
Distributed

 Computing

From Pixels to Nodes: A
Segmentation-Driven Approach to

Image Classification
Distributed Systems Laboratory

Mateo Diaz-Bone, Philip Toma, Stefan Scholbe
mateodi@ethz.ch
tomap@ethz.ch

sscholbe@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Karolis Martinkus, Ard Kastrati

Prof. Dr. Roger Wattenhofer

October 27, 2023

Acknowledgements

We thank Karolis and Ard for sharing their expertise with us and taking the
time and effort to supervise this semester project. Without their professional
knowledge and guidance this project wouldn’t have been possible. Furthermore
we thank Prof. Wattenhofer and the Distributed Computing Group for supplying
us with a state-of-the-art computing infrastructure to run our experiments. We
couldn’t have asked for more!

i

Abstract

This project presents a non-classical approach to image classification by combin-
ing Graph Neural Networks (GNNs) with Convolutional Neural Networks (CNNs)
and image segmentation techniques. We built a pre-processing and feature ex-
traction component preceding the Vision GNN Backbone (ViG) and enhanced
the model with a UNet-based CNN. The final outcome of our experimentation
on the ImageNet dataset failed to demonstrate a performance enhancement of
Vision GNN.

Our project was driven by two core objectives. We aimed to develop a com-
pact model, maintaining similar performance metrics to the state-of-the-art. Sec-
ondly, we sought to illustrate the feasibility of using graph-based methods in the
field of computer vision. Our findings demonstrate the applicability, but also
possible caveats of applying graph-based machine learning techniques to the task
of image classification.

Our implementation has been made available on GitHub1.

1https://github.com/travelingtomat0/ViG-SP

ii

https://github.com/travelingtomat0/ViG-SP

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background 3

2.1 SLIC Image Segmentation . 3

2.2 ImageNet . 5

2.3 Vision GNN . 5

2.3.1 Graph Representation Inference 5

2.3.2 ViG Backbone . 6

2.3.3 Prediction . 6

3 Method 7

3.1 Graph Representation of Images 7

3.2 Our Model Architecture . 8

3.3 Model Training . 9

3.4 Performance Optimizations . 10

3.4.1 Attempt 1: Precomputing Graphs 10

3.4.2 Attempt 2: On-the-fly Graph Generation 11

4 Evaluation 12

4.1 Benchmark Metrics . 12

4.2 Ablation Study . 12

4.3 Baseline . 13

4.4 State-of-the-Art . 14

4.5 Results . 15

iii

Contents iv

5 Discussion 16

6 Conclusion 18

Bibliography 19

A Appendix A-1

Chapter 1

Introduction

Image classification is one of the grand challenges in the computer vision com-
munity, and remains a hot topic to this day. While many domain-specific image
classification tasks, such as the well-explored handwritten digit classification task
(MNIST), have already yielded successful solutions, the ongoing work in image
classification promise to enhance and enable a wide range of products across
different sectors, such as the automotive and healthcare sector.

State-of-the-art models for image classification rely on a large set of different
components and modules, assembled into models consisting of billions of param-
eters. While such models scale to large computing nodes, e.g. services running in
the cloud, using these architectures to run locally on a consumer machines is im-
possible. This facilitates the need for efficient classification models with regards
to time and space complexity.

In this project we explored the possibility to build a neural network, which
allows the use of irregular structures (such as image segmentations), to classify
natural images. This was made possible by combining the power of convolutional
neural networks and graph neural networks.

Convolutional neural networks have been used extensively in computer vision
for image classification tasks. They excel at capturing local features and hier-
archies of patterns within images, making them a fundamental choice for such
tasks. However, these networks are typically designed for regular grid-like data,
such as images with fixed dimensions. When dealing with irregular structures
like image segmentations, the application of traditional convolutional networks
becomes challenging.

Graph neural networks (GNNs), on the other hand, are well-suited for han-
dling irregular structures represented as graphs. They have demonstrated signif-
icant success in various domains, including social network analysis and recom-
mendation systems [1]. Leveraging GNNs in image classification tasks opens up
the possibility of efficiently processing non-grid data, allowing us to work with
images in a more flexible manner.

Graph representations of images have become instrumental in various facets

1

1. Introduction 2

of image processing. A notable application is image segmentation, where pixels
or regions in an image are mapped to nodes in a graph, such that finding the
segmentation can be seen as a network flow problem [2]. Object recognition can
also benefit from graph-based approaches, by modeling objects as nodes and their
spatial relationships as edges in a graph [3].

