, I point out different irregular learning behaviours that suggest to look
at grokking as an intricate, context-sensitive behaviour instead of a well-defined
incidence.
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CHAPTER 1

Introduction

In machine learning, overfitting is a well known problem in theory as well as
in application: a machine learning model can learn training data too "well" to
generalize to any unseen input, either by training the model for too long or
because the model is too complex. A common solution to this problem is early
stopping: the learning process is stopped when generalization capabilities of a
model do not improve for a certain amount of time. This is justified by assuming
the generalization capability curve of a model to be in a U-shape: Descending at
first while learning relevant structure of the training data, then ascending again
after fitting too close to it.

This proves to be an oversimplification, as the discovery of "grokking" [1] by
Powers et al. in 2022 shows. In this phenomenon, the generalization ability of a
model improves suddenly from guessing randomly to perfect generalization, a long
time after severely overfitting to the training data. Like double descents |2, 3],
this behaviour challenges classical machine learning paradigms. This is especially
interesting since this grokking behaviour happened using a transformer model,
which is a state-of-the-art architecture for sequential inputs and responsible for
recent advancements in natural language processing. Additionally, related work
[4, 5] seems to agree that grokking strongly correlates to representation learn-
ing, which is the process of finding relevant structures in complicated data like
pictures, videos and text and thus essential to many applied machine learning
tasks.

Understanding of this late generalization called grokking might lead to more
general understanding about these complicated models, and the uncertainty about
its causes indicates a limit in current machine learning theory. To document this
phenomenon, I will stick closely to the initial work by Powers et al. [1] and try
to reproduce their findings. This thesis is about the data gathered with my ex-
periments, with which I will present a more comprehensive picture of grokking
that also shows its vagueness and ambiguity.



CHAPTER 2

Related Work

The work of Powers et al. laid the foundation for this thesis in January 2022 in
describing late generalization for algorithmically created datasets for the first time
and calling it "grokking" [1]. The authors have written the code that I have used
in my experiments. Besides describing and visualizing grokking, they draw the
connection between dataset size and generalization ability of their transformer
model and investigate the impact of different optimization techniques on data
efficiency.

In the short time since then, several other researchers investigated this strange
phenomenon. In the paper Liu et al. released in October [4], the authors break
down grokking behaviour as a problem of representation learning. With framing
grokking as part of the interplay between a encoder and decoder, they introduce
different phases of learning behaviour with the introduction of a simpler toy
model while only considering modular addition.

A few weeks after, a subset of the same authors released another paper [6] in
which they explain grokking behaviour by looking at loss landscapes and analizing
model weight size, again with the toy setting they introduced before [4]. By
strongly regulating model weights, they achieve the introduction of grokking to
other, more common datasets like MNIST as well as the removal of grokking from
algorithmically created datasets. They highlight the especially high dependance
of algorithmically created datasets to learn good representations.

Very similar to what I observed in my experiments about spikes in training
loss and their importance on the grokking behaviour, Thilak et al. stated in |7]
that optimization anomalies coming from adaptive optimizers very late in the
learning process may be essential for grokking. They identify cyclic phases of
stable and unstable training regimes related to the norm of the last layer weights
and term it the "slingshot mechanism".

Early in 2023, Gromov managed in [5] to achieve grokking on just a fully-
connected two-layer network on modular arithmetic tasks (a subset of the algo-
rithmically created dataset used in [1]) and showed that no regularization and
nothing other than vanilla gradient descent is necessary for grokking behaviour.
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On one hand, this shows grokking as not dependent on a complex architecture
or optimizer, and on the other hand makes the learned representation humanly
analyzable by having just two layers of weights. Gromov’s work emphasizes the
notion of the work of Liu et al. [4] to look at grokking as tightly interconnected
to the representations that have to be learned by the model to solve the task, but
it challenges the notion that a clear encoder-decoder dichotomy is responsible for
grokking.

In the most recent work regarding grokking [8], Davies et al. lay the theoreti-
cal groundwork to understand grokking and double descents as different effects of
a single learning dynamic. They introduce a mathematical model with which the
learning behaviours of both different phenomena can be produced, connecting
both learning behaviours that go against classical machine learning intuition.



