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Abstract

In this thesis, we seek to enhance the predictive accuracy of Graph Neural Net-
works (GNNs) through adapted inference, driven by the motivation that certain
problems, due to restricted computational power, are challenging to solve in a
one-shot approach. Recognizing that for algorithmic problems or logic puzzles,
solutions can be found by breaking up the problem and solving the subproblems
(a method similiar to human reasoning), we explore this path. Our approach
leverages hints during the training phase, a technique effective even when hints
are absent during inference, and applies them to a spectrum of problems including
Maximum and Maximal Independent Sets, and complex puzzles like Sudoku and
Kakuro (both NP-Complete). To facilitate the handling of partially solved prob-
lems that might not naturally occur during training, we integrate data prepro-
cessing techniques. The sequential problem-solving method employed achieves
substantial improvements in performance, utilizing GNNs to discern patterns
and connections within graphs. The applications extend to solving Sudoku and
Kakuro puzzles, showcasing the adaptability and far-reaching implications of our
techniques.
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Chapter 1

Introduction

The rapid advancement of Graph Neural Networks (GNNs) has brought fresh
perspectives to many complex problems, such as those found in network design,
routing optimization, and intricate logic puzzles. [Zhou et al., 2020]. Tradi-
tional algorithms have often found these problems to be intractable, due to some
falling into NP-Complete [YATO and SETA, 2003]. In complicated tasks, hu-
mans naturally gravitate towards iterative methods, breaking down the problem
into smaller, manageable parts [Newell et al., 1972] which is what we would like
to mimic.

In human problem-solving, breaking down complex tasks into smaller stages
is a natural and often necessary strategy. This step-by-step approach enables us
to navigate challenges by solving intermediate, simpler problems [Elman, 1993].
However, Graph Neural Networks (GNNs) do not always have the luxury of ac-
cess to these intermediate stages during training. In puzzles like Sudoku and
other intricate challenges, the solutions at some stages may never be encoun-
tered during the training process. This lack of access to partial or intermediate
solutions can hinder the model’s learning and generalization abilities. Augmen-
tation comes into play here, as a method to bridge this gap. By supplementing
the original training data with additional information or ’hints’, such as partially
solved problems, the augmentation process transforms the learning approach into
a more semi-supervised one.

In the context of Graph Neural Networks (GNNs), iterative solving offers a
compelling advantage. By predicting one node at a time and integrating this
information with the original data, the model can continuously refine its predic-
tions, zeroing in on yet-to-be-solved nodes. This is not merely a replication of
conventional one-shot methods but a significant enhancement, allowing for the
inclusion of intermediate hints as constructive feedback.

In this thesis, we delve into essential questions regarding the integration of
augmentation and iterative solving with Graph Neural Networks (GNNs). How
does augmentation enhance training and testing? In what ways can iterative
solving contribute to increasing accuracy? How do these techniques compare
to traditional one-shot approaches within GNNs? Furthermore, how do these

1



1. Introduction 2

methodologies stand in comparison to other neural network architectures like
Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs)?
The exploration of these questions aims to not only increase our understanding
of these processes but also to identify potential advancements and optimizations
within the field of machine learning.



Chapter 2

Methodical Approach

Augmentation

In graph-based learning, the dataset may be either unsupervised or semi-supervised,
lacking sufficient information to represent various intermediate states. This can
include scenarios such as partially completed puzzles, almost fully completed puz-
zles, or, in the context of node classifications in graphs, all possible states ranging
from incomplete to nearly fully-labeled cases. To navigate these challenges and
transition a unsupervised dataset into a semi-supervised dataset, our approach
employs an augmentation strategy designed to fill these gaps.

The first step involves recognizing the various intermediate states or degrees
of completion that the problem can exhibit. This encompasses scenarios such
as partially completed puzzles, nearly fully completed puzzles, or, in the case
of node classifications in graphs, all possible states ranging from incomplete to
nearly fully labeled cases.

The label augmentation process selectively augments labels for each node,
creating new augmented graphs that are included alongside the original, non-
augmented graphs. This inclusion ensures that the Graph Neural Network (GNN)
is capable of making predictions not only for augmented graphs but also for
original data points. By representing all possible states a GNN might encounter,
the augmentation process not only transitions unsupervised datasets into a semi-
supervised learning context but also enriches the learning experience by exposing
the model to a complete spectrum of states. The comprehensive nature of this
approach enhances the model’s ability to generalize and adapt, reflecting a more
realistic range of problem-solving scenarios.

Iterative Solving

In this section, we introduce an iterative solving approach for node classification
problems within a graph-based learning framework. The process is formulated

3



2. Methodical Approach 4

through the following steps:

Given an input graph G = (V,E), the trained model predicts the labels for
all nodes, formulated as:

Ŷ = Model(G), (2.1)

where Ŷ ∈ R|V |×c represents the predicted labels for all nodes in V , and c is the
number of classes.

Among the predicted labels, the node with the highest certainty for its end
label is selected:

i = argmax
i

certainty(Ŷi), (2.2)

where i denotes the index of the node with the highest certainty.

The graph and node attributes is subsequently updated to include the pre-
dicted label for the selected node:

G′ = update(G, i, Ŷi). (2.3)

The process outlined above is exexcuted iteratively until all nodes are pre-
dicted.

The iterative solving approach in graph-based learning allows the model to
adapt to complex relationships, building upon nodes with a high degree of cer-
tainty.



Chapter 3

Preliminaries

Many phenomena in our world can be effectively represented as graphs. In these
graphs, nodes and edges encode various types of information. For instance, social
media platforms can be visualized as graphs with users as nodes and their inter-
actions or connections as edges. Similarly, molecular structures, transportation
networks, the World Wide Web, power grids, and collaboration networks all lend
themselves naturally to graph representation.

At the core of our interest is understanding the inherent properties of these
models, especially the characteristics of individual nodes. This leads us to the
task of ’node classification’, wherein we aim to determine specific attributes of
nodes. Additionally, there’s ’graph classification’, a broader task that focuses on
discerning the overarching attributes of an entire graph.

Historically, classical algorithms were employed to address these challenges,
where the objectives were well-defined. However, in recent years, a new paradigm
has emerged: Graph Neural Networks (GNNs). In GNNs, data is processed
through neural networks using a series of message-passing layers. Our research
objective is to set benchmark performances for GNNs and evaluate their capabil-
ities. We are also keen on investigating whether tweaking our datasets can lead
to enhanced performance.

3.1 Models

3.1.1 RecGNN

In the realm of Graph Neural Networks (GNNs), scalability and adaptability are
paramount. As GNNs inherently operate at the node level by exchanging mes-
sages with neighboring nodes, they possess the potential to be trained on smaller
graphs and then be seamlessly applied to considerably larger ones. However,
the innate flexibility of GNNs, which allows them to be trained for a predefined
number of message-passing rounds, can sometimes be a limiting factor. This is
particularly evident in scenarios where information must be propagated across

5



3. Preliminaries 6

the entire graph, a task which cannot always be achieved within a fixed number
of rounds.

To tackle this challenge, a model, termed RecGNN, was introduced [Grötschla
et al., 2022]. The essence of RecGNN lies in its recurrent architecture, which
empowers it to learn graph algorithms end-to-end. This design choice means
that while training is conducted on smaller graphs, during inference, the model
can judiciously adapt the number of convolutions and run for more rounds on
larger graphs.

Modification to RecGNN

In the development of the RecGNN model, its primary architecture is optimized
for node classifications, focusing exclusively on node attributes. However, in
many real-world graph scenarios, edge attributes play a significant role in deter-
mining the graph’s structure and features. To enhance the utility and versatility
of the RecGNN model, we have integrated edge attributes into the message-
passing step.

The original formula for the RecGRU-E convolution is:

ht+1
v = GRU

 ∑
w∈N(v)

Θ(htv||htw), htv

 (3.1)

Where:

• ht+1
v represents the hidden state of node v at the next time step.

• N(v) denotes the neighboring nodes of node v.

• htv and htw are the hidden states of nodes v and w at the current time step
t.

• Θ is a weight matrix.

• || denotes concatenation.

To integrate edge attributes into the RecGNN model’s convolution process,
we propose a modified formula:

ht+1
v = GRU

 ∑
w∈N(v)

Θ(htv||htw + MLP(evw)), htv

 (3.2)

Where:
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• evw represents the edge attribute between nodes v and w.

• MLP is the transformation function that projects the edge attributes into
a representation compatible with the node hidden states.

This formula allows the model to consider both node and edge attributes
during the message passing. With this integration, the RecGNN can harness the
intricacies of edge data, enriching its understanding and predictions on the graph.

3.1.2 Convolutional Neural Network (CNN)

Many real-world problems exhibit patterns that can be captured using a grid-like
structure, especially when spatial information is crucial. Convolutional Neural
Networks (CNNs) serve as the ideal architecture to exploit such spatial struc-
tures. CNNs function by systematically scanning the input data through a series
of convolutional layers using a small, overlapping window termed as a kernel.
Through this method, CNNs can adaptively learn spatial hierarchies of features
from images, starting from basic patterns like edges and corners in initial layers
to more complex ones in deeper layers.

The primary advantage of CNNs lies in their capability to retain and process
spatial information. This inherent ability makes them indispensable for problems
where spatial context is pivotal. By conserving the relative positions of data,
CNNs can discern patterns fundamentally rooted in spatial configurations.

For the specific problems under consideration, our CNN model is defined as
follows:

L = Total layers (7 in our case) (3.3)
K = Kernel size for each layer (3x3) (3.4)
C = Number of channels produced by each convolution (512) (3.5)
P = Padding, which duplicates edge information to preserve input size (3.6)

The model’s architecture can be represented as:

CNN(L,K,C, P ) =

L⊕
i=1

Conv2D(K,C) + BatchNorm() + ReLU() (3.7)

Where:

•
⊕

denotes the sequential combination of layers.
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• Conv2D represents the 2-dimensional convolutional layer.

• BatchNorm signifies the batch normalization layer, instrumental in stabi-
lizing and expediting the training.

• ReLU is the activation function employed.

3.1.3 Recurrent Neural Network (RNN)

Sequential data, like the series of numbers in a Sudoku puzzle, often contain
dependencies across time or sequence positions. To effectively learn and represent
these dependencies, Recurrent Neural Networks (RNNs) are employed. Unlike
conventional neural networks which assume independent inputs, RNNs maintain
a memory, encapsulated in their hidden state, which captures information about
previous parts of the sequence. This makes them particularly apt for tasks with
temporally correlated data or where the problem’s structure involves a series of
interlinked decisions.

In our experiments involving Sudoku puzzles, RNNs were chosen as a baseline
due to their inherent nature of retaining memory and state. This choice reflects
our approach of utilizing intermediate outputs as feedback, thereby continuously
refining the predictions based on historical data. Specifically, the method mirrors
human intuition, where one might iterate through a Sudoku puzzle multiple times,
making corrections and filling in numbers based on previous observations.