In this report we show that the fusion of CNNs, GNNs, and image segmen-
tation to create a novel image classification model have the potential to improve
classification accuracy as compared to previous graph-based image classification
networks. Through our architecture we aim to bridge the gap between traditional
CNNs’ grid-like data requirements and the complexity of irregular structures in
image data.

Chapter 2

Background

2.1 SLIC Image Segmentation

A key building block of our approach is the simple linear iterative clustering
algorithm (SLIC) [4]. It produces so-called superpixels of an image, which are
perceptual groupings of pixels into segments of the image. Superpixels carry
more information than single pixels and align with natural edges within the image
rather than rectangular image patches.

The degree to which natural edges within an image are respected by the
segmentation algorithm is referred to as boundary adherence. It is a measure
to quantify how well the segmentation algorithm performs. Because SLIC of-
fers a sensible trade-off between boundary adherence and computational effort
we decided to use the algorithm to segment images into superpixels during the
preprocessing stage of model training.

Figure 2.1: Example of SLIC segmentations from the publication [4] with different
numbers of superpixels.

SLIC is based on the well-known k-means algorithm and, unlike other max-
flow min-cut based methods, uses gradient ascent to iteratively refine an initial
’pseudo-random’ clustering of pixels. Here, k-means was adapted, such that each
pixel is associated with the most similar center pixel µk within a limited local

3

2. Background 4

search region. This is different to k-means, which would search the whole image
for the most similar center pixel. After reassigning pixels to the most similar
centers, they are updated to be the mean of all pixels belonging to the cluster.
This process is repeated until the convergence criterion below is met.

||µnew
k − µold

k ||2 ≤ Threshold

By default, the only parameter of the algorithm is the number of desired,
approximately same-sized, superpixels k. This parameter is not a hard limit: the
actual number of segments returned by the algorithm is not enforced and can be
higher or lower than k.

Figure 2.2: Visualization of a SLIC segmentation by coloring each superpixel with
the mean RGB-value of all corresponding pixels. The image shows an input image
on the left and the ouput of a SLIC segmentation with roughly 196 segments on
the right.

As is visible in Figure 2.2, segmenting images with SLIC offers a more mean-
ingful segmentation of the image than a simple quadratic segmentation of the
image. Features of the depicted dog, such as its mouth, ears and collar are cap-
tured and their shape is preserved in the segmentation. This motivated us to
utilize SLIC in our model design.

For our model, it was necessary to enforce an upper bound for k due to
technical limitations. In case SLIC returned more than k superpixels, the most
similar and physically neighboring superpixels were merged into a single super-
pixel. This case is extremely rare and its impact on total classification accuracy
can be expected to be negligible.

2. Background 5

2.2 ImageNet

In the context of image classification, the ImageNet [5] dataset holds an influential
role as a foundational benchmark for evaluating the capabilities of large-scale
image classification models. The dataset comprises an extensive collection of
more than 106 images, spanning 1000 categories.

Through the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
researchers have been pushed to develop increasingly sophisticated models, often
resulting in paradigm shifts within the field. Examples include the emergence
of deep learning with AlexNet during the 2012 competition, as well as the well
known models of VGG, ResNet, Inception, and EfficientNet. Each of the mod-
els, benchmarked on the ImageNet dataset, refined the understanding of image
features and pushed the boundaries of prediction accuracy.

Although there are potential drawbacks to the dataset, such as label noise and
dataset bias, we employed ImageNet to train and evaluate our image classification
model. The reasoning behind this decision was simple: there is no better option
to contextualize and compare our models performance against the state-of-the-
art.

We note that we did not simply pursue achieving the highest possible accuracy
on the dataset. We also aimed to improve efficiency through a small number of
trainable parameters.

2.3 Vision GNN

The idea of Vision GNN (ViG) [6] was pivotal for our decision to pursue a
graph-based approach to image classification. Published at NeurIPS 2022, to
our knowledge, this was the first paper to show that graph-based methods can,
in fact, compete with state-of-the-art convolutional deep learning models as well
as vision transformers. The ViG model consists of the following stages.

2.3.1 Graph Representation Inference

Vision GNN transforms images to their corresponding graph representation by
transforming the image into same-sized square-shaped patches. These patches
make up the set of nodes N . The adjacency relation A is defined as the set of
k-nearest nodes, meaning that the graph structure can be understood as the kNN
graph of all patches in the image.