CHAPTER 3

Experiment

My experiments were modeled to replicate the findings of the paper by Powers et
al released in 2022 [1]. T used the code the authors submitted on Github with as
few modifications as possible. The code implemented a 2-layer transformer model
based on the pytorch lightning module for python, using an AdamW optimizer.

The model is trained to predict solutions of relatively simple equations. For
example: x + y modulo 97 for all numbers from 0 to 96, leading to a dataset
of 9409 equations. To add an abstraction layer, the numbers are substituted by
characters, so that the equations are written in the form a *b = ¢. As the model
has no information on the operation that generated the dataset, it effectively has
to learn it’s own representation of the operation.

There where different operations of varying complexity implemented in the
code. I limited myself to few of them to be able to make accurate observations. To
enhance the generality of the experiments, I also used datasets derived from the
multiplication tables of arbitrary groups with the same size. Thankfully, I could
use the group datasets my fellow student Simon Peter created in his Bachelor’s
Thesis [9].

Operations used for which the model achieved generalization:

e Addition and Subtraction (Modulo 97)
e Multiplication and Division (Modulo 97)
e 22 4+ y? (Modulo 97)

e 3 different groups from Simon Peter’s created dataset of the same size
Operations used for which the model did not achieve generalization:

e Division for even numbers, subtraction for odd numbers (Modulo 97)

e 23+ x %y (Modulo 97)
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I focused on comparing the different datasets with varying train-validation-
split percentages, with double the amount of optimization steps used compared
to the original experiment by Powers et al. [1]. Note that I did not vary other
hyperparameters used between different datasets with the objective of better
comparability. I included experiments without generalization in my analysis as
there is still interesting behaviour to be shown. A more detailed look into the
specific process of reproducing this experiment can be found in Appendix A.



CHAPTER 4

Results

4.1 Grokking

is Reproducible

The late generalization behaviour called "grokking" has occurred for datasets
generated from several different operations, including the dataset generated on
my own from multiplication tables of arbitrary abstract groups. As seen in Fig-
ure 4.1 from my own experiments, two features are very pronounced in the ideal
version of grokking as described in the paper by Powers et al. (2022) [1]:

e Perfect validation accuracy is achieved a long time after fitting to the train-
ing data (up to a 100 times later)

e The validation accuracy jumps in few steps from extremely low to perfect

accuracy

Loss
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Figure 4.1: A model case of grokking

In my experiments, this kind of grokking behaviour did happen, but only
seldom as explicit as in this example. While late jumps in validation accuracy

6
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happened regularly, the jumps varied in size and exact location and were some-
times preceded with a slow, continuous rise in accuracy, discussed later in Section
4.5.

4.2 Relating grokking to Training Dataset Size

An interesting influence on the generalization behaviour of the model are the
train-validation-splits. In machine learning, more data usually increase the chance
that the model gets generalization capacity. Grokking seems to be located in a
space where the model is theoretically capable of generalizing, but not able to
make steady, slow improvements to reach that point.

To analyze the grokking phenomenon, the authors Liu et al. released their
paper "Towards Understanding Grokking: An Effective Theory of Representa-
tion Learning"[4]. Inside, they split up four phases of learning performance by
introducing new terminology: confusion, where the model cannot even be fitted
to the training data; memorization, where the model overfits to the training data
without any generalization capability; comprehension, where a certain level of
generalization is achieved while fitting to the training data; and lastly grokking,
which is said to be a phase happening in between memorization and comprehen-
sion.

This approach gives a good intuition for the model’s learning behaviour, es-
pecially the placement of grokking in between memorization and comprehension,
which has shown to be accurate relating to different sizes of training datasets. In
Figure 4.2, the three phases of memorization, grokking and comprehension can
be seen in a relatively small range of train-validation-splits.

