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Abstract

In this project, we investigate a classical approach of an Electroencephalography
(EEG) based gaze estimation. EEG data is often noisy and is affected by baseline
drift, and needs to be preprocessed before modelling. We propose a wavelet
packet based approach to remove baseline drift from the EEG data. We then use
a regression model to map the EEG data to the eye movement data and compare
results to basic linear regression.
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CHAPTER 1

Introduction

Electroencephalography (EEG) is a non-invasive and convenient method of mea-
suring electrical brain activity through electrodes placed on the scalp. It is
recorded as a series of signals representing the brain activity over time, which can
then be analysed to detect any abnormalities and patterns in brain activity. In
medical applications, EEGs are often used to detect neurological and psychiatric
conditions such as epilepsy |1, 2|.

In works by Kastrati et al. [3, 4], state-of-the-art deep learning models have
been deployed to investigate the possibility of using EEG signals containing Elec-
trooculography (EOG) electrodes to predict eye movements recorded by an eye
tracker. However, these models are not easily explainable, and the reliability of
the predictions is not guaranteed. In this project, we investigate the possibility of
using a more traditional approach to perform the same task, by using a wavelet
packet and regression-based model to map signal to signal.

The ideas in this project closely follow the work of [5, 6]

1.1 Types of eye movements

We aim to extract three different eye movement features from our model: sac-
cades, fixations and blinks |7].

e Saccades are fast eye movements that rapidly move the gaze from one lo-
cation to another, causing an instant change in gaze position. These fast,
coordinated movements are used primarily to shift the direction of gaze
toward an object of interest. Saccades can be executed voluntarily (e.g.,
when reading) or involuntarily in response to a reflex or stimulus.

e Fizations are defined as time periods without saccades.

e Blinks are short periods of time where the eyes are closed and are a special
case of a fixation.
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Figure 1.1: Eye Movement with saccade and fixation marked

1.2 Dataset

Data from EEGEyeNet (http://www.eegeye.net) [3] was used. Specifically, the
dataset “path task with dots” was used, consisting of a 128-channel EEG signal
time series as well as eye movement data in a single stream. The “Large Grid”
experimental paradigm was used, where participants were asked to fixate on a

series of dots that are sequentially presented each at one of 25 different screen
positions.
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Figure 1.2: Large Grid: Experimental setup
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CHAPTER 2

Theory

2.1 Preprocessing: Kalman Filters and Median Filters

Initially, a Kalman filter was used to preprocess the EEG data. The motivation
behind this was that fusing information from multiple data streams provides the
ability to combine several inaccurate and noisy sensors into a combined unit with
increased performance. Since the EEG data was very noisy, that fusing data
from multiple electrodes would provide us with a smoothening effect on the EEG
signal, producing better eye tracking predictions.

2.1.1 Kalman Filters and Sensor Fusion
This section follows [8].

Kalman filtering is an algorithm used to fuse information from a series of mea-
surements and sensors to produce a more accurate estimate. It consists of two
main steps: the prediction step and the update step. In the prediction step, the
filter predicts the joint probability distribution over the variables of current state
of the system based on the previous state estimate and its dynamics. The predic-
tion also provides an estimate of the uncertainty associated with the predicted
state. In the update step, the filter updates the state estimate and the associated
uncertainty based on the new measurement and the measurement model.

Consider a recursive linear dynamical system Kalman filter:

Tpy1 = Frar + Bug + wy, (2.1)
yr = Hrxp + e
E(x1) = 531\07
where we assume that at time &k, we would like to estimate the parameters of teh
pdf of the state xj given information of the measurements yi, ..., yi, and where
Zy); denotes the estimate of xj given information of the measurements yi,. .., y;.

Additionally, we can use Kalman filters as a signal smoothening technique. By
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delaying the signal by n samples, we can essentially create a moving average filter
(for further reading, see [9]. The smoothening can be seen below:

Patient 22: Left side with Kalman filter smoothing
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Figure 2.1: Kalman filter applied to left side EEG. Orange arrows indicate base-
line drift

During the smoothening process, we also noticed baseline drift (see Figure 2.1
above). The orange arrows indicated a slow signal change in the EEG signal,
which the Kalman filter alone was not able to remove. In addition, in order for
the Kalman filter to work most effectively, we would need to have a model of
the dynamics of the system, which are not available in the case of a 128-channel
EEG signal. Therefore, we decided to use a different preprocessing technique,
the 1D median filter, to simplify the smoothening process, and used a wavelet
packet transform to remove baseline drift.

2.1.2 Median Filters

A median filter is a non-linear digital filtering technique, often used to remove
noise from an image or signal. It replaces each pixel with the median of its
neighboring pixels. This reduces the effects of impulse noise in an image or
signal. The median filter is a non-linear filter, meaning that the output is not a
simple function of the input.