We settled on using GRU (Gated Recurrent Units) over the traditional RNN
structures because of its efficiency. GRUs are designed to combat the vanishing
gradient problem in RNNs without increasing computational demands as much
as its counterpart, the LSTM (Long Short Term Memory). Empirical studies
have further demonstrated that the performance of GRUs is often on par with
LSTMs, despite their relative simplicity and smaller model size.

For our problems, the RNN model specifics are:

H = Hidden Dimension (128) (3.8)
L = Number of layers (3) (3.9)
B = Bidirectional GRU (3.10)



Chapter 4

Related Works

Graph Neural Networks (GNNs) were first introduced to facilitate learning on
graphs, enabling the edges to propagate information Scarselli et al. [2008]. This
innovation opened the door for graph-structured data to be processed and learned
from using neural network architectures, bridging the gap between traditional ma-
chine learning and graph theory. Since its inception, there has been an extensive
evolution in the architectures designed to operate over graphs.

Recurrent Neural Networks (RNNs), for instance, were foundational in pro-
cessing sequence-based tasks, which paved the way for more advanced variations
such as Long Short-Term Memory (LSTM) networks Hochreiter and Schmidhu-
ber [1997]. They manage longer sequences by introducing additional gates to
retain or forget information selectively. While our main focus is not on RNNs,
understanding their mechanisms is beneficial because of their conceptual over-
lap with certain graph-based processes, especially when considering the temporal
dimension in graph signals.

GNNs’ design also borrows insights from Convolutional Neural Networks
(CNNs) LeCun et al. [2015]. CNNs, recognized for their prowess in handling
spatial hierarchies in image data, introduced techniques like padding to preserve
spatial dimensions between layers, which find analogous applications in graph
data.

Normalization techniques such as Layer Normalization Ba et al. [2016] and
Batch Normalization Ioffe and Szegedy [2015] were introduced to stabilize and
expedite training in deep networks. Their adaptability to graph-based architec-
tures proves instrumental in achieving consistent training across different graph
sizes and topologies.

An important reference in graph algorithms that has influenced GNN architec-
tures is the Weisfeiler-Lehman Test of Isomorphism Leman and Weisfeiler [1968].
It has inspired GNN variants that are capable of distinguishing non-isomorphic
structures and understanding intricate node and edge relationships in graphs.

Previous works on solving Sudokus has been done [Palm et al., 2018], where
they introduced a Recurrent Relational Network (RRN) model specifically tai-

9
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lored for solving complex problems requiring interdependent relational inferences.
They applied the RRN to the task of solving Sudoku puzzles, representing the
puzzle grid as a graph where each cell was a node and relationships between
cells were captured as edges. The RRN applied iterative updates to the nodes,
processing both local and global constraints inherent in the puzzle.

Next to that work has been done on solving Kakuros by [Daniec, 2020], where
the model from [Palm et al., 2018] has been adapted to solve Kakuro puzzles,
one of the models we want to adopt is augmenting our dataset to also solve it
iteratively.

In this thesis, we are primarily focused on employing a convolution that in-
tegrates Gated Recurrent Units (GRUs) Li et al. [2015]. GRUs, an offshoot of
RNNs, retain the ability to handle sequential data but with a more efficient gat-
ing mechanism, making them particularly apt for certain graph-related tasks.
The choice of integrating them with GNNs is to leverage their ability to model
and remember intricate relationships in graph data, aiding in tasks like the ones
we explore, where understanding deep structural nuances and iterative reasoning
becomes vital.



Chapter 5

Independent Set Problems

The Independent Set Problem (ISP) seeks to identify the largest subset S of
vertices in a graph G = (V,E) such that no two vertices in S are adjacent, i.e.,
∀u, v ∈ S, (u, v) /∈ E. Within the scope of ISPs, two primary categories can be
recognized:

• Maximal Independent Set: A set S of vertices is considered maximal if
no additional vertex can be added to S without violating the independent
set condition. Formally, S is maximal if ∀v ∈ V \ S,∃u ∈ S such that
(u, v) ∈ E.

• Maximum Weighted Independent Set: Each vertex v has an associ-
ated weight w(v). The goal here is to find an independent set S maximizing
the total weight, i.e., the sum of the weights of its vertices. A special case of
this problem is the Maximum Independent Set, where each vertex has
the same weight. This denotes the independent set that is of the largest size
in a graph. If |S| denotes the size of set S, then for any other independent
set S′ in G, |S| ≥ |S′|.

For our investigations, we target Tree Graphs and Erdos-Renyi Graphs when
considering Maximal Independent Set problems. For challenges related to Max-
imum (Weighted) Independent Set, our attention is solely on trees, with both
weighted and unweighted versions being examined.

11
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5.1 Maximal Independent Set (MIS)

A maximal independent set (MIS) represents a set of nodes that, once chosen,
ensures that no other nodes adjacent to them can be selected. This process
is continued until no more nodes can be selected, and the nodes selected so
far form the MIS. Given the intrinsic non-uniqueness of the MIS, pinpointing a
unique solution is not feasible. For our purposes, we are keen on identifying a
starting set of nodes that give rise to a unique MIS. Even though the problem
appears local, with an obvious restriction that two neighboring nodes cannot
simultaneously be part of the MIS, understanding its nature sets the stage for
tackling more complex problems later in our research.
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Fig. 5.1: Example of a Maximal Independent Set, on the left side initial input
and on the right side the target

5.1.1 Dataset

Our dataset generation follows a specific procedure. Initially, an MIS is formed,
after which nodes are progressively removed. At each step, we ensure that the
nodes left still dictate a single maximal independent set. Our training focus is
largely on understanding the base performance of a GNN, especially its extrap-
olation strengths as discussed in ’Learning Graph Algorithms With Recurrent
Graph Neural Networks’ Grötschla et al. [2022]. To this end, we perform train-
ing on 10-node graphs, and subsequently extrapolate these models to tackle larger
graphs. This approach aids in gauging proficiency of the network with simpler
tasks and observing if it can adapt and evolve for more challenging tasks. This
approach is taken for the two datasets we compare, namely MIS on trees and on
random graphs (Erdos-Renyi)
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5.1.2 Results
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Fig. 5.2: Result for MIS of training on graphs with 10 nodes, and extrapolating
to bigger graphs, with an increased amount of layers for bigger trees and graphs.

From Figure 5.2, it is evident that GNNs demonstrate a significant aptitude for
solving the Maximal Independent Set problem. One potential reason for this
effectiveness is the inherent locality of the problem. The MIS problem funda-
mentally revolves around understanding local neighborhoods and ensuring that
adjacent nodes are not simultaneously part of the set. This property aligns well
with the capabilities of GNNs, which excel at capturing and processing local
structures and relationships within graphs.

Our training predominantly centered on 10-node graphs, which may lead
one to believe that the GNN’s strong performance is restricted to these simpler
structures. However, this is not the case. When we extrapolated the models to
graphs with a larger number of nodes, not only did they adapt, but they also
consistently achieved perfect scores. This demonstrates the GNN’s robustness
and ability to generalize, not just memorize, across different graph sizes.

5.2 Maximum Weighted Independent Set (MumIS)

In this section, we delve into the challenge of determining the Maximum Weighted
Independent Set (MumIS) within trees. By definition, the maximum independent
set entails a collection of nodes in a graph where no two nodes share an edge,
and the size of this collection is maximized. As a result this task is a node
classification task. Our primary goal is to analyze how GNNs perform when
tasked with classifying tree nodes based on their participation in the maximum
independent set.

A brief recap of the formula for the Maximum Weighted Independent Set is
as follows:
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Given a graph G = (V,E) with a weight function w : V → R+ that assigns a
positive weight to each vertex, the Maximum Weighted Independent Set is:

MumIS(G) = argmax
S⊆V,∀u,v∈S,(u,v)/∈E

∑
v∈S

w(v)

5.2.1 Dataset

Given the complexity and often infeasibility of isolating maximum (weighted)
independent sets in generic graphs, we have chosen to focus our efforts on trees.
Trees provide a more straightforward landscape for pinpointing the maximum
weighted independent set. As in the previous section, we are interested in deter-
mining the extrapolation strength of the GNN.

Our computational strategy hinges on determining two values for every sub-
tree within the graph:

• A(i): Denotes the size of the maximum independent set in the subtree
rooted at i, with the stipulation that node i is part of the set.

• B(i): Represents the size of the maximum independent set in the subtree
rooted at i, but under the constraint that node i is excluded from the set.

These values are recursively derived through the contemplation of two sce-
narios:

1. Exclusion of the subtree’s root:

B(i) =
∑

j∈children(i)

max(A(j), B(j)) (5.1)

2. Inclusion of the subtree’s root:

A(i) = w(i) +
∑

j∈children(i)

B(j) (5.2)

The metric for the maximum independent set across the entire tree is derived
from the larger of A(root) and B(root). To pinpoint the exact set, it is also
necessary to record the maximum independent set for every induced subtree and
subsequently integrate these results.

For the unweighted case of the Maximum Independent Set, we adopt a strat-
egy where we assign a uniform weight to every node, ensuring each node is treated
with equal significance.
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5.2.2 Results
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Fig. 5.3: Result for Maximum (Weighted) Independent Set of training on trees
with 10 nodes, and extrapolating to bigger graphs, with an increased amount of
layers for bigger trees.

The presented graphs in Figure 5.3 reveal a nuanced contrast to the results ob-
served in the Maximal Independent Set problem. While the trained models
demonstrate strong performance, they do not achieve perfection. When con-
sidering the trees, where all the nodes of the maximum (weighted) independent
set have to be be identified, the models fall short, failing to completely solve any
instances of the Maximum Weighted Independent Set problem. Several factors
may contribute to this difference.

Firstly, unlike the Maximal Independent Set problem, there is an absence of
an initial set of hints to guide the model. This means that the GNN has the
dual challenge of inferring relationships and understanding the task without any
preliminary hints. Additionally, the inherent uniqueness of the problem makes it
harder.

Moreover, this problem places a premium on global information, requiring the
model to consider broader relationships and patterns rather than solely focusing
on localized node interactions. Despite these challenges, the models display im-
pressive performance. Even in scenarios without direct hints or cues, the GNN
demonstrates its robustness and versatility, achieving an accuracy of approxi-
mately 96% in the most challenging cases.

In short, even though this problem is slightly tougher for the GNN, with some
more adjustments and focused training, we can likely get closer to perfect results.
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5.2.3 Training Augmentation & Iterative Solving

We explored the potential of boosting the GNN’s performance by introducing
hints during its training. By enhancing our dataset with two additional features
for certain nodes, chosen at random, the GNN is exposed to varying degrees
of hint information. These features essentially guide the GNN about a node’s
definite presence or absence in the final Maximum Independent Set. With this
approach, we aim for the GNN to better discern the interdependencies and apply
this knowledge when it encounters datasets without hints.