Group Operation (Nr. 796)

16 —— 70% training data
75% training data

14 —— B80% training data
—— B85% training data

12 —— 90% training data

10 1

Validation Loss
@

T T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

Figure 4.2: Relating validation loss to training dataset size as a fraction of the
whole dataset



4. RESULTS 8

However, the approach of having different phases implies their clean separa-
bility which cannot be concluded from my findings. Sometimes, there are jumps
in validation accuracy that are still not sufficient to reach real generalization ca-
pabilities of the model, signifying something between memorization and grokking.
Another time, there is a slow rise in validation accuracy which is capped off at
the end with a grokking-like spike, resulting in perfect generalization, signifying
something between grokking and comprehension. These special behaviours will
be addressed later in section 4.5.

My experiments highlight a clear relation between the amount of data and the
learning performance of the model. In all my experiments, if fast generalization
occurred, grokking occurred too when feeding less data from the same dataset
to the model. Conversely, if grokking occurred, fast generalization occurred too
with more data from the same dataset.

4.3 Timing of Grokking

It should be obvious that measurements on the validation data is nothing that the
model is aware of, but a way for us observers to look at the model’s capabilities.
By defining grokking as a spike in validation accuracy, we are at risk of ignoring
causality: changes in the model’s weights should be reflected in its training loss,
since that is what every optimizer tries to minimize. It seems that the training
loss does not really change after a short period of fitting to the training data
when we look at figure 4.1 from earlier.

However, this is only true when looking at absolute loss values. When we
change to logarithmic plots (figure 4.3), we can see that our training loss gets
very close to zero, but spikes again after some time by a factor of over 109,
inducing our sought-after grokking behaviour.

The learning behaviour of the model is tightly coupled with the training loss.
As a consequence, the model will not change if the training loss is sufficiently
low and cannot be decreased with small changes in the model weights, commonly
known in machine learning as a local minimum. This could explain the extreme
time delay of grokking: The model might be floating in a local minimum with
no escape, until the loss spikes again and enables the model to change for better.
Although, this does not imply that the model changes for better when a training
loss spike occurs, as there can be multiple training loss spikes without the model
getting generalization capabilities. Both cases can be seen in figure 4.4. These
cases show that the spikes of the validation and training losses mirror each other,
with each spike generating an opportunity for the curves to get closer to each
other.

It should be noted how much the timing of the late generalization varies. I
have not seen an upper bound where I can be certain that the model does not get
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Group Operation (Nr. 794) with 70% training data
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Figure 4.3: Comparing absolute values to a logarithmic scale
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Figure 4.4: Two Examples on the relation between Training Loss and Validation
Loss

generalization capabilities. I doubled the range from the 10% optimization steps
in the original paper by Powers et al. (2022) to 2% 10%, whereby the jump to full
accuracy in figure 4.4 even can be seen.

On the other hand, the lower bound for grokking is the first training loss spike.
If the model can not generalize after fitting to the training data in the first 100
steps, generalization will not happen until the training loss gets disturbed enough
for the model to find a new, better minimum. From looking at these graphs alone,
it hard to determine if these training loss spikes and subsequent grokking are an
unexpected chance for a stagnating model to achieve generalization, or if they
are an unnecessary delay of generalization by the model being to rigid.
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4.4 Training Loss Spikes

We saw in section 4.3 that grokking occurs because the model remains in a state
of very low loss, almost without any change, and then the training loss spikes by
several magnitudes. I was not able to find a clear explanation of these spikes,
but their existence is the topic of a recent paper by Thilak et al. [7], where the
authors argue the cause of these spikes to be due to an inductive bias of adaptive
gradient optimizers.

As seen in figure 4.5, the training curves vary a fair amount for different
train-validation-splits, especially considering that these experiments use different
parts of the same dataset and the same random seed to initialize model weights.
In Appendix B, similar plots for all other datasets are included.

It is clear that the operation used for generating the dataset has a big influence
on the loss curves as it determines the loss landscape; still, it is remarkable that
the spikes (as well as the flat valleys in between) occur for almost every dataset
for almost every training percentage, even if they happen at different times and
get less distinct later in the training process. At a train-validation-split of 60%,
several different experiments’ training loss curves oscillate instead of the usual
consistent drop and delayed spike. I have no explanation for this behaviour and
it might be an additional question for future research.

