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Abstract

In this work we experiment with leveraging the knowledge that is incorporated in
a collection of supervised molecular property prediction datasets by pretraining a
shared GNN simultaneously on this collection of datasets in the hope of extract-
ing knowledge generally relevant and applicable to different molecular property
prediction downstream tasks. We further extended this by additionally adding
self-supervised motif data to the set of pretraining datasets, we experiment with
different ways of performing that extension as well as comparing it to pretrain-
ing purely on motifs. In order to do this we set up a framework to train on an
arbitrary number of datasets simultaneously. We comprehensively evaluate the
different pretraining configurations by looking at the performance on a variety
of different downstream tasks after finetuning, analyzing the pretraining itself as
well as testing the out-of-the-box usability of the GNN weights learned during
pretraining. The results show that the multi-dataset-pretraining, especially with
incorporation of motif data, leads to performance improvements on the majority
of downstream tasks. We conclude that multi-dataset-pretraining is worth being
investigated further and propose improvements as well as next steps.
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CHAPTER 1

Introduction

By design Graph Neural Networks (GNNs) are well suited for structured data like
social networks or knowledge graphs and established themselves as the method
of choice for many applications due to their state of the art performance. As
molecules can be naturally represented as graphs in which nodes are atoms and
edges represent bonds between atoms GNNs are applied to a wide range of com-
putational tasks on molecules. Probably the most relevant usage of GNNs in the
molecular domain is drug discovery, where the most frequent type of task is the
prediction of specific properties of a molecule, which is known as molecular prop-
erty prediction. Such properties can range from basic ones like solubility in water
to more complex ones like toxicity or even drug-target interaction and predicting
them is useful to determine whether a molecule might be a potential fit for a
drug. A reliable GNN could therefore make the discovery process more efficient
by reducing cost as well as accelerating the process itself. Reliability in this field
is crucial as no one wants a model that wrongly rules out a molecule that would
have in the end led to a cure for a disease or on the other side make people waste
resources on a molecule that should have been ruled out from the beginning. In
conflict with the required reliability is the fact that task-specific labels in the
molecular domain are scarce as they often require time-consuming and expensive
wet-lab experiments. This makes the molecular domain challenging as despite
this scarcity of labels one needs a reliable model i.e. good out-of-distribution gen-
eralization. One popular approach in the field of Neural Networks when facing
label scarcity and the strong requirement for out-of-distribution generalization is
pretraining, which has been proven itself in the recent years to be very effective in
the domains of Computer Vision and Natural Language Processing (NLP). Thus
there has been a lot of effort to develop pretraining approaches for GNNs in the
hope of similar success. While many approaches achieve noticeable gain in per-
formance on molecular property prediction tasks over the non-pretrained model,
one is still far away from a general purpose pretraining framework that fulfills
these challenging requirements. Thus in order to contribute to the research for a
foundation model or general purpose pretraining framework we experiment with
leveraging a collection of existing supervised datasets by simultaneously training
on them to extract information generally useful for molecular downstream tasks.



CHAPTER 2

Preliminaries and Related Work

2.1 Molecules as Graphs

As mentioned in the introduction molecules can be represented as undirected
graphs in which nodes are the atoms and edges represent the bonds between two
atoms.

2.2 Motifs in Graphs

In the context of graphs motifs refer to subgraphs of statistical significance, these
can be generic patterns like cycles or cliques of different sizes or more complex
even domain specific patterns that involve node and edge features like functional
groups in molecular graphs.

2.3 Graph Neural Networks

Graph Neural Networks (GNNs) have established themselves as extremely effec-
tive tools for tasks on structured data. Let G = (V, E) be a graph with nodes V'
and corresponding node features x,, for v € V' and edge features e,,, for (u,v) € E.
A GNN learns a representation h,, for each node v € G by repeatedly aggregating
representations of its neighboring nodes and adjacent edges and then updating
the node representation h, based on the aggregated information and the previous
node representation. A K-layer GNN performs K representation updates, follow-
ing equation describes the update performed by the k-th layer with k =1,..., K

and hg,o) =z, forveV:

n) = UPDATE (b=, AGGREGATE ({ (n{=0, n{f = 00 ) s u € N(v) }))
2.1)
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Note that in equation 2.1 we use message passing from source to target, this is
typically the default flow direction used for GNNs, however one is not restricted
to do this and the other option is a target to source flow i.e. use edge feature
ey In the above equation. As molecules are represented by undirected graphs
changing the flow direction would not make a difference in our case.

If one wants to perform a node-level task (e.g. classifying each node) the node

representations th) for v € V can be used directly, if one wants to perform a
graph-level task (e.g. predicting a single label for the whole graph) one uses a
pooling function to obtain a representation hg of the entire graph, formally

hg = POOL({R{) v e V}) | (2.2)

which is then passed into a final linear layer. Pooling functions are permutation-
invariant and often just simple operations like computing the mean or sum over
all node representations in the graph, but can also be more complex functions.