2.2 Baseline Drift removal and Wavelet Transforms

Baseline drift is a defined as a slow signal change in the EEG signal. Baseline
drift does not affect saccade detection, but it does affect detection of fixations
and blinks. To perform baseline drift removal, we follow an approach based on
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electrocardiography (ECG) signal processing [6]. The proposed algorithm per-
forms a multilevel 1D wavelet decomposition at level 9 using Daubechies wavelets
on the left, right and front channels of the EEG signal. The reconstructed de-
composition coefficients are removed, and the remaining coefficients are used to
estimate the baseline drift. The baseline drift is then subtracted from the original
EEG signal, yielding the corrected signals with reduced baseline drift.

Time (s)
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0‘5’ i PPTPrE T )
o0 5 10 15 20 25

Time (s)

Figure 2.2: ECG Signals with estimated baseline drift, as well as its removal.
From (6, Figure 6]

2.2.1 Wavelet Transforms

Wavelet transforms are signal processing methods used to decompose signals into
a linear combination of simpler functions called wavelet functions. They are re-
lated to Fourier transforms: whereas a Fourier transform creates a representation
of the signal in the frequency domain, the wavelet transform creates a represen-
tation of the signal in both the time and frequency domain. This allows us more
efficient access of localized information about the signal [10].

A wavelet system is a two-dimensional system used to construct a signal. We
would like to decompose the signal f(t) into basis functions of a mother wavelet
¥ (t), which is a function of time. The wavelet decomposition of our signal f(t)
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is defined by the following equation:

fOy = > crplt—k Z Zd]kw (27t — k) (2.4)

k=—00 k=—o00 j=0
where ¢, are the scaling or coarse coefficients, d;; are the wavelet or detail level
coefficients, and ¢(t) is the father wavelet.

The mother and father wavelets are related by the following recursion:

Z V2hy (k)p(2t — k) (2.5)
Z V2ho(k)p(2t — k), (2.6)

where hg and h; are the are low-pass and high-pass filters respectively. The
benefit of this recursive nature is that, once one of the ¢s is known, the rest of
the coefficients can be simply calculated with a linear transform.

We then follow the following schematic for baseline drift removal:

ECG signal contaminated
with baseline drifts
s(n) = ecg(n) + bw(n)

——

‘Wavelet packet transform

Wik = WT{s(n)}
J{ j=i+l

Energy at level J

o N o

2

E}{k: > ‘dj,k| LEj = > leml
ke—o me—o

l

Threshold level
Bk~ | = B

m = “c’or*d”

lNo

Inverse wavelet transform
bw(n) = WT 1 {Wjy}

Yes

Figure 2.3: Baseline Drift Removal Flowchart, from [6]
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We cannot use simple digital filtering to remove baseline drift, since it may also
remove fixations. Thus we assume that the EEG signal and baseline drift are a
linear combination of two independent signals,

f(t) = EEG(t) + BL(t)

Firstly, the wavelet transform of the signal is computed using a Daubechies-4
mother wavelet. Since high-frequency components are mostly focused on low-
level scales, so it is expected to observe the baseline drift in larger scales. [6]
then proposes that in each scale using the wavelet coefficients, the energies of
the signal for both the coarse and detail levels are calculated. These energies
represent the energy of the decomposed signal in assumed scales as

x 0
d
Efp= > lal®s  Ef= ) ldl

k=—00 k=—o00

In the above equations, ES . is the energy of the signal in the coarse level of scale

j (low-pass filtering branch), and E}i i 1s the energy in the detail level of the signal
at scale j (high-pass filtering branch).

The following step in the algorithm involves comparing energy levels and selecting
the binary tree branch with the highest energy. This process determines the
best basis functions for the decomposition. The algorithm follows the path of
the higher energy branches until the energy difference exceeds a predetermined
threshold level, Ey,. At this point, the binary tree search ends and the baseline
drift signal is obtained by performing the inverse wavelet transform of the wavelet
packet coefficients of the last scale. To eliminate the baseline drift, the estimated
baseline wander is subtracted from the original data record, resulting in a baseline
drift-removed EEG signal.

We will now explain the different types of wavelets in more mathematical detail.
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2.2.2 Daubechies Wavelets

The Daubechies wavelets are a family of orthogonal wavelets with compact sup-
port, meaning that their wavelet coefficients are nonzero for only a finite number
of scales. They also have a high degree of regularity, which makes them compu-
tationally efficient [11].

The Daubechies wavelets are identified by a number, such as “Daubechies-4” or
“db4”, which indicates the number of vanishing moments. The vanishing moments
are a measure of the smoothness of the wavelet function, and the higher the
number of vanishing moments, the smoother the wavelet function.

Wavelet: dbl at level 9 Wavelet: db2 at level 9
1.00 1 —— scaling
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Figure 2.4: Daubechies wavelet plots for dbl, db2, db4 and db9

2.2.3 Saccade Detection

We attempted to reduced the aggressive trend removal of the initial baseline
drift removal algorithm by accounting for saccades. In a similar fashion to [5,
Section 4.3.1|, we firstly analysed the EEG stream in batches and used a basic
thresholding method to detect possible saccades. The maximum and minimum
values of the EEG signal were calculated for each batch, and if the difference
between the maximum and minimum values was greater than a threshold, then
a saccade was detected and the baseline drift was not performed for that batch.