Subtraction Operation for different training percentages
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Figure 4.5: Broad comparison of different training loss curves (different parts of
the same dataset, same random seed)

These training loss spikes, as well as the lingering in the local minimum in be-
tween, seem to happen very consistently. They happen even where generalization
is not possible for any percentage of training data as seen in Figure 4.6. They
also happen when grokking has occurred already and the validation accuracy is
perfect, as can be seen in Figure 4.4. The optimizer will disturb the model after
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some time, even if it is already located in the best local minimum. But still, the
quality of the local minima of the model do matter, as not once in my experi-
ments the model jumped to a minimum that generalized worse. In other words:
There is no un-grokking.

x*+x*y Operation with 65% training data
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Figure 4.6

4.5 Irregular Validation Accuracy Curves

My experiments provided lots of data worth analyzing. In this section, I want to
show some selected figures that depict edge cases and more messy situations, in
an attempt to show grokking as something that is hard to define clearly and is a
consequence of various factors.

In Figure 4.7, grokking is not happening all at once, but split up in two distinct
steps. Otherwise, the learning behaviour looks like exemplary grokking as the
validation loss as well as the validation accuracy are stable for the majority of the
time. The first jump is not as steep as the second one, so it looks like grokking
needs some wind up.

In Figure 4.8, there is quite good generalization from the start, very similar in
appearance to the instantaneous generalization also called comprehension. For
grokking to occur, there are still many optimization steps needed. The small
training loss spikes before the actual grokking seem to have no influence at all on
the validation loss and validation accuracy.

This is most likely due to the symmetry of the multiplication operator used to
generate that dataset, as similar behaviour can be seen with the addition opera-
tion and, to a lesser extent, the squares-addition operation (22 4 3?). As Powers
et al. mention in their work [1], the transformer model can just ignore position
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Division Operation with 60% training data
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12

embeddings to explain all the duplicates in the dataset. This aspect of model
architecture might account for the instantaneous high level of generalization on

its own.

Multiplication Operation with 55% training data
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In Figure 4.9, after a high base level of generalization which might indicate a
symmetrical operation, the validation accuracy rises approximately linearly and
is almost perfect when the first grokking spike would have occurred at about
40000 steps. While generalization is still reasonably slow, this signifies that the
model is not located in any local minimum. The training loss spikes definitely
accelerate the changing of validation loss, but are not essential to get to better

accuracy.

In Figure 4.10, no perfect generalization is achieved after 2 * 106 steps. Still,
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Group Operation (Nr. 795) with 60% training data
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the validation accuracy is rising, though it is hard to say if the training loss spikes
do or do not help the process. Especially after 50000 steps, the spaces between
the training loss spikes seem flat, which would suggest that these plateaus are in
fact different local minima and there is an almost unlimited amount of them. If
on the other hand the training loss spikes do not help in generalization, this would
be inconsistent with all other findings according to which these spikes may not be
necessary for achieving good generalization capabilities, but certainly accelerate

that process.
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CHAPTER 5

Conclusion

In my experiments, replicating the original work of Powers et al. [1]|, and sub-
sequent analysis thereof I have shown examples of grokking in different cases
(including a newly incorporated dataset) and confirmed its connection to the
amount of training data. Empirically, I have shown grokking to be bound to
training loss spikes which coincides to the discovery of the "slingshot mechanism"
by Thilak et al. [7]. The timing of these spikes varies a lot, is not consistent over
different datasets and also gets less distinct over time; this only was observable
by doubling the original experiments’ initial time frame. It might be sensible to
take even longer time frames into account, as the grokking-inducing instability
of the models rather increased than decreased.

The phenomenon of grokking remains puzzling and its impact on machine
learning theory hard to assess. In a case-by-case inspection of my experiments,
several special cases of grokking could be observed, including: grokking split up
in multiple steps; remaining at a validation accuracy well above chance level be-
fore jumping grokking-like to perfect accuracy; the validation accuracy steadily,
but slowly rising until capped off by a grokking-like jump; the validation ac-
curacy rising slowly with no sign of grokking. These are some phenomena any
comprehensive theory of grokking has to explain.