2. Background 6

2.3.2 ViG Backbone

After the graph representation inference, the authors of Vision GNN concatenate
three stages into the so-called ViG Backbone. It comprises of the information
sharing, feature transformation and multi-head update stages which are repeated
12 times. Between each of the backbone iterations, the kNN graph is updated to
reflect the new similarities between nodes.

Information Sharing

After inferring the graph representation (N,A) of an input image, the ’grapher
module’ sequentially employs graph convolutions to aggregate and update node
information, to encourage information flow throughout the model.

Feature Transformation

In a last step, node features obtained from the information sharing stage are
transformed using a simple 2-layer MLP. This step further encourages the learning
of sensible node features post information sharing.

Multi-Head Update

The graph representation of an input image is fed through the information sharing
and feature transformation stage, which together build the ViG network. The
output of the network is aggregated features xni (per node i). They are split into
multiple heads, which are updated using a multi-head update and concatenated
to output the final features x′i.

2.3.3 Prediction

The output of the backbone is provided to a two-layer CNN with batch normal-
ization, which outputs a probability vector for all labels.

Chapter 3

Method

3.1 Graph Representation of Images

An image can be interpreted as a graph (N,A), where nodes represent pixels and
edges are defined through the adjacency relationship between pixels. Depending
on the application, the graph (N,A) can be adapted to capture closer or more
distant relationships between pixels.

For example, using a simple grid-graph representation captures the relation-
ship only between pixels that are ’physically touching’. This equates to a 4-
connected graph representation of the image. Instead of using a simple grid-
graph, it is also possible to use a more complex structure, which captures rela-
tionships between more distant pixels.

Figure 3.1: Example of different neighborhood representations, where s denotes
the center pixel of the neighborhood.

In our use case, the computational complexity of the graph structure was
a limiting factor. Images of size (224 × 224) are represented by a graph that
contains |N | = 50176 nodes, each of which contains 3 features. Using a grid graph
representation results in more than 200,000 edges. Because PyTorch Geometric

7

3. Method 8

represents the adjacency relationship A as a list of edges, implementing a graph
structure such as that shown on the right in Figure 3.1 would mean a 4-fold
increase in the size of the graph.

Due to the constraining factors of both time and space complexity, we decided
to transform input images into the corresponding 4-connected grid-graph repre-
sentations. Once the dimensionality of the image has been reduced, the image is
represented by a kNN-graph structure.

3.2 Our Model Architecture

Figure 3.2: High-level overview of the model pipeline.

To extend the Vision GNN architecture, we built a pipeline that generates
the SLIC segmentation of an input image, where an input image could be the
original image as well as any of the image augmentations that we apply during
preprocessing, as listed in Table A.1. This results in a segmentation mask. From
it, we construct a set of 4-connected grid graphs, with each graph representing
one superpixel.

To derive features for every node, we train a UNet CNN [7] with 4 encoder
and decoder layers on the input image. Each stage of the network consists of
two 2D convolutions with batch normalization, and we use a ReLU activation
function at the very end of the network.

Using the UNet we transform a 3-channel image into a 24-channel image
with the same height and width. Thus, each node in the superpixel graphs is
initialized with 24 features. We chose the UNet architecture as it allowed us to
incorporate strided convolutions (as used in the original feature extraction model
from VisionGNN) while retaining the original size of the input image.

Subsequently, the feature enriched grid graphs for each superpixel are fed
individually through a graph convolutional network (GCN) composed of 5 layers,

3. Method 9

each followed by batch normalization. This step increases the feature count from
24 to 192 for every node in the graph and allows the model to share information
between nodes within a superpixel.

Each output graph of the GCN is then collapsed into a single node, to more
accurately represent the actual superpixels. The features of this node are derived
by aggregating features of all nodes within a superpixel.

We experimented with various common aggregation methods, such as LSTM,
DeepSets and MLP aggregation, as described in [8, 9]. However, as we show
in Table A.2, we found that the mean-aggregator consistently provided superior
results, leading to its adoption in our model.

In a final preprocessing step we take the superpixel feature vectors and zero-
pad them for a smooth transition into the VisionGNN Backbone. This is neces-
sary because the SLIC algorithm returns a variable amount of segments, different
to the feature extraction method used in the original VisionGNN architecture.