Having exposed the GNN to different hint intensities, our next focus is on its
capability to iteratively classify nodes. This exploration not only gauges potential
performance improvements but also lays groundwork for tackling more intricate
problems in the future.
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Fig. 5.4: Extrapolation Performance of Augmented Dataset: These graphs show
the node accuracy when iteratively solving with a constant amount of layers,
specifically trained on 12 layers and tested on 15 layers.

Figure 5.4 paints a clear picture: introducing hints to the dataset and iter-
atively solving enables the GNN to achieve superior outcomes. The rationale
behind using augmentation was to streamline the GNN’s learning curve, ensur-
ing it grasps underlying patterns with increased efficiency. From our results, it is
evident that the hints sharpen the GNN’s decision-making process. In wrapping
up, both the dataset augmentation and iterative node classification methods have
demonstrated their potential and might pave the way for future enhancements.
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Fig. 5.5: Extrapolation Performance of Augmented Dataset: These graphs show
the complete graph accuracy when iteratively solving with a constant amount of
layers, specifically trained on 12 layers and tested on 15 layers.

In Figure 5.5 we can clearly see iterative solving also leads to higher complete
accuracy, helping us to achieve better results.



Chapter 6

Reachability Problems

In this chapter, we are interested in researching GNN’s capability of distinguish-
ing Strongly Connected Components (SCCs) and identifying Strongly Connected
Nodes (SCNs) in the case of directed graphs. Strongly Connected Nodes (SCNs)
are nodes in a graph that have a directed path to every other node in the graph.

Strongly Connected Components (SCCs) A Strongly Connected Compo-
nent (SCC) in a directed graph is a maximal subgraph such that for every pair
of vertices u and v in the subgraph, there exists a directed path from u to v and
from v to u.

∀u, v ∈ SCC, ∃path(u, v) ∧ ∃path(v, u)

Strongly Connected Nodes (SCNs) A Strongly Connected Node (SCN) is
a node that has a directed path to every other node in the graph.

∀u ∈ Nodes, ∃v ∈ SCN, ∃path(v, u)

The goal of this chapter is to identify a GNN’s strength and also its global
message passing capabilities.

6.1 Strongly Connected Components

6.1.1 Dataset

In the study of Strongly Connected Components (SCCs), we generate directed
graphs to create maximal subgraphs where directed paths exist between every
pair of vertices. This exploration provides insights into global dependencies and
connectivity patterns within complex networks.

Training is carried out on graphs of size 15 to evaluate the extrapolation
capabilities of the modified RecGNN model with edge attributes, for potentially
harder or larger problems.

18
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6.1.2 Results
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Fig. 6.1: GNN performance (node accuracy) of assigning nodes to the correct
Strongyly Connected Components

In Figure 6.1, the results demonstrate that the GNN is capable of perfectly
distinguishing which nodes belong to specific Strongly Connected Components
(SCCs). This sophisticated classification suggests that the GNN can recognize
and categorize nodes based on their features and relationships within the graph,
accurately determining to which component each node belongs.

6.2 Strongly Connected Nodes

6.2.1 Dataset

Investigating Strongly Connected Nodes (SCNs) extends our understanding of
network structures, especially in problems that require identifying key elements
within a system. Our SCNs are encoded with labeled bidirectional edges, pro-
viding a connection to every other node in the graph, and to allow for backward
propagation of information.

Training is done on graphs of size 15, again using the modified RecGNN model
with edge attributes, to explore the model’s ability to handle more complex or
larger-scale problems.
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6.2.2 Results
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Fig. 6.2: GNN performance (node accuracy) of distinguishing which nodes are
able to reach every other node in the graph by some path

As illustrated in Figure 6.2, the GNN achieves perfect accuracy in classifying
Strongly Connected Nodes (SCNs). This remarkable result indicates the model’s
ability to identify the specific nodes that can reach every other node within the
graph. Understanding which nodes possess this influential property is valuable,
as it reveals the GNN’s capacity to discern the importance of individual nodes
and to recognize which information is essential to propagate through the network.

6.3 Final Conclusion

In the context of SCCs, the ability to recognize and categorize nodes based on
their features and connections aligns with the underlying principles of pattern
recognition in Sudoku and connectivity in Kakuro, explored in other chapters of
this thesis.

Similarly, the identification of SCNs could inform more refined strategies for
solving Sudoku and Kakuro by emphasizing the importance of certain nodes and
their connections. By understanding these key elements, GNNs may enhance
information flow, offering new insights into the solution process for these and
other interconnected problems.

Together, these findings reinforce the versatility and potential of GNNs in
various problem domains and contribute to a broader understanding of their
applicability within the scope of this thesis.



Chapter 7

Solving Sudoku Puzzles

Sudoku is a logic-based, combinatorial number-placement puzzle that has gained
immense popularity worldwide. The objective of the Sudoku puzzle is to fill a
partially completed 9x9 grid with digits in such a way that each row, each column,
and each of the nine 3x3 subgrids (also called boxes) contains all of the digits
from 1 to 9 exactly once. The puzzle has a very simple set of rules, which makes
it easy to understand but often challenging to solve.

The Sudoku puzzle typically starts with a grid that has a certain number of
cells pre-filled with digits. These pre-filled cells are known as clues. The number
of hints provided can vary, and the difficulty of the puzzle often depends on the
number and distribution of the given clues. The general rule is that a Sudoku
puzzle should have only one unique solution.

1 6 9 2 3 7

3 2 7 6 1

8 4 5 6 9

9 6 1 5 8 3

3 2 7

6 1 2 7 5

2 9 7 3 8

1 8

8 4 2 9

1 5 6 9 2 3 7 4 8

9 3 2 4 7 8 6 5 1

8 7 4 5 6 1 2 3 9

7 4 9 6 1 5 8 2 3

3 2 5 8 9 7 4 1 6

6 8 1 2 3 4 9 7 5

2 9 7 1 5 6 3 8 4

4 1 3 7 8 9 5 6 2

5 6 8 3 4 2 1 9 7

Fig. 7.1: Example of a Sudoku Puzzle, with the puzzle on the left side and
solution on the right side

21
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7.1 Dataset

We possess a collection of unique Sudoku puzzles and their corresponding solu-
tions. Since the difficulty of a Sudoku is mostly dependent on the amount of clues
we get, it is possible to divide the Sudoku puzzles into three different categories
based on the amount of clues.
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Fig. 7.2: Puzzle Count by Clue Count

The distribution of our puzzles can be seen in Figure 7.2. Due to the dataset
containing over 1 million puzzles, it is not feasible to train any model on this
size, for that reason, we reduce all the training sets to 200,000 puzzles of each
difficulty, unless noted otherwise.

The goal is making as few mistakes as possible when solving each individual
puzzle, but also secondly to be able to solve puzzles correctly. For most models
it is relatively easy to determine the end value of pre-filled cells, for this reason
we are mostly interested in the correctly predicted unfilled cells, which we will
denote by cell accuracy, and the total puzzle accuracy, i.e. how many puzzles it
is able to solve completely.

7.2 Solving Sudoku using RNNs

In our exploration of more traditional models, Recurrent Neural Networks (RNNs)
emerge as fundamental contenders. RNNs are specifically designed to recognize
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patterns in sequences of data, making them suitable for sequential tasks and
problems with temporal dynamics. For our Sudoku-solving architecture, we har-
ness the power of Gated Recurrent Units (GRUs). The output of the GRU is
then processed through a linear layer to generate predictions for each cell in the
Sudoku grid. We opted for RNNs primarily because of their inherent capability
to maintain memory from previous inputs, which can be pivotal when considering
the interdependencies of Sudoku cells.

7.2.1 Training & Results

Figure 7.3 sheds light on the RNN model’s capabilities. For simpler puzzles,
the RNN showcases commendable accuracy, identifying numerous cells correctly.
However, as the complexity scales up, the model’s performance plateaus, with
the accuracy hovering around 60% for the most challenging puzzles. It is note-
worthy that models trained on advanced puzzles tend to outperform in simpler
scenarios, whereas the inverse does not hold true. An intriguing observation is
the analogous performance between models trained on mixed datasets and those
trained solely on the medium dataset. This might stem from the fact that the
mixed dataset primarily mirrors the general distribution where medium-difficulty
puzzles dominate. Even though one might assume that exposure to a diverse set
of puzzles would improve performance, the mixed-trained model’s outcomes align
more with the medium-trained counterpart.

7.2.2 Iterative Solving

The human way of solving Sudoku is identical to the iterative solving method we
introduced earlier, where we fill in a cell one at a time. In this method, the cell
filled at each step is the one where the model is the most certain, i.e., the cell
associated with the highest probability. The model iteratively makes predictions
for the puzzle filled with the new cells, until each cell has a prediction in it, after
which the model outputs this results.
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Fig. 7.3: Performance of RNN model on Sudoku, one-shot vs iterative, where the
improvement of the iterative variant can be seen stacked on top of the standard
one-shot model

In our testing we found out that the iterative solving leads to an increase
in performance in predicting the class for each cell, but also in the final puzzle
accuracy.

7.3 Solving Sudoku using CNNs

Sudoku is a puzzle inherently reliant on spatial positioning, where each cell’s
value is influenced by its location. We leverage this characteristic to devise a
solution using a Convolutional Neural Network (CNN).

Every Sudoku puzzle is transcribed into a 9x9 input with 10 distinct channels.
Each channel operates as a one-hot representation of the initial cell value.

7.3.1 Training & Results

From the visualized results in Figure 7.4, it becomes evident that CNNs exhibit
a consistent trend in their performance across various Sudoku difficulties. Each
model excels in the easy category and maintains this proficiency when applied to
its corresponding training dataset. However, a discernible drop in performance
is observed when these models grapple with puzzles of higher difficulty.

Surprisingly, the performance of the model trained on a mixed dataset is akin
to that of the model trained solely on the easy dataset. Considering that the
mixed dataset predominantly consists of medium puzzles, this outcome suggests
the model may be exhibiting a middle-ground performance, where it is not fully
optimized for the extremities of difficulty.

Given the spatial structure inherent to Sudoku grids, it is no surprise that
CNNs, known for capturing local patterns in data, manage to resolve a substantial
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portion of the puzzles effectively.

7.3.2 Iterative Solving

Iterative solving is an approach that breaks down complex problems into more
manageable steps. By revisiting the puzzle multiple times, the model has the
opportunity to refine its predictions, relying on the accumulated knowledge from
previous iterations. This method mirrors the way many humans approach Su-
doku, iteratively filling in numbers as the relationships between cells become
clearer with each pass.
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Fig. 7.4: Performance of CNN model on Sudoku, one-shot vs iterative, where the
improvement of the iterative variant can be seen stacked on top of the standard
one-shot model

After employing iterative solving, a noticeable enhancement in the CNN’s
performance is observed as can be seen in Figure 7.4. Especially significant is the
rise in accuracy for medium puzzles, particularly for models initially trained on
the easy and hard datasets. This progression suggests that iterative solving not
only improves the model’s overall accuracy but also widens its capability range,
enabling it to tackle puzzles of varied complexities more effectively.