CHAPTER 3

Experiments

For the experiments, data from EEGEyeNet [3| was used. The dataset “dots”
consists of a 128-channel EEG signal time series as well as EOG eye movement
data. A total of 8 channels were used, based on the Top3 electrodes from [4,
Section 4.3]: 128, 32, and 38 for the left electrodes, 125, 1 and 121 for the right,
and 17 for the front.

Code for all experiments can be found at
https://github.com/way-ze/eegeyetracking

Patient 22: Left side electrodes Patient 22: Right side electrodes
40 1 —— Electr_128 | —— Electr_125
—— Electr_32 | —— Electr_1
1l - 300 | -
A —— FElectr_38 —— Electr_121
20 4 j“f\ﬁl f —— Left Average | —— Right Average
< W < 200 |
@ @
o o
T T |
S S 100 ,\ﬂ e
—20 | " f ]
= = I | el
—40 0
—60
T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time (ms) Time (ms)

Figure 3.1: Left and right EEG channels averaged

3.1 Preprocessing

We use the median filter to smoothen out the signal. From now all, all data
analysis will be perfomred on the filtered signal components.
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Patient 22: Front with median filter
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Figure 3.2: Front EEG channel with median filtering

3.2 Wavelet Transform

The package pywavelets [12] was used to perform the multilevel 1-D wavelet
transform at level 9. The Daubechies-4 wavelet was used.

What was observed was that the coarse coefficients (denoted by pywavelets as
cA) made the biggest difference in terms of baseline drift removal (see figure 3.3).
Setting all the cA coefficients to zero exhibited in setting the mean of the signal
to zero. This is because removing the coarse coefficient essentially removes trend
elements. Removing the detail coefficients exhibited in a smoothing effect (see
figure 3.4).

3.3 Linear Regression

The python package sklearn was used to perform linear regression on the baseline
transformed data with coefficients cA, ¢D7 and cD8 removed. The linear regres-
sion model was trained on the EP22_DOTS1_EEG consisting of 156908 samples,
and then tested on another data series from the same patient EP22_DOTS2_EEG
with another 157658 samples. The MSE was calculated on the test set.

3.3.1 Saccade Detection

Following Section 2.2.3, we used a basic thresholding method to detect possible
saccades. The thresholds were set to 60 for the left and right channels, and 100
for the front channel and were tuned by manual inspection. Batch size was set
to 400 samples.
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3.4 Results and Plots

3.4.1 Results

Method MSE x MSE y
Linear Regression, no BLR 16568 31144
Basic BLR, cA, ¢D7, ¢cD8 removed 42622 26624
BLR, cA, ¢D7, ¢cD8 removed with Saccade | 33806 25540

3.4.2 Plots

Patient 22: Front with cA coeff removed, dbl Patient 22: Front with cA coeff removed, db2
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Figure 3.3: Wavelet transform of EEG signal with and without coarse coefficients.
Note the similarities between the baseline (blue) and the scaling functions 2.4
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Patient 22: Front with cD7. cD8 coeff removed, dbl Patient 22: Front with cD7. cD8 coeff removed, db2
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Figure 3.4: Wavelet transform of EEG signal with and without detail coefficients
7 and 8, resulting in a smoothening effect 2.4
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Figure 3.5: Linear regression performed on baseline drift removed EEG signals
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Linreg Pred and EyemovX with saccade detection
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Linreg Pred and EyemovY with saccade detection
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Figure 3.6: Linear regression performed on saccade thresholding baseline drift

removed EEG signals
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3.5 Discussion and Outlook

The plots show that the baseline drift removal is not functional. The baseline
drift removal algorithm effect can be seen in Figure 3.5. We notice a similar
effect to Figure 3.3 where the entire trend was removed, and the predicted eye
movement was centered around the mean of eye movement x = 400 and y = 300
respectively. This phenomenon can be further observed in the three other plots
with the left, right and front EEG signals at the same time points, where the
trend is completely removed.

With the naive saccade detection thresholding method, we were able to reduce
the MSE from the basic baseline removal algorithm, however, in the eye tracker z-
component, the MSE was still higher than basic linear regression without baseline
drift removal.

Performance of the baseline drift removal algorithm can be further improved
by using a more sophisticated saccade detection algorithm. For example, when
saccades are not detected, the baseline drift removal algorithm means the EEG
signal to 0 for that window instead of where the saccade was left off, resulting in
an artificial jump in the EEG signal.

Another possible improvement would to use a more sophisticated thresholding
method incorporating a continuous wavelet transform as described in [5, Section
4.3.1].

Lastly, instead of using linear regression, we could use other regression models
such as LASSO or Ridge regression to further improve the predictions.
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