The output of the zero-padding stage is then fed to the Vision GNN backbone
and prediction stage as described in Section 2.3.

3.3 Model Training

During training, we employed several deterministic and non-deterministic data
augmentation techniques, which are listed in Table A.1. We excluded augmenta-
tions such as MixUp and CutMix since they require the mixing of several samples
from the same batch. We deemed the use of the two as infeasible, because the
implementation using segmentation masks would have lead to performance issues
during model training.

We used the AdamW optimizer [10] with a learning rate of 4 · 10−8 and a
cosine learning rate schedule. Due to GPU memory constraints, we were limited
to a batch size of 176 (minibatches of size 22 distributed across 8 Nvidia RTX3090
GPUs). This resulted in a latency of roughly 10,000 seconds per epoch on the
full ImageNet dataset and 1,000 seconds on ImageNet-100. In addition to the
common training of the model using gradients, we calculated a model copy using
an exponential moving average (EMA)1 on the trained parameters. This can
improve robustness and generalization properties of a classifier by following the
target model with momentum [11].

1The EMA methodology is explained here: https://timm.fast.ai/training_modelEMA.

https://timm.fast.ai/training_modelEMA

3. Method 10

Figure 3.3: An example output of SLIC, the associated superpixel graphs, and
the required (list of tensors) graph structure. While vertex IDs need to start at
0, their ordering is irrelevant. The related features have a comparable structure,
which is not depicted here.

3.4 Performance Optimizations

In the following, we explore the process of efficiently creating 4-connected super-
pixel graphs based on a SLIC segmentation. This was a crucial and challenging
component of our model pipeline. The graph generation occurs during hundreds
of epochs across over a million images. Consequently, even a couple of additional
milliseconds latency per image can tremendously increase total training time.
Additionally, PyTorch Geometric constrains the desired structure and format of
the graphs.

An illustration of the input and the specific graph structure can be seen in
Figure 3.3. Due to our model design, each superpixel is translated into a distinct
graph. Because of a 4-connection system of the nodes, these graphs exhibit a
simple structure that could be generated by using masking. A notable difficulty
was that the nodes in each superpixel must start at 0 since the features of the
nodes must be provided separately, making edge generation a less trivial task.

3.4.1 Attempt 1: Precomputing Graphs

Initially, we suggested precomputing the graphs offline for all images in the
dataset and storing them in a compressed format on disk. The focus was on
fast decompression to load them during training. However, we quickly realized
this approach was not feasible for our needs. The augmentation phase, which
performs, for example, image scaling and random cropping, is essential for the
model’s generalization performance. These augmentations result in varying SLIC
segmentations and, therefore, different superpixel graphs.

We then considered precomputing a smaller set of augmentations and their
corresponding superpixel graphs. But due to the immense size of the dataset,
even this compressed set of graphs took up a significant amount of storage space.

3. Method 11

Approach Runtime

Naive Python 249.0 ms
NumPy Vectorization 34.8 ms
C++ Implementation 1.9 ms

Table 3.1: Mean runtime over 100 runs of the three graph generation methods
on a SLIC segmentation: a naive Python approach using a double for-loop, a
vectorized NumPy strategy, and our C++ implementation.

Furthermore, limiting the number of augmentations decreased the generalization
performance. Seeing the same few images repetitively over hundreds of epochs
prevented the model from reaching its target accuracy.

Thus, we adopted a more demanding on-the-fly graph generation.

3.4.2 Attempt 2: On-the-fly Graph Generation

As our initial approach, we created the graph using a naive Python double for-
loop to traverse the 224x224 label map. Although this method was easy to
implement, the overhead of using pure Python resulted in poor performance. In
an effort to improve this, we crafted a vectorized NumPy solution that employs
masking and specialized index raveling functions. Even though this increased
performance by 7.2x, it still fell short of our needs.

While individual operations in NumPy are typically fast and highly optimized,
combining them might not achieve the same efficiency. This can be due to factors
such as creating temporary copies of data, missing hardware-level optimizations
like vectorized instructions, or following a suboptimal execution path. The overall
sequence of operations may not be as efficient as when it is designed as a single,
specific function, leading to potential performance inefficiencies.

Therefore, we decided to bypass these constraints by implementing the graph
generation method directly in C++, which can be accessed in Python through a
C binding. The performance of this implementation is superior to both NumPy
(18.3x) and naive (131.1x) approaches. We paid close attention to memory allo-
cation, selected appropriate data structures, and tried to reuse memory wherever
feasible. The benchmark results of the three approaches are provided in Table 3.1.