7.4 Solving Sudoku using GNNs

During our testing phase, we explored various Graph Neural Network (GNN)
architectures. One key observation was that GNNs using Graph Isomorphism
Networks (GIN) failed to converge. Even when we coupled GIN with a Multi-
layer Perceptron (MLP), convergence was not achieved. This failure could be
attributed to GIN’s inability to retain memory and state, a shortcoming that
Gated Recurrent Units (GRUs) can address. In our experiments, GRUs in com-
bination with an MLP performed better than without MLP.
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We also compared the use of GRU and LSTM (Long Short-Term Memory)
units. Our findings indicated that GRU offered faster training times while de-
livering similar performance to LSTM. When we created a model using LSTMs
instead of GRU, the performance was found to be inferior. This could be because
LSTMs have more parameters, potentially hindering the GNN’s ability to learn
optimal weights. It has been reported in [Cahuantzi et al., 2021] that GRUs can
outperform LSTMs for certain problems. Therefore, our primary focus remained
on the standard RecGNN model, with some modifications.

One experimental approach was loop unrolling, where instead of reusing the
same trained convolution for multiple layers, we created multiple convolutions for
one-time use. Unfortunately, this method failed to lead to convergence, possibly
due to the increased number of parameters that needed to be learned. Con-
sequently, we concluded that reusing the same convolution layers for multiple
rounds was the most effective approach.

7.4.1 Encoding

Grid-Style

The grid-style encoding takes inspiration from the way Convolutional Neural
Networks (CNNs) propagate information. In this method, we treat each cell in the
Sudoku puzzle as a node and connect it to its immediate horizontal and vertical
neighbors. This approach has the benefit of simplicity, mirroring the physical
layout of the Sudoku grid. It enables the model to capture local dependencies
and relationships within the puzzle, much like how humans often approach solving
Sudoku by considering immediate neighboring cells.

In the grid-style encoding the row and column are also encoded, to further
enrich the dataset with more information.

However, this grid-style approach also has its limitations. By focusing solely
on direct neighbors, the model might miss more complex global patterns that exist
within the puzzle. Furthermore, it might not fully capture all the constraints and
rules of Sudoku, particularly those that involve non-adjacent cells in the same row,
column, or subgrid. This can make the encoding less expressive and potentially
limit the model’s ability to solve more complex puzzles.

Standard (Implicit) Style

The standard implicit style of encoding takes a different approach, aiming to
embed the fundamental rules of Sudoku directly into the model. In this method,
each cell is treated as a node, and connections are established with all other
nodes in the same horizontal and vertical directions, as well as those in the same
subgrid.
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This encoding method is more comprehensive, capturing a richer set of infor-
mation and more resembling the constraints of Sudoku. It considers relationships
not just with neighboring cells, but with all cells that share the same row, col-
umn, or subgrid. This gives the model a more nuanced understanding of the
puzzle and the flexibility to adapt to various structures.

However, this method also has its drawbacks. The increase in connections and
the larger graph size can make this approach more complex and computationally
challenging. Additionally, the added complexity might cause the model to overfit
to specific training data patterns, potentially reducing its ability to generalize to
unseen puzzles.

(4,2)

Fig. 7.5: Representations of the two different encodings for a cell at (4,2), on
the left side the Standard encoding and right side the grid-style encoding. Black
denotes cell at (4,2), with grey the cells it shares an edge with. In the Grid-Style
encoding, it additionally has the (column, row) encoded as one of its features.
The cell value is also a node feature, but this is omitted in the graphics.

7.4.2 Training & Results

Firstly we would like to analyze the performance for difference encodings. We
can see in Figure 7.6 we achieve higher cell accuracy for the Standard encoding,
where cells are connected to cells in the same row, column, or subgrid. This
is not surprising, due to the encoding implicitly enforcing the rules of Sudoku
and propagating cell values to its directly related cells. What we can also see, is
that the models trained on Standard Encoding is able to solve some puzzles to a
certain degree, while the models trained on Grid Encoding failed to do so.
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Fig. 7.6: Comparison of performance for different encodings, on the left side the
cell accuracy and right side puzzle accuracy

We only include Figure 7.7, due to the Grid-Style encoding achieving lacklus-
ter performance in comparison to the standard style. Due to that we omit, and
from here on forward we only analyze the Standard Encoding.
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Fig. 7.7: Performance of RecGNN models on Sudoku trained on different diffi-
culties, with the Standard Encoding

Our analysis reveals that all models achieve impressive performance, all reach-
ing perfect accuracy on puzzles categorized under the easy difficulty level. An
unexpected observation is that the model trained on medium puzzles outperforms
the one trained on hard puzzles when faced with the latter. This discrepancy may
stem from the hard training dataset’s complexity, leading the model to struggle
in discerning dependencies and rules efficiently. This outcome suggests that aug-
menting the dataset with different puzzle varieties and complexities could enhance
the models’ performance on more difficult puzzles.
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Increase of Layers

Although graph sizes remain constant in the context of Sudoku, the influence of
varying the number of layers on performance is still of interest. In the standard
RecGNN model as highlighted by [Grötschla et al., 2022], the number of layers
increases with the number of nodes. A logical question that emerges is how many
times to reuse the same trained convolution. However, since the number of nodes
in Sudoku is fixed, we cannot dynamically determine the number of layers based
on the node count. Our testing demonstrated that more layers generally led to
better performance. Interestingly, we also found that training on fewer layers led
to faster training times but still allowed for improved performance when using
more layers during inference. This finding offered an encouraging balance between
training efficiency and predictive capability.
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Fig. 7.8: Performance of training on a different amount of layers and testing on
a different amount of layers, with cell and puzzle accuracy

As illustrated in Figure 7.8, there is a clear pattern showing that most models
enjoy enhanced accuracy when tested with an increased number of layers. This
trend is particularly prominent in models trained on at least 9 layers, where
accuracy continually improves, unlike other models trained on fewer layers that
exhibit a noticeable threshold in both cell and puzzle accuracy. The observation
suggests an opportunity to optimize the training process by training on 10 layers
and extrapolating to 15 layers. This demonstrates the model’s ability to learn
how the recurrent application of layers can yield superior results, something that
seems less pronounced in models operating with a reduced number of layers.

7.4.3 Augmentation & Iterative Solving

As we have seen before, augmenting datasets is a common practice to improve
model robustness and performance. While this technique might seem unnec-
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essary for Sudoku—given that puzzles are always defined with certain clues or
hints—our experimentation sought to determine if augmentation could indeed
make a difference in model performance.

To test this, we augmented our dataset by incorporating puzzles in varying
completion stages, from wholly unsolved to nearly solved. This expanded dataset
design aligns more closely with how humans often approach Sudoku, progressing
through iterative solving stages. Additionally, this approach allows for more
realistic iterative solving within the model, mirroring human problem-solving
behavior.

The augmentation was implemented by adding two modified puzzles for each
original puzzle, thus tripling the dataset size. However, we ensured to test on the
non-augmented dataset to gauge any performance improvements accurately.
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Fig. 7.9: Comparison of GNN models trained on augmented and non-augmented
datasets (Cell Accuracy)
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Our findings present a fascinating insight into the role of augmentation in
solving Sudoku puzzles. It is evident that augmentation does indeed enhance
performance in most cases when using the One-Shot approach. However, the im-
pact becomes less distinguishable when employing an Iterative approach, where
various models exhibit similar behavior. Interestingly, models trained and tested
on easy puzzles often fall short in achieving high puzzle accuracy while managing
to attain a significant cell accuracy, as illustrated in Figure 7.10. This discrep-
ancy highlights that iterative approaches can lead to more precise and consistent
results for Sudoku, aligning them better with both the performance and predic-
tive behavior observed in CNN and RNN models. The iterative methodology
enables the model to fine-tune and recalibrate its predictions, adapting to the
intricacies of the puzzle.
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Fig. 7.11: First 4 steps of iteratively solving a Sudoku puzzle with a GNN, initially
if we were to mispredict we would have a few cell mispredictions
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As depicted in Figure 7.11, the GNN demonstrates an initial confidence in its
predictions, selecting the numbers with the highest certainty. As the iterations
progress, the model fine-tunes its predictions, resulting in fewer errors. This
gradual refinement is particularly evident in Figure 7.12, where the GNN even-
tually solves the Sudoku puzzle. This iterative process of focusing on the most
certain parts and progressively improving predictions mimics a more human-like
approach to solving such puzzles.

8 5
5

6 7
7

4 9
9

1 2 3
3

4
4

1 9 2
2

5
5

3
3

7 6 8

3
3

7 2
2

1
1

8 6
6

9 4
4

5

1 2
2

8 6 9
9

4
4

5
5

3
3

7

9
9

3
3

4 5
5

1
1

7
7

2
2

8
8

6
6

5
5

6
6

7
7

8
8

3 2 4 1
1

9
9

7
7

8
8

1 4
4

6
6

5
5

3
3

2
2

2 4
4

3 9 7
7

8
8

6 5 1
1

6 9 3
3

2
2

8 7 4

Sudoku RecGNN (Iterative Solving) 
 Step 44

0.00000
0.50000

0.80000
0.90000

0.99000

0.99900

1.00000

Certainty

Wrong Prediction
Correct Prediction
Correct Number

8 5
5

6 7
7

4 9
9

1 2 3
3

4
4

1 9 2
2

5
5

3
3

7 6 8

3
3

7 2
2

1
1

8 6
6

9 4
4

5

1 2
2

8 6 9
9

4
4

5
5

3
3

7

9
9

3
3

4 5
5

1
1

7
7

2
2

8
8

6
6

5
5

6
6

7
7

8
8

3 2 4 1
1

9
9

7
7

8
8

1 4
4

6
6

5
5

3
3

2
2

2 4
4

3 9 7
7

8
8

6 5 1
1

6 9 5
5

3
3

2
2

8 7 4

Sudoku RecGNN (Iterative Solving) 
 Step 45

0.00000
0.50000

0.80000
0.90000

0.99000

0.99900

1.00000

Certainty

Wrong Prediction
Correct Prediction
Correct Number

8 5
5

6 7
7

4 9
9

1 2 3
3

4
4

1 9 2
2

5
5

3
3

7 6 8

3
3

7 2
2

1
1

8 6
6

9 4
4

5

1 2
2

8 6 9
9

4
4

5
5

3
3

7

9
9

3
3

4 5
5

1
1

7
7

2
2

8
8

6
6

5
5

6
6

7
7

8
8

3 2 4 1
1

9
9

7
7

8
8

1 4
4

6
6

5
5

3
3

2
2

2 4
4

3 9 7
7

8
8

6 5 1
1

6 9 5
5

3
3

2
2

1
1

8 7 4

Sudoku RecGNN (Iterative Solving) 
 Step 46

0.00000
0.50000

0.80000
0.90000

0.99000

0.99900

1.00000

Certainty

Wrong Prediction
Correct Prediction
Correct Number

8 5
5

6 7
7

4 9
9

1 2 3
3

4
4

1 9 2
2

5
5

3
3

7 6 8

3
3

7 2
2

1
1

8 6
6

9 4
4

5

1 2
2

8 6 9
9

4
4

5
5

3
3

7

9
9

3
3

4 5
5

1
1

7
7

2
2

8
8

6
6

5
5

6
6

7
7

8
8

3 2 4 1
1

9
9

7
7

8
8

1 4
4

6
6

5
5

3
3

9
9

2
2

2 4
4

3 9 7
7

8
8

6 5 1
1

6 9 5
5

3
3

2
2

1
1

8 7 4

Sudoku RecGNN (Iterative Solving) 
 Step 47

0.00000
0.50000

0.80000
0.90000

0.99000

0.99900

1.00000

Certainty

Wrong Prediction
Correct Prediction
Correct Number

Fig. 7.12: Last 4 steps iteratively solving a Sudoku puzzle with a GNN, correctly
solved in the end