14
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APPENDIX A

Reproducing the Experiment:
Problems and Solutions

Reproducing the experiments of the original grokking paper [1] has turned out
more complicated than initially anticipated. This is a recap of my process that
might help anybody interested in running this code by themselves. A link to the
original code can be found on in the footnotes!.

The first challenge was setting the conda environment up correctly. The
authors of the code did not specify which version of the python packages they
used, and neither did they respond to comments on their Github page. I had to
try out different versions of the python packages used based on when I assumed
the original authors to have started working on their project. On the Github page
for this thesis? I uploaded a working environment setup as a requirements.txt.

Thankfully, I was able to do computations on the Arton cluster from the
ITET-department, and with it I got to use SLURM for the first time. As the
experiments had to store quite an amount of data, running the experiments was
not possible from my standard ETH-student account, so I had to use the shared
online storage net-scratch, which in turn also required to re-install conda to also
be located in the same online storage system. With the correct setting of paths,
bash-jobs calling python scripts could be submitted on SLURM.

Running the experiments is done by calling the file "train.py" in the folder
"scripts". Parameters could be passed on by additional arguments, while the
important ones had to be figured out as the code was lacking in documentation.
The parameter "datadir" had to be defined but was not used, while "logdir" was
the place where the experiment data was stored in the end. All dataset, model
and optimizer settings can be specified here. To achieve any form of generaliza-
tion, the hyperparameters have to be tuned. I tried around for some time, mostly
going by the parameters Powers et al. suggest in their original grokking paper [1].
The most crucial parameter is "weight decay" for the AdamW optimizer, which

1Original Work by Powers et al. at https://github.com/openai/grok
2A Github Repository for files related to this thesis can be found at https://gitlab.ethz.
ch/disco-students/hs22/investigating-grokking
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REPRODUCING THE EXPERIMENT: PROBLEMS AND SOLUTIONS A-2

I set to 0.01, while frequently varying "math operator", "train data_ pct",
"max_steps" and "random seed". All the default parameters of the custom
AdamW optimizer can be found in the project code.

To be able to include datasets generated from the "Groups" database Simon
Peter has created in his Thesis [9], I first converted single groups to CSV files,
formatted them in a consistent way, and then changed the files "data.py" and
"training.py" from the folder "grok" to be able to account for these new groups.
These two files can be replaced to get the additional option to choose "custom" as
"math operator" while putting in the dataset name as a newly created argument.
The code is flexible enough to incorporate groups of arbitrary size, as long as they
were created with my own script. The two customized files as well as my script
to extract CSV files from the "groups" database can be found on the Github
repository?.

To generate plots using the code the authors provide, one can use the file "vi-
sualize metrics.py", also located in the folder "scripts". As the input parameter,
the folder one level above the folder with the experiment data has to be chosen
or the script does not work. But only a single folder may be in that input folder,
effectively requiring the experiment data to be saved in anotherwise empty folder.
As some automatically generated paths did not work, I had to rewrite the code
to fit to my folder structure, and I also added an additional argument for further
use. There were other scripts in the "script" folder that also involved plotting
data, but I could get none of them to work except "visualize metrics.py". Unsur-
prisingly, I discourage using their python script to generate plots. Still, I added
all plots generated with this method to the Github repository?.

As I discovered later in the process, an easier way for me to analyze the data
was to find the raw data and process it using my own python code. The CSV-file
containing the raw data can be found at " /default/version 0/metrics.csv" inside
the folder the experiment data was stored in. But there is an additional particu-
larity: There might be several different subfolders inside the folder "default". In
that case, the highest version has to be picked, or else the data is incomplete. I
included my own code for extracting the data and generating plots, used for all
figures in this thesis, in the Github repository? as a possible template.
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APPENDIX B

Additional Figures

Group Operation (Nr. 794_0) for different training percentages
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Group Operation (Nr. 794_1) for different training percentages
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ADDITIONAL FIGURES

Group Operation (Nr. 796) for different training percentages
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Squares-Addition Operation for different training percentages
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