Chapter 4

Evaluation

4.1 Benchmark Metrics

The ImageNet Benchmark commonly employs two metrics to evaluate model
performance: the top-1 and top-5 accuracy. The top-1 accuracy evaluates which
fraction of all predictions is correct. Given that models output a probability
vector y ∈ [0, 1]n where n is the number of labels, the top-5 accuracy measures
how often the ground truth is part of the 5 labels with the highest probability in
the output vector y.

In the context of ImageNet it is important to not only evaluate the top-1
accuracy. The top-5 accuracy captures the model’s capability to generalize and
recognize relevant classes, even when its primary prediction is not the most confi-
dent one. It especially accounts for scenarios where multiple plausible predictions
might be applicable, as is the case for some specific noisy labels in the ImageNet
dataset.

4.2 Ablation Study

We performed an ablation study of the model design on the ImageNet-100 dataset,
subset of ImageNet containing images consistent with 100 instead of the whole
1, 000 labels. We compared three of model designs with the results of the original
Vision GNN models: one model without SLIC segmentation (ViG-SP-Grid), one
with 100 SLIC segments (ViG-SP100) and one with 196 SLIC segments (ViG-
SP196). Due to our model architecture, increasing the number of segments above
196 was not possible.

The original Vision GNN models (ViG-Ti & ViG-B) were trained specifically
on the ImageNet-100 dataset with the original published hyperparameters for 600
epochs.

Evaluating our model against the accuracy of the original models on the
ImageNet-100 dataset demonstrated that it significantly improved classification

12

4. Evaluation 13

ViG-Ti ViG-B ViG-SP196 ViG-SP100 ViG-SP-Grid

Top-5 (%) 96.33 97.10 97.78 97.28 97.44
Top-1 (%) 83.06 86.46 87.37 86.22 86.12

Table 4.1: Ablation Study on the ImageNet-100 Dataset. Note that the model
size of ViG-B is roughly 10x that of all others.

accuracy on ImageNet-100. The model consistently outperformed the original
models in both metrics. The fact that even the grid-model, which uses a 14× 14
grid graph structure instead of the irregular SLIC segmentation, outperforms
the original models shows that the additional feature extraction offered by the
combination of graph and convolutional neural network helps increase model
performance.

When comparing grid segmentation to SLIC segmentation, the difference be-
tween models is rather small. A possible explanation could be that segmenting
an image (always of shape 224 × 224) into patches of size 14 × 14 results in a
more fine-grained segmentation into 196 superpixels, unlike the SLIC100 segmen-
tation. However, a comparison between the grid model and the similar SLIC196
model, which segments into approximately 196 superpixels, reveals that the SLIC
segmentation offers a slight improvement in classification accuracy.

Due to its superior performance we adopted the ViG-SP196 model design for
our benchmark on the full ImageNet dataset.

4.3 Baseline

This project extends the ViG-Ti architecture, which is the smallest of the Vision
GNN models. ViG-Ti is an isotropic network, meaning it has uniform receptive
fields across width and height. It differs from pyramid architectures, also pre-
sented in the Vision GNN paper, which aim to capture scale-invariant properties
of the image and produce multi-scale features by gradually shrinking the spatial
size of feature maps as the network (backbone) deepens.

ViG-Ti

Top-5 (%) 92.0
Top-1 (%) 73.9

Table 4.2: Baseline metrics for the evaluation.

While popular networks, such as ResNet [12] and Swin Transformer [13],
often rely on the positive effects of pyramid architectures, we chose to adopt
an isotropic approach to leverage increased computational efficiency. Therefore,

4. Evaluation 14

ViG-Ti serves as the baseline for our evaluation.

4.4 State-of-the-Art

The state-of-the-art on the ImageNet dataset (as of August 2023) is the BASIC-L
model [14]. It is a combination of feature extraction through convolutional deep
neural networks and strategically placed attention mechanisms using transform-
ers. With a model size of more than 2.4 billion parameters it achieves a top-1
accuracy of 91.1%. The top-5 accuracy was not reported.