Permutation

An intriguing augmentation approach is achieved through permuting the dataset.
Since the numerical values in Sudoku are essentially symbolic placeholders, a
bijective reassignment of values will not alter the puzzle’s unique solvability. This
property unlocks up to 9! permutations for each puzzle, providing an immense
expansion to our dataset.
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Fig. 7.13: Comparison of RecGNN on different datasets for hard puzzles

As illustrated in Figure 7.13, a general trend emerges that larger training sets
tend to yield better results, assuming all other variables remain consistent. An
unexpected finding, however, is the performance discrepancy between the model
trained on 60K puzzles and the one trained solely on 20K puzzles when compared
to permuted puzzles. Specifically, in the iterative context, these models trained
on the permuted datasets perform noticeably worse, whereas in the one-shot
context, they either outperform or exhibit similar performance to the permuted
puzzles.

The observation that models trained on more puzzles consistently perform
better is not surprising in itself, but the subtle nuances in performance, espe-
cially with permutation, deserve further exploration. For example, the practice
of permuting puzzles during training, ensuring that the model encounters only
new challenges, could offer significant benefits. This strategy, particularly when
coupled with techniques such as augmentation or iterative solving. The relative
simplicity of permutation and its potential benefits make it an appealing area for
further investigation in our pursuit of improved efficacy.

7.5 Final Conclusion
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Fig. 7.14: Performance comparison of all the best models for Sudoku
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Sudoku presents unique challenges for computational problem-solving. Our re-
search involving both GNNs and other models has led to a set of intriguing
discoveries.

Iterative solving emerged as a vital strategy in our approach, enabling mod-
els to progressively build upon certain predictions in a manner akin to human
problem-solving. This method proved particularly effective in improving model
performance. Augmentation, however, had a more modest impact.

In Figure 7.14, we can observe that GNNs generally outperformed the other
models. A key part of this success was the encoding strategy, where cells in the
same row, column, and subgrid were encoded to help the model understand the
inherent relationships within a Sudoku puzzle.

Surprisingly, we noticed a decline in GNN’s puzzle accuracy on easier puzzles.
This was traced back to a few mistakes per puzzle leading to entire solutions being
marked incorrect, disproportionately affecting the accuracy measurement.

Moreover, the encoding approach we adopted - which acknowledged the con-
straints of cells being in the same row, column, and subgrid - played a critical role
in the effectiveness of the models. This insight can lead to refined strategies for
Sudoku solving and potentially be applied to similar graph-based computational
problems.

In conclusion, the study into Sudoku solving with Graph Neural Networks
and other models has illuminated specific strategies, limitations, and nuances.
Through careful application of iterative solving, along with a nuanced under-
standing of encoding and the role of augmentation, we have forged a path towards
enhanced accuracy in solving Sudoku puzzles. These findings not only further
the field of computational Sudoku solving but also hold the potential to inform
new methodologies in other domains where similar graph-based structures and
iterative methods might be beneficial.



Chapter 8

Solving Kakuro Puzzles

Kakuro, also known as Cross Sums, is a mathematical and logic puzzle game that
draws parallels to both Sudoku and Crossword puzzles. It consists of a blank grid
with sum clues provided in various places. The player’s objective is to fill the
grid with digits from 1 to 9 in such a way that the sum of the numbers in each
row or column matches the clue associated with it. Additionally, no digit can be
repeated within a single sum. Despite its straightforward rules, Kakuro puzzles
range widely in complexity and size, providing engaging challenges that test both
arithmetic skills and logical reasoning.
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8.1 Dataset

The dataset for this research was sourced from [Kakuro Conquest, 2023]. How-
ever, as this site does not provide puzzle solutions, a Linear Programming (LP)
solver was used to derive the answers which was found in [Daniec, 2020].

The puzzles in this dataset all posses a unique solution and it has a range of
different levels, going from, easy, medium, hard, intermediate, expert and elite.
The difficulty categorizations were predefined by the source platform and was not
established by us during our study.

The difficulty of a Kakuro puzzle is typically influenced by factors such as
’cross sum’ complexity and cell interdependency. The former refers to the dif-
ficulty of finding a unique combination of numbers that fits a given sum. For
instance, a clue of 16 for a two-cell word (with only one solution, 7 and 9) is
easier compared to a clue of 15 for a three-cell word (with multiple solutions such
as 2-6-7, 3-4-8, etc.).

On the other hand, puzzles are more challenging when they have a high degree
of interdependency between cells, where the solution to one cell is intertwined
with potential solutions to others. This attribute and ’cross sum’ complexity
largely contribute to the puzzle difficulty categories in our dataset.
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Fig. 8.2: Distributions of our Kakuro Puzzle Dataset

As we can see in Figure 8.2, we also possess a dataset of mixed difficulty. This
dataset is uniformly sampled from all other datasets and set to an amount that
matches the two largest datasets, namely those of easy and medium difficulty to
not put any bias into having a much larger dataset when training. We are mostly
interested in, whether a mixed dataset provides better generalization results, due
to the model having seen puzzles across all difficulties.
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8.2 Solving Kakuro using CNNs

Encoding Kakuro puzzles for them to be suitable for CNNs requires a bit more
work, due to the way puzzles are structured. Nonetheless, Kakuro puzzles are
structured in a grid, which allows the CNN to process the data in a similiar
fashion as in Sudoku. Here we have one issue, where certain clue cells can have
different clues for the horizontal and vertical direction. Since there are also cells,
which do not need to be predicted at all, we have to encode it as well.

To encode all these restrictions, we came up with the following method. A
9x9 grid is created with three channels, where the first channel represents the
values of the horizontal clues, the second channel the values of the vertical clues,
and the third channel has a ’1’ in it if the cell needs to be predicted and ’0’
otherwise.

8.2.1 Training & Results
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Fig. 8.3: Performance of CNN model: Cell Accuracy

In Figure 8.3, models trained on various difficulties show better performance
on easier puzzles. The highest accuracy is usually achieved by models trained and
tested on the same difficulty. A model trained on easy puzzles predicts fewer than
40% of cells correctly for other difficulties, while other models exhibit accuracy
ranging from 50% to 60%. The model trained on medium puzzles performs
similarly across different difficulties, possibly due to a larger dataset or exposure
to more puzzle types. Since none of the models solved the puzzles completely,
the graph displaying puzzle accuracy has been omitted.

8.2.2 Augmentation & Iterative Solving

To have the CNN allow for augmentation we add an additionally channel which
can encode the end value for a cell. The model is adapted slightly to process 4
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channels for the first layer instead of 3 channels, otherwise the model is completely
identical. We can augment the dataset by uniformly choosing nodes where we
encoded in the end value. We do this twice for each puzzle, and include the non-
augmented puzzle with our dataset. This triples our dataset, but we are hoping
to have it be able to recognize the rules better.
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Fig. 8.4: Performance Comparison of CNN Models, where we compared model
trained on the normal dataset, augmented dataset. Where on the augmented
dataset we also have an iterative approach

Here we can clearly see in Figure 8.4 that the model trainedd on the aug-
mented dataset leads to the best results. However, iterative solving does increase
cell accuracy, but is not able to solve any puzzle correctly completely.
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Fig. 8.5: Cell Accuracy extrapolation comparison for CNN models trained on
augmented dataset (one shot and iterative solving)

8.2.3 Final Conclusion

We can see in Figure Figure 8.4, the results for the augmented training dataset
with one-shot and with iterative solving. When putting the graphs next to each
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other, the performance looks similar, but also the iterative solving leads to similar
looking graphs. In the case of Kakuro iterative solving does not yield a significant
increase in performance, but as we could see before augmentation of our dataset
does help our CNN model learn better and perform better.

8.3 Solving Kakuro using GNN

8.3.1 Encoding

In this section we consider using a graph representation to model our Kakuro
puzzles and use GNNs to try to solve our puzzles. One of the main benefits of
using graphs, is that we can encode the problem in different ways, each with its
own advantages and disadvantages.

Clique Encoding: Encoding Direct Dependencies

Kakuro puzzles inherently consist of dependent cells, where empty cells are di-
rectly dependent on their corresponding clue cell as well as other cells that share
the same row or column. These dependencies can be represented through ’clique
encoding.’ This idea stems from [Daniec, 2020], this follows a similar representa-
tion as in Sudoku, because it directly encodes the direct dependencies.

A clique, in graph theory, represents a subset of vertices of an undirected
graph where every two distinct vertices are connected by a unique edge. In
Kakuro’s context, we can form a ’clique’ by selecting a clue cell, where each clue
represents a node, and identifying the empty cells whose end sum must correspond
to the clue cell’s value. These puzzle cells will each be represented as a node,
connected to the clue cell which is also represented as a node. The puzzles nodes
will have no intial value, while the clue node will have the sum as its value. This
clique encapsulates the direct dependencies amongst them, and this process is
replicated for all clue nodes, creating a robust encoding of the Kakuro puzzle’s
direct dependencies.

Star Encoding: Radiating Dependencies

Another approach to encoding Kakuro puzzles can be ’star encoding’. In this
approach, we consider each clue cell as a star’s core, and the dependent puzzle
cells as the arms of the star. Each clue node is connected with a unique edge to
its dependent cells. We represent the clue cell and the dependent puzzle cells each
as a node, where clue node is connected to all dependent puzzle nodes directly.
Similarly, only the clue node has an initial value, which is the sum, and the puzzle
nodes have no initial value. This approach visualizes the dependencies in a more
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centralized way, with the clue node at the heart of the relationships, emphasizing
its role in determining the possible values of the dependent cells.