When looking only at models in a comparable range (between 5 and 15 million
parameters), the state-of-the-art lies roughly around 83%:

• NoisyStudent (EfficientNet-B3) [15]
with a top-1 accuracy of 84.1% (top-5 accuracy 96.9%)

• FixEfficientNet-B2 [16]
with a top-1 accuracy of 83.6% (top-5 accuracy 96.9%)

• TinyViT-11M-distill [17]
with a top-1 accuracy of 83.2% (top-5 accuracy 96.5%)

Vision GNN achieved a top-1 accuracy of 83.7% with a model size of 83
million parameters (Pyramid ViG-B). In our comparison group based on model
size, the smaller Pyramid-ViG-Ti model with 10.7 million parameters achieved a
top-1 accuracy of 78.2%.

4. Evaluation 15

4.5 Results

We trained and evaluated our final model on the ImageNet-1k dataset, consisting
of over 1.28M training images, 50K validation images and 100K test images.
Images in the dataset are mapped to one of 1K classes. To save time at the
beginning of training, we utilized the published parameters of Vision GNN (ViG-
Ti) which are shared with our model’s backbone. Nonetheless, completing the
training required roughly 3 weeks.

On the validation set, our model achieved a top-1 accuracy of 68.26% and
a top-5 accuracy of 88.38%. On the test set, we achieved a top-1 accuracy of
67.37% and a top-5 accuracy of 87.67%.

Comparing this result with the baseline metrics of ViG-Ti, we were roughly
5% less accurate in both metrics. The discrepancy between our results on ImageNet-
100 and ImageNet-1k might be attributed to our inability to increase the batch
size or the limited number of epochs available for training the final model.

Validation-Set Test-Set

Top-5 (%) 88.38 87.67
Top-1 (%) 68.26 67.37

Table 4.3: ViG-SP196 evaluation metrics.

Chapter 5

Discussion

Prior to starting with this project, the idea of applying graph-based methods for
image processing seemed far-fetched. Convolutional neural networks, the de-facto
standard to tackle computer vision tasks, are easy to train and efficiently solve
many of the tasks in the vision domain.

By stumbling upon the Vision GNN architecture, we were motivated to look
into the applicability of graph neural networks in the vision domain. The authors
published promising results on the ImageNet dataset, laying the groundwork for
a possible application of graph neural networks in image classification.

The advantages of using a graph representation for image processing are well
known: graphs are generalized data structures, which are more flexible than
the ’simple’ grid representation of images. They allow the modeling of irregu-
lar (non-quadratic) structures, such as a superpixel representation of an image.
Furthermore, similar components of an image can simply be connected with each
other through edges, even if they are not physically neighboring in the input
image.

Through our experiments, combining the ability of convolutional neural net-
works to extract feature maps with the ability to share information between nodes
using graph neural networks, we showed that the performance of GNNs tasked
with image classification can further be increased.

Despite experimenting with various different aggregators for the feature ex-
traction module during model development, we were not able to improve the
accuracy compared to a simple mean aggregation. Although it seemed promising
at first, implementing a deep sets aggregation as suggested in [9] did not achieve
an accuracy above 79% on the ImageNet-100 dataset.

We did not experiment with the graph representation of the image. Increas-
ing the max-degree of nodes is thinkable, however this would greatly increase
the space complexity of the representation. Furthermore, building a hierarchi-
cal graph to capture features at different scales would be a possible approach to
increase prediction accuracy. We believe that the highest potential lies in ex-
changing the UNet architecture by another, potentially more expressive model.

16

5. Discussion 17

Unlike convolutional neural networks and transformer based image classifiers,
the time to train graph neural networks is a concern for tasks in computer vision.
Despite our best efforts to optimize the time complexity of training, the latency
remained high. This is likely due to bottlenecks in the used library as well as
inefficiencies within our implementation [18].

A further concern when using graph-based methods for image processing is
space complexity. A 224 × 224 image typically requires roughly 49 KB in com-
pressed format and 157 KB when stored as a decompressed numpy array. When
storing the graph representation, where each node has at most 4 neighbors, the
storage required increases to at least 1.2 MB (in an optimised setting). The set
of images that can be processed simultaneously on GPU is therefore constrained
by how many graphs, in addition to the model, fit into VRAM.

Although our model showed promising results on ImageNet-100, a commonly
used subset of ImageNet, we were not able to translate the results to the more
general ImageNet-1k. Given the high computational effort to find better hyper-
parameters in order to have optimal performance, we believe that our approach
is not the way to go for image classification.