Path Encoding: Tracing the Dependencies

Yet another way to encode Kakuro puzzles can be achieved by creating path
graphs, which we call ’path encoding’. Given that a Kakuro puzzle is structured
in a grid layout, this approach is ideal for tracing the dependencies across the
cells.

In path encoding, each cell in the grid is connected to the cell above it or to
its left (assuming such a cell exists) only if their values are interdependent. This
method offers a representation of how values propagate through the puzzle grid,
thereby effectively illustrating the dependencies.

8.3.2 Training & Results
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Fig. 8.6: Comparison of cell accuracy for all the three encodings: Clique, Star,
Path

In the figure we see the models trained on different levels, and tested on the same
train level. We can see in Figure 8.6 that the Clique Encoding leads to the best
results. In a way this is not surprising, due to the way the direct dependencies
are encoded implicitly. This would most likely make it easier for the GNN pick
up the rules and we can see again, the models perform better for easier puzzles.
Even though the source did not specify exactly, how the puzzles were sorted into
different difficulties, we can see that the model performs similiar to the difficulties.

Due to these results, from here we continue on with only the clique encoding
and ignore the other encodings, since they yield no significant results.
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Fig. 8.7: Mean and Variance of the Cell Accuracy for the Clique Encoding over
5 runs for all the Kakuro puzzle levels

In Figure 8.7, we can also see the model is quite stable for different seeds.
There does not seem to be much variance, except for the Elite difficulty. After
inspecting the runs, there seems to be one run where the model does not converge
at all, while for the other runs the performance is all quite similar. It looks
promising, that the model generally does not have any issues converging and is
quite stable regardless of seed.

Extrapolation Performance across different Difficulties
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Fig. 8.8: Performance of GNN models trained on different level and tested on
other puzzle levels

In Figure 8.8 we can see the model trained on the medium puzzles yields the
highest accuracy for every difficulty, even beating models that are trained on that
difficulty. This could be explained due to the model, when trained on medium
puzzles, seeing a wider range and able to learn its rules. When trained on harder
puzzles, it might fail at learning all the rules properly, and when trained on easy
puzzles it might not learn how to solve more difficult instances, since it might
have been to easy,
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8.3.3 Augmenting & Iterative Solving

n Figure 8.8, the model trained on medium puzzles exhibits the highest accuracy
across all difficulties, surpassing even those models trained specifically on each
difficulty. This superior performance might be attributed to the medium-trained
model encountering a more diverse range of puzzles, enabling it to learn their
underlying rules more comprehensively. Conversely, training on harder puzzles
might result in an incomplete understanding of the rules, while training on easier
puzzles might not sufficiently equip the model to tackle more complex instances.
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Fig. 8.9: Two augmentations of Kakuro Dataset

In Figure 8.9, the left graph presents an instance of a Kakuro puzzle as
it is typically received, without rules provided. This can be seen as a case of
unsupervised learning, as the cells to be filled do not contain any information
about their final labels. Our approach is to augment the dataset, illustrated in
the middle and right graphs, where we include the final classifications for some
cells. This simplification helps the Graph Neural Network (GNN) to learn the
relationships between the nodes more effectively and enables the model to solve
the graph. The solution is reached by iteratively predicting nodes where the
model has the highest certainty, continuing this process until all the nodes are
completely predicted.

This approach is analogous to Sudoku and the Convolutional Neural Network
(CNN) methodology. By augmenting our dataset and accommodating interme-
diate hints, we can iteratively solve Kakuro puzzles. The process involves filling
out one cell of the puzzle at a time, specifically where the GNN is most confident
about its value, and continuing this process until the puzzle is entirely filled out.



8. Solving Kakuro Puzzles 43

Easy Medium Hard Expert Elite
Train and Test Level

0.0

0.2

0.4

0.6

0.8

1.0

Ce
ll 

Ac
cu

ra
cy

Kakuro (Augmented): Cell Accuracy (RecGNN)

One-Shot Iterative

Easy Medium Hard Expert Elite
Train and Test Level

0.0

0.2

0.4

0.6

0.8

1.0

Pu
zz

le
 A

cc
ur

ac
y

Kakuro (Augmented): Puzzle Accuracy (RecGNN)

One-Shot Iterative

Fig. 8.10: Cell accuracy performance of GNN trained on augmented dataset,
comparing the one-shot and iterative solving method

In Figure 8.10, we can see how for all of the difficulties we suddenly seem to
have an almost perfect accuracy. This is surprising, especially for the one-shot
variant, similar to the CNN, the GNN is able to pick up the dependencies much
quicker. Again, similar to the CNN, we can employ an iterative solving, and
here we also do see an increase in performance. This time it does lead to a great
increase in the amount of puzzles that can be solved. The most likely explanation
is that since we have been able to solve puzzles correctly to a high degree, we
refine it and fewer mistakes are more unlikely to happen. For the easy difficulty
we are able to solve almost all and for the hardest dataset we are able to solve
almost 80% of the puzzles completely.

Example

The initial four steps illustrated in Figure 8.11 reveal some initial mispredictions
by the GNN. However, the GNN quickly recalibrates, reducing these errors in
subsequent steps, even for cells that are not directly connected. This capacity to
propagate information to indirectly dependent cells highlights the GNN’s ability
to adapt to Kakuro’s global puzzle nature.
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Fig. 8.11: Iterative Solving of Kakuro using GNN: first 4 iterations

Figure 8.12 showcases the GNN’s learning progress in the latter stages, with
the model making fewer mistakes compared to a one-shot approach. The GNN’s
strength lies in its ability to learn as it progresses, rather than guessing all values
simultaneously. Interestingly, even when some predictions are incorrect, the GNN
shows an understanding of Kakuro’s summing rules, accurately predicting many
values. This phenomenon highlights the GNN’s ability to grasp global dependen-
cies within the puzzle, leading to an improved approach to problem-solving.
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Fig. 8.12: Iterative Solving of Kakuro using GNN: last 4 iterations

8.4 Final Conclusion
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Encoding Kakuro for analysis using CNNs presented unique challenges, leading
us to investigate extrapolation capabilities and performance differences across
various difficulties. Augmentation and iterative solving offered incremental im-
provements, but complete puzzle solving remained out of reach.

In contrast, the use of GNNs marked a significant leap forward for Kakuro
solving. Clique Encoding proved highly effective, and the combination of augmen-
tation and iterative solving with GNNs led to nearly perfect accuracy for some
puzzle levels. As showcased in Figure 8.13, the GNN trained on the augmented
dataset and employing iterative solving exhibited the highest performance, re-
vealing a clear advantage for GNNs in solving Kakuro puzzles.

Throughout our study, we explored clever encoding strategies, dataset aug-
mentation, and iterative solving techniques. These methods enhanced the per-
formance of GNNs with regard to Kakuro puzzles. Specifically, iterative solving
was implemented for both CNN and GNN, aiding the learning process.

Surprising to us was the extent to which GNNs outperformed traditional CNN
models, likely due to the advanced encoding strategies employed. This discovery
opens avenues for further research and potential refinements.

In conclusion, our findings underscore that a well-crafted combination of en-
coding, augmentation, and iterative solving can dramatically enhance a GNN’s
ability to solve Kakuro puzzles. The compelling results achieved by the GNN,
especially in comparison to CNN models, highlight promising directions for fu-
ture work and potential applications. The lessons drawn from the handling of
both CNN and GNN may extend to other complex problem-solving domains,
providing valuable insights for ongoing exploration and development.



Chapter 9

Solving Hitori Puzzles

Hitori is a logic puzzle originating from Japan. Played on a square grid initially
populated with numbers, the core objective of Hitori revolves around the elim-
ination of certain numbers. This process is symbolized by blacking out specific
cells in the grid.

The puzzle reaches its solution when the grid is modified to a state wherein
all three of the following conditions are concurrently satisfied:

1. Uniqueness in rows and columns: Each number in any given row or column
must be unique. This implies that a specific number should not reappear
in the same horizontal or vertical line.

2. Non-adjacency of black cells: Black cells, indicative of eliminated numbers,
cannot be horizontally or vertically adjacent. However, they can be diago-
nally juxtaposed. This rule helps prevent the formation of blocks of black
cells, ensuring the grid remains navigable.

3. Connectivity of remaining cells: All the remaining (non-black) cells must
establish a connection with each other either horizontally or vertically. This
rule ensures the existence of a path that can be traced from any non-black
cell to any other using only horizontal or vertical steps.

The Hitori puzzle is solved using logical deduction, with each puzzle possess-
ing only one unique solution. The complexity and difficulty of Hitori puzzles
generally increase with the size of the grid, offering a variety of challenges to suit
a wide range of players.

47
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9.1 Dataset

For our research on Hitori puzzles, we collected the dataset from the website
[Hanssen, 2023]. Unlike our Kakuro source, this site thankfully provides solutions
for each puzzle, so we did not need to use a solver.

We divided the Hitori puzzles in a similar way to the Kakuro ones. We
used 80% for training and set aside 20% for testing. This split led to a range
of puzzles across seven levels of difficulty: easy, medium, hard, Expert, Elite,
Master, Legend. These difficulty categories were already defined by the source
platform, menneske.no, and were not set by us during our study.

The difficulty of a Hitori puzzle depends on a few key factors.

An important factor is how the numbers are spread out and repeated across
the grid. If a puzzle has a lot of the same number, it can be more challenging
because there are more instances of that number to isolate.

Lastly, the decisions to black out a cell or leave it uncolored affect the rest of
the puzzle, which also contributes to its difficulty. This is because each decision
you make can greatly influence what you can do with the other cells in the puzzle.

Easy Medium Hard Expert Elite Master Legend
Difficulty Level

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f P
uz

zle
s

Number of Puzzles (Hitori)
Training Test

Fig. 9.1: Distribution of Hitori puzzles

Due to the small size of the dataset, except for the first three difficulties, we
decided against training models on these datasets. In this chapter only models
trained on easy, medium, and hard are considered and compared.

9.2 Solving Hitori with CNNs

Given the grid layout of Hitori puzzles, employing a CNN to solve them appears
to be one of the most direct approaches. When compared to other grid-based
puzzles like Sudoku and Kakuro, Hitori, with its 8x8 grid encoding, intuitively
seems to be a more complex challenge. This complexity primarily arises from the
global constraints that requires all unshaded cells must be interconnected.
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One notable issue with complex problems is that neural networks may overfit
or consistently predict the most probable class, even in situations where weighted
cross-entropy adjustments are made. This was observed in our dataset, where
the model consistently overfit or predicted ’1’ (unshaded).

No convergence could be achieved for any parameters in this case.

9.2.1 Augmentation and Iterative Solving

Drawing from the success in Kakuro and Sudoku, we explored augmentation and
iterative solving techniques for Hitori, given that these strategies have previously
aided in training, even without providing hints during inference.
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Fig. 9.2: Hitori CNN Performance on the Augmented Dataset, trained on differ-
ent levels

As Figure 9.2 illustrates, augmentation indeed improves performance. Sur-
prisingly, the extrapolation capability remains consistent across different diffi-
culty levels, and the model performs similarly on all. The exception is the model
trained on hard puzzles, which performs the worst. However, unlike previous
puzzles, iterative solving does not enhance the solving process for Hitori.

We also experimented with permuting our dataset, as in the case of Sudoku.
This approach, unfortunately, did not lead to any performance increase.

There could be two main explanations for why the mentioned approaches did
not achieve full performance. Firstly, the Hitori puzzle is intrinsically complex
and requires comprehensive global information, which might be beyond the reach
of a CNN. Secondly, the lack of unique solutions for Hitori puzzles poses a signif-
icant challenge, as the neural network might struggle to converge on a definitive
solution. Despite these obstacles, it is worth acknowledging that our model still
performs better than naive guessing.
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9.3 Solving Hitori with GNNs

9.3.1 Encoding

For GNNs to learn and tackle Hitori puzzles effectively, we encode them in a
manner compatible with graph-based learning, reflecting the puzzle’s rules. Each
cell in the puzzle becomes a node in the graph, interconnected with other cells
lying in the same row or column. This structure inherently represents the fun-
damental constraints of Hitori. Moreover, initial node features correspond to the
cell values, aligning with the puzzle’s numerical nature.

9.3.2 Training & Results
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Fig. 9.3: Hitori (RecGNN) Extrapolation to different difficulties

Figure 9.3 illustrates our GNN results. Models trained on various difficulties
exhibit similar performance, achieving roughly 81% accuracy. Although this
demonstrates that the GNN can grasp some aspects of the rules, it also highlights
shortcomings in distinguishing between different difficulty levels.

The reason for these challenges echoes some of the problems encountered with
the CNN approach. Uniqueness in solutions is not guaranteed in Hitori, making
convergence harder to achieve. Furthermore, unlike Sudoku or Kakuro, Hitori
does not exhibit stark contrasts between its difficulty classes. Visual inspection
reveals the model’s failure to enforce the rule that black cells cannot be hori-
zontally or vertically adjacent, which can be attributed to the more pronounced
global dependencies inherent to Hitori.
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9.3.3 Augmentation & Iterative Solving
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Fig. 9.4: Hitori GNN Performance on the Augmented Dataset, with iterative and
one-shot solving. Left side cell accuracy, right side puzzle accuracy

Figure 9.4 explores the impacts of augmentation and iterative solving. Despite
incorporating flags to indicate whether cells should be shaded or unshaded, aug-
mentation failed to improve by anything noteworthy . This could be due to the
complexity of Hitori, where such flags may not capture the underlying structure
and logic. Iterative solving, shows the performance to be slightly better, but still
rather, none of them seem to be able to complete solve any puzzles.

9.4 Final Conclusion

Easy Medium Hard
Training and Test Level

0.0

0.2

0.4

0.6

0.8

1.0

Ce
ll 

Ac
cu

ra
cy

Model Comparison (Hitori): Cell Accuracy

Model
GNN CNN (Augmented)

Fig. 9.5: Final Comparison of GNN and CNN (Augmented): cell accuracy

Our research illuminates the contrasting strengths and weaknesses between CNNs
and GNNs in solving Hitori. As seen in Figure 9.5, GNNs performed marginally
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worse in easy and medium puzzles but exhibited slight superiority in hard cases.
This discrepancy might hint at GNNs being better equipped to maintain global
dependencies, albeit subtly.

However, the similarity in accuracy between the two methods indicates that
neither achieved perfection or the capacity to solve all puzzles. The main obsta-
cles include the lack of unique solutions, complexity in differentiating between
difficulty levels, and more nuanced global dependencies present in Hitori com-
pared to other puzzles like Sudoku and Kakuro. The pursuit of perfect accuracy
in Hitori thus remains an open challenge, requiring further exploration and poten-
tially innovative modeling techniques tailored to this fascinating puzzle’s unique
characteristics.



Chapter 10

Conclusion

In this thesis, we embarked on an exploration of the application of augmentation
and iterative solving techniques within Graph Neural Networks (GNNs), focusing
on Algorithmic Datasets and Nikoli puzzles.

Our exploration of Maximum (Weighted) Independent Set problems revealed
the GNN’s proficiency in predicting the remaining nodes of a Maximal Indepen-
dent Set, as this is largely a local problem. However, when applied to Maximum
(Weighted) Independent Sets in trees, the model struggled. The introduction of
iterative solving in these contexts helped overcome these challenges, leading to a
small increase in performance.

In evaluating Reachability of nodes, our GNN performed exceptionally well,
identifying core components and assigning nodes with near-perfect accuracy. This
success highlighted the model’s ability to process and understand interconnected
structures without the need for deeper augmentation.

The implementation of iterative solving in Sudoku puzzles led to a significant
performance boost in all except the easiest puzzles for the GNN. In this case the
GNN mistakenly predicted a few cells per puzzle, which resulted in invalidating
the whole solution, while still maintaining a high cell accuracy. Despite this,
for the other difficulties, the result and improvement was significant. The GNN
trained on an augmented dataset, combined with iterative inference, performed
outstandingly, solving over 90% of the puzzles in all instances, a substantial
improvement over CNNs. One thing we also discovered, is that encoding the
graphs for the GNNs in such a way, which encapsulates the rules of the games,
lead to the best results.

However, our experiments with Hitori were more mixed. While the CNN
failed to converge, the use of augmentation made learning possible. In contrast
to the other problems, iterative inference did not lead to improvement but rather
a slight decrease in performance. The CNN and all the GNN models performed
similarly, which could be attributed to the complexity of Hitori or non-uniqueness
in the dataset.

Our research has shown that the integration of augmentation and itera-
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tive solving within GNNs offers a promising pathway to enhancing learning and
problem-solving. By employing these techniques, we have demonstrated substan-
tial performance improvements across a diverse set of problems, ranging from
traditional logic puzzles to more abstract algorithmic challenges. The varying
success and limitations observed across different puzzles and scenarios provide
valuable insights into the adaptive nature of these approaches, their dependen-
cies, and their potential applicability.

Through this study, we have not only expanded the understanding of how
GNNs can be effectively adapted and refined for complex problem-solving but also
opened new doors for future research and innovation. The insights gained from
our experiments, particularly in the intricate dynamics of puzzles like Kakuro
and Sudoku, offer a roadmap for further exploration and refinement.

10.1 Future Work

Our current augmentation process could be further enriched by employing a wider
variety of permutations during the training phase. By introducing a more ex-
tensive set of variations, the model might develop an even more nuanced under-
standing of the problem space.

While our methods have proven highly effective on Kakuro and Sudoku puz-
zles, there is room to test these techniques on more complex and diverse problems.
This could include extending the approach to other NP-Complete problems or
even problems outside the traditional puzzle domain.

Future work could also focus on fine-tuning the computational efficiency of
these techniques. This includes optimizing both the iterative solving process
and the augmentation strategies, to ensure they are not only effective but also
resource-efficient.
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Appendix A

Independent Set Results

A.1 Maximal Independent Set

type size amount train_loss train_acc batch_acc train_f1

tree-mis 10 1000 0.00 1.00 1.00 1.00
tree-mis 50 1000 0.00 1.00 1.00 1.00
tree-mis 100 1000 0.00 1.00 1.00 1.00
tree-mis 1000 100 0.00 1.00 1.00 1.00

type size amount train_loss train_acc batch_acc train_f1

graph-mis 10 1000 0.00 1.00 1.00 1.00
graph-mis 50 1000 0.00 1.00 1.00 1.00
graph-mis 100 1000 0.00 1.00 1.00 1.00
graph-mis 1000 100 0.00 1.00 1.00 1.00

type size amount train_loss train_acc batch_acc train_f1

tree-mwis 10 1000 0.07 0.97 0.06 0.98
tree-mwis 50 1000 0.34 0.97 0.00 0.98
tree-mwis 100 1000 0.41 0.97 0.00 0.97
tree-mwis 1000 100 0.38 0.97 0.00 0.98

type size amount train_loss train_acc batch_acc train_f1

tree-mumis 10 1000 0.03 0.98 0.03 0.99
tree-mumis 50 1000 0.11 0.96 0.00 0.97
tree-mumis 100 1000 0.12 0.96 0.00 0.97
tree-mumis 1000 100 0.12 0.96 0.00 0.97

A-1



Independent Set Results A-2

type size amount train_acc train_acc_iterative

tree-mwis-aug 10 1000 0.97 0.98
tree-mwis-aug 50 1000 0.97 0.98
tree-mwis-aug 100 100 0.97 0.99
tree-mwis-aug 1000 100 0.96 0.98

type size amount train_acc train_acc_iterative

tree-mumis-aug 10 1000 0.98 0.99
tree-mumis-aug 50 1000 0.96 0.97
tree-mumis-aug 100 100 0.96 0.96
tree-mumis-aug 1000 100 0.95 0.96

type size amount batch_acc batch_acc_iterative

tree-mwis-aug 10 1000 0.88 0.95
tree-mwis-aug 50 1000 0.48 0.78
tree-mwis-aug 100 100 0.25 0.73
tree-mwis-aug 1000 100 0.00 0.00

type size amount batch_acc batch_acc_iterative

tree-mumis-aug 10 1000 0.81 0.91
tree-mumis-aug 50 1000 0.12 0.38
tree-mumis-aug 100 100 0.00 0.10
tree-mumis-aug 1000 100 0.00 0.00



Appendix B

Reachability Results

type size amount train_loss train_acc batch_acc train_f1

connected-nodes 15 1000 0.01 1.00 0.99 1.00
connected-nodes 50 1000 0.00 1.00 1.00 1.00
connected-nodes 100 1000 0.00 1.00 0.98 1.00
connected-nodes 1000 100 0.00 1.00 0.87 1.00

type size amount train_loss train_acc batch_acc train_f1

connected-components 15 1000 0.01 1.00 0.98 1.00
connected-components 50 1000 0.00 1.00 1.00 1.00
connected-components 100 1000 0.00 1.00 1.00 1.00
connected-components 1000 100 0.00 1.00 1.00 1.00

B-1



Appendix C

Sudoku Results

C.1 Sudoku: Encoding Comparison

model train_level test_level loss acc batch_acc f1

Standard easy easy 0.00 1.00 0.98 1.00
Grid easy easy 0.34 0.52 0.00 0.89
Standard medium medium 0.01 0.99 0.86 1.00
Grid medium medium 1.11 0.33 0.00 0.68
Standard hard hard 0.44 0.80 0.01 0.88
Grid hard hard 2.03 0.22 0.00 0.54