Chapter 6

Conclusion

In this project, we reviewed the applicability of graph representations for image
classification. We found that they introduce the opportunity to learn on irreg-
ular structures, such as segmented images, instead of being limited to regular,
quadratic structures. By combining convolutional with graph neural networks,
we were able to achieve results comparable to published results on the ImageNet
dataset.

Due to the high latency of training on the graph representations, we believe
that the downsides outweigh the benefits of using graph representations. While
the ability to learn on irregular structures can be advantageous for model perfor-
mance, we noticed that the impact is not significant enough to present a future
direction for research in the domain of image classification.

18

Bibliography

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, jul 2018. [Online].
Available: https://doi.org/10.1145%2F3219819.3219890

[2] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, no. 2, pp.
167–181, September 2004. [Online]. Available: https://doi.org/10.1023/B:
VISI.0000022288.19776.77

[3] H. Wei, C. Yang, and Q. Yu, “Efficient graph-based search for
object detection,” Information Sciences, vol. 385-386, pp. 395–414,
2017. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0020025516322630

[4] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic
superpixels compared to state-of-the-art superpixel methods,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp.
2274–2282, 2012.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on com-
puter vision and pattern recognition. Ieee, 2009, pp. 248–255.

[6] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision gnn: An image is
worth graph of nodes,” 2022.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” 2015.

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” 2018.

[9] D. Buterez, J. P. Janet, S. J. Kiddle, D. Oglic, and P. Liò, “Graph neural
networks with adaptive readouts,” 2022.

[10] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 2019.

[11] D. Busbridge, J. Ramapuram, P. Ablin, T. Likhomanenko, E. G. Dhekane,
X. Suau, and R. Webb, “How to scale your ema,” 2023.

19

https://doi.org/10.1145%2F3219819.3219890
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://www.sciencedirect.com/science/article/pii/S0020025516322630
https://www.sciencedirect.com/science/article/pii/S0020025516322630

Bibliography 20

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[13] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” 2021.

[14] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong,
T. Luong, C.-J. Hsieh, Y. Lu, and Q. V. Le, “Symbolic discovery of opti-
mization algorithms,” 2023.

[15] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy student
improves imagenet classification,” 2020.

[16] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test
resolution discrepancy: Fixefficientnet,” 2020.

[17] K. Wu, J. Zhang, H. Peng, M. Liu, B. Xiao, J. Fu, and L. Yuan, “Tinyvit:
Fast pretraining distillation for small vision transformers,” 2022.

[18] Z. Wang, Y. Wang, C. Yuan, R. Gu, and Y. Huang, “Empirical analysis of
performance bottlenecks in graph neural network training and inference with
gpus,” Neurocomputing, vol. 446, pp. 165–191, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231221003659

https://www.sciencedirect.com/science/article/pii/S0925231221003659

Appendix A

Appendix

Spatial Transformations
RandomResizedCropAndInterpolation
RandomHorizontalFlip
Rotate
ShearX
ShearY
TranslateXRel
TranslateYRel

Color Transformations
AutoContrast
Equalize
Invert
PosterizeIncreasing
SolarizeIncreasing
SolarizeAdd
ColorIncreasing
ContrastIncreasing
BrightnessIncreasing
SharpnessIncreasing

Table A.1: An overview of the applied transformations during the training pro-
cess.

A-1

Appendix A-2

Approach Top-1 Accuracy (%) Top-5 Accuracy (%)

Mean Aggregation 87.37 97.78
DeepSets Aggregation 78.34 94.60
MLP Aggregation 69.82 90.98
LSTM Aggregation 66.23 89.29

Table A.2: Accuracy of our model depending on the aggregation operator. The
ablations were performed on ImageNet-100.

	Acknowledgements
	Abstract
	1 Introduction
	2 Background
	2.1 SLIC Image Segmentation
	2.2 ImageNet
	2.3 Vision GNN
	2.3.1 Graph Representation Inference
	2.3.2 ViG Backbone
	2.3.3 Prediction

	3 Method
	3.1 Graph Representation of Images
	3.2 Our Model Architecture
	3.3 Model Training
	3.4 Performance Optimizations
	3.4.1 Attempt 1: Precomputing Graphs
	3.4.2 Attempt 2: On-the-fly Graph Generation

	4 Evaluation
	4.1 Benchmark Metrics
	4.2 Ablation Study
	4.3 Baseline
	4.4 State-of-the-Art
	4.5 Results

	5 Discussion
	6 Conclusion
	Bibliography
	A Appendix