C-1
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C.2 Sudoku CNN: Results

train_level test_level loss total_acc total_acc_iterative cell_acc cell_acc_iterative puzzle_acc puzzle_acc_iterative

Easy Easy 0.00 1.00 1.00 1.00 1.00 1.00 0.98
Easy Medium 0.53 0.92 0.98 0.83 0.95 0.01 0.79
Easy Hard 1.55 0.78 0.85 0.63 0.75 0.00 0.24
Medium Easy 0.01 1.00 1.00 0.99 1.00 0.92 0.98
Medium Medium 0.10 0.99 0.99 0.97 0.99 0.80 0.94
Medium Hard 1.63 0.79 0.85 0.65 0.74 0.00 0.21
Hard Easy 0.05 0.99 1.00 0.98 0.99 0.69 0.95
Hard Medium 0.95 0.90 0.94 0.78 0.87 0.00 0.42
Hard Hard 0.46 0.95 0.93 0.92 0.89 0.76 0.55
Mixed Easy 0.02 1.00 1.00 0.99 1.00 0.87 0.98
Mixed Medium 0.69 0.92 0.96 0.83 0.92 0.03 0.62
Mixed Hard 2.01 0.78 0.82 0.62 0.69 0.02 0.12
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C.3 Sudoku RNN: Results

train_level test_level loss total_acc total_acc_iterative cell_acc cell_acc_iterative puzzle_acc puzzle_acc_iterative

Easy Easy 0.04 0.99 1.00 0.95 0.98 0.38 0.85
Easy Medium 0.45 0.84 0.92 0.68 0.83 0.00 0.25
Easy Hard 0.88 0.70 0.76 0.51 0.60 0.00 0.02
Medium Easy 0.04 0.98 1.00 0.94 0.99 0.34 0.86
Medium Medium 0.25 0.89 0.98 0.76 0.96 0.00 0.71
Medium Hard 0.55 0.75 0.90 0.58 0.82 0.00 0.36
Hard Easy 0.07 0.97 0.99 0.91 0.96 0.17 0.64
Hard Medium 0.29 0.87 0.96 0.72 0.92 0.00 0.40
Hard Hard 0.53 0.76 0.88 0.59 0.80 0.00 0.20
Mixed Easy 0.04 0.98 1.00 0.93 0.99 0.31 0.89
Mixed Medium 0.27 0.87 0.98 0.73 0.96 0.00 0.73
Mixed Hard 0.54 0.75 0.90 0.58 0.84 0.00 0.41
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C.4 Sudoku GNN: Results

model train_level test_level loss acc acc_iterative cell_acc cell_iterative_acc batch_acc batch_iterative_acc f1

standard easy easy 0.00 1.00 0.99 1.00 0.99 0.97 0.27 1.00
standard easy medium 0.45 0.94 0.99 0.88 0.97 0.06 0.87 0.94
standard easy hard 1.92 0.78 0.88 0.62 0.79 0.00 0.35 0.78
standard medium easy 0.00 1.00 0.99 1.00 0.99 1.00 0.27 1.00
standard medium medium 0.01 1.00 1.00 0.99 1.00 0.87 1.00 1.00
standard medium hard 0.20 0.92 0.99 0.86 0.99 0.06 0.97 0.92
standard hard easy 0.00 1.00 0.99 1.00 0.99 1.00 0.27 1.00
standard hard medium 0.03 0.99 1.00 0.98 1.00 0.64 1.00 0.99
standard hard hard 0.44 0.88 0.98 0.80 0.97 0.01 0.91 0.88
standard mixed easy 0.00 1.00 0.99 1.00 0.99 1.00 0.27 1.00
standard mixed medium 0.01 1.00 1.00 0.99 1.00 0.84 1.00 1.00
standard mixed hard 0.24 0.91 0.99 0.85 0.98 0.05 0.96 0.91



Sudoku Results C-5

C.5 Sudoku GNN: Standard and Iterative Results

model difficulty variable value

Augmented Easy puzzle_acc 1.00
Standard Easy puzzle_acc 0.97
Augmented Medium puzzle_acc 0.92
Standard Medium puzzle_acc 0.87
Augmented Hard puzzle_acc 0.12
Standard Hard puzzle_acc 0.01
Augmented Easy puzzle_acc_iterative 0.26
Standard Easy puzzle_acc_iterative 0.26
Augmented Medium puzzle_acc_iterative 1.00
Standard Medium puzzle_acc_iterative 1.00
Augmented Hard puzzle_acc_iterative 0.90
Standard Hard puzzle_acc_iterative 0.91

model difficulty variable value

Augmented Easy cell_acc 1.00
Standard Easy cell_acc 1.00
Augmented Medium cell_acc 0.99
Standard Medium cell_acc 0.99
Augmented Hard cell_acc 0.86
Standard Hard cell_acc 0.80
Augmented Easy cell_acc_iterative 0.99
Standard Easy cell_acc_iterative 0.99
Augmented Medium cell_acc_iterative 1.00
Standard Medium cell_acc_iterative 1.00
Augmented Hard cell_acc_iterative 0.97
Standard Hard cell_acc_iterative 0.97



Sudoku Results C-6

C.6 Model Comparison: GNN, CNN, RNN

difficulty cell_acc_iterative model

easy 0.99 Sudoku GNN (Iterative)
medium 1.00 Sudoku GNN (Iterative)
hard 0.97 Sudoku GNN (Iterative)
easy 1.00 CNN (Iterative)
medium 0.99 CNN (Iterative)
hard 0.89 CNN (Iterative)
easy 0.98 RNN (Iterative)
medium 0.96 RNN (Iterative)
hard 0.80 RNN (Iterative)

difficulty puzzle_acc_iterative model

easy 0.26 Sudoku GNN (Iterative)
medium 1.00 Sudoku GNN (Iterative)
hard 0.91 Sudoku GNN (Iterative)
easy 0.98 CNN (Iterative)
medium 0.94 CNN (Iterative)
hard 0.55 CNN (Iterative)
easy 0.85 RNN (Iterative)
medium 0.71 RNN (Iterative)
hard 0.20 RNN (Iterative)



Appendix D

Kakuro Results

D.1 Kakuro CNN: Results

D.1.1 Cell Accuracy

Difficulty CNN (One-Shot) CNN (Augmented) CNN (Augmented & Iterative)

Easy 0.814034 0.848406 0.850879
Medium 0.632859 0.801285 0.822070
Hard 0.569735 0.783091 0.801629
Expert 0.539720 0.776623 0.792996
Elite 0.524823 0.767522 0.787401

D.1.2 Puzzle Accuracy

Difficulty CNN (One-Shot) CNN (Augmented) CNN (Augmented & Iterative)

Easy 0.032282 0.045527 0.0
Medium 0.000000 0.126688 0.0
Hard 0.000000 0.059118 0.0
Expert 0.000000 0.091575 0.0
Elite 0.000000 0.094383 0.0

D-1
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D.2 Different Encoding Accuracies

difficulty puzzle_type cell_acc

easy Clique 0.95
easy Path 0.71
easy Star 0.17
elite Clique 0.84
elite Path 0.50
elite Star 0.14
expert Clique 0.82
expert Path 0.47
expert Star 0.15
hard Clique 0.88
hard Path 0.54
hard Star 0.75
medium Clique 0.95
medium Path 0.62
medium Star 0.16
mixed Clique 0.92
mixed Path 0.63
mixed Star 0.16
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D.3 Kakuro GNN: Results

train_level test_level loss acc cell_acc puzzle_acc f1

easy easy 0.02 1.00 0.99 0.91 1.00
easy medium 0.48 0.85 0.75 0.13 0.85
easy hard 0.57 0.81 0.69 0.15 0.81
easy expert 0.66 0.78 0.64 0.06 0.78
easy elite 0.84 0.70 0.53 0.01 0.70
medium easy 0.02 1.00 0.99 0.93 1.00
medium medium 0.08 0.98 0.97 0.76 0.98
medium hard 0.11 0.98 0.96 0.70 0.98
medium expert 0.15 0.97 0.95 0.60 0.97
medium elite 0.23 0.95 0.92 0.48 0.95
hard easy 0.04 0.99 0.99 0.86 0.99
hard medium 0.13 0.98 0.96 0.61 0.98
hard hard 0.16 0.97 0.95 0.59 0.97
hard expert 0.21 0.96 0.93 0.49 0.96
hard elite 0.29 0.94 0.91 0.43 0.94
expert easy 0.10 0.98 0.97 0.70 0.98
expert medium 0.21 0.96 0.94 0.39 0.96
expert hard 0.24 0.96 0.93 0.39 0.96
expert expert 0.29 0.94 0.91 0.30 0.94
expert elite 0.37 0.93 0.89 0.26 0.93
elite easy 0.10 0.97 0.95 0.56 0.97
elite medium 0.22 0.94 0.89 0.21 0.94
elite hard 0.24 0.93 0.89 0.22 0.93
elite expert 0.28 0.92 0.87 0.16 0.92
elite elite 0.31 0.91 0.86 0.15 0.91
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D.4 Kakuro GNN (Augmented): Results

difficulty loss acc acc_iterative cell_acc cell_acc_iterative puzzle_acc puzzle_acc_iterative f1

easy 0.02 1.00 1.00 1.00 1.00 0.96 0.98 1.00
medium 0.08 0.99 0.99 0.98 0.99 0.86 0.94 0.99
hard 0.10 0.98 0.99 0.97 0.98 0.79 0.91 0.98
expert 0.15 0.97 0.98 0.95 0.97 0.66 0.85 0.97
elite 0.24 0.96 0.97 0.94 0.96 0.60 0.79 0.96



Appendix E

Hitori Results

E.1 Hitori CNN (Augmented): Results

train_level test_level loss cell_acc cell_acc_iterative puzzle_acc puzzle_acc_iterative

Easy Easy 0.40 0.83 0.73 0.00 0.00
Easy Medium 0.42 0.82 0.73 0.00 0.00
Easy Hard 0.43 0.81 0.73 0.00 0.00
Medium Easy 0.42 0.82 0.73 0.00 0.00
Medium Medium 0.39 0.83 0.73 0.00 0.00
Medium Hard 0.43 0.81 0.73 0.00 0.00
Hard Easy 0.58 0.71 0.70 0.00 0.00
Hard Medium 0.58 0.71 0.70 0.00 0.00
Hard Hard 0.49 0.77 0.70 0.00 0.00

E
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E.2 Hitori GNN (Augmented): Results

model train_level test_level loss acc puzzle_acc f1

One-Shot easy easy 0.38 0.84 0.00 0.89
Iterative easy easy 0.38 0.84 0.01 0.89
One-Shot medium medium 0.36 0.83 0.00 0.88
Iterative medium medium 0.36 0.84 0.01 0.88
One-Shot hard hard 0.40 0.84 0.00 0.88
Iterative hard hard 0.40 0.83 0.00 0.88
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Iterative Solving
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