2.4 Related Work

Given the success of pretraining in computer vision and natural language pro-
cessing (NLP), there has been a lot of effort over the past few years to develop
pretraining approaches for GNNs in the hope of similar results. In one of the
earlier works that enable successful knowledge transfer to a variety of down-
stream datasets Hu et al. [1] combine self-supervised node-level and supervised
graph-level pretraining. One year later GraphCL |2] proposed different graph aug-
mentations and applying them in the form of constrastive learning between aug-
mented graphs to achieve successful knowledge transfer. Many other approaches
have been proposed including graph-autoregressive-models like GPT-GNN [3],
and well-known concepts from NLP have been adapted to GNNs, MoleBert [4]
adapts tokenization to molecular graphs to increase the vocabulary size for a
harder and more informative pretraining task and GPPT [5] adapts prompting
to graph data in order to narrow the training objective gap between pretraining
task and downstream task. Of specific relevance for our work is GROVER |[6]
which introduces a new transformer based GNN architecture. The relevant part
for our work is that for molecular property prediction tasks they pretrain this
architecture with self-supervised graph-level motif prediction. They compute bi-
nary labels of 85 functional groups for an astonishing 10 million molecules and use
them as a self-supervised graph-level pretraining task, in addition they perform
self-supervised node- and edge-level pretraining via contextual property predic-
tion and show that their combined pretraining strategy benefits the downstream
performance of their architecture. In parts of our work we compute the same 85
binary labels for our datasets and use them as additional pretraining tasks.



CHAPTER 3

Datasets

3.1 Default Datasets

Throughout our work we build upon 11 datasets all introduced by Molecu-
leNet [7], we provide an overview over these datasets in Table 3.1. We often
refer to these 11 datasets as default datasets, the reason for this is that we also
experiment with variations of these datasets regarding their labels and thus want
to be able to clearly differentiate between the default, i.e. untouched, and mod-
ified versions of the datasets. Given that all classification tasks are binary we
use for classification datasets the Binary Cross Entropy (BCE) as loss function
and the Area Under the Receiver Operating Characteristic Curve (ROC-AUC)
as evaluation metric. For regression datasets we use the Root Mean Square Error
(RMSE) as both the loss function and evaluation metric.

Task type Category Dataset # Tasks | # Compounds | Loss-Function | Eval-Metric
MUV 17 93087 BCE ROC-AUC
Biophysics HIV 1 41127 BCE ROC-AUC
BACE 1 1513 BCE ROC-AUC
Classification BBBP 1 2039 BCE ROC-AUC
Physiology TOX21 12 7831 BCE ROC-AUC
TOXCAST 617 8577 BCE ROC-AUC
SIDER 27 1427 BCE ROC-AUC
CLINTOX 2 1480 BCE ROC-AUC
ESOL 1 1128 RMSE RMSE
Regression | Physical Chemistry FREESOLV 1 642 RMSE RMSE
LIPOPHILICITY 1 4200 RMSE RMSE

Table 3.1: Default Datasets used for Multi-Dataset-Training

To allow for a better understanding of the differences and similarities between
datasets we provide a short description for each dataset (descriptions were par-
tially carried over from [7]):

¢ MUV (Maximum Unbiased Validation): Provides 17 tasks that were de-
signed for benchmarking virtual screening methods.
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e HIV: Task is to predict compound’s ability to inhibit HIV replication.
Compounds are classified as active or inactive with regards to whether
inhibition could be measured or not.

e BACE: Binary labels indicate whether or not a molecule is an inhibitor of
the human beta-secretase-1 (BACE-1) enzyme.

e BBBP (Blood-Brain Barrier Penetration): Binary labels indicating whether
it is likely or not that a compound is able to penetrate the blood-brain-
barrier.

e TOX21: Chemical Compounds tested for various toxic effects, including
nuclear receptors and stress response pathways.

e TOXCAST (Toxcitiy Forecaster): Various binary tasks to predict different
toxic effects of compounds.

e SIDER (Side Effect Response): Database of marketed drugs and their
recorded adverse drug reactions, grouped into 27 system organ classes.

e CLINTOX: Qualitative data of drugs approved by the FDA and those
that have failed clinical trials for toxicity reasons. Provides binary label
regarding toxicity and regarding FDA approval status.

e ESOL (Estimated Solubility): Water solubility (log solubility in mols per
liter) for common small organic molecules.

¢ FREESOLYV: Experimental and calculated hydration free energy of small
molecules in water.

e LIPOPHILICITY: Experimental measures of the octanol-water distribu-
tion coefficient of compounds, which is a standard measure of a molecule’s

lipophilicity (note that we sometimes abbreviate the dataset name with
LIPO).

3.2 Motif Data

As mentioned we also experiment with incorporating motif data in our pretrain-
ing, motif data in our work refers to labels indicating the presence of a func-
tional group in a molecule. More specifically, for each graph in each dataset we
compute 85 binary graph labels each indicating the presence of a different func-
tional group in a molecule and the task is then to predict these labels. These
labels have also been used for self-supervised molecular pretraining in [6]. The
85 functional groups are actually all functional groups that are provided by the
rdkit.Chem.Fragments module of RDKit [8]. If one wants a detailed overview
over the functional groups checked for we refer to the official documentation of the
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rdkit.Chem.Fragments module and give a short overview over these functional
group in the next paragraph.

The functional groups checked for include basic functional groups like alcohols
(R-OH), carboxylic acids (R-COOH) and amines (R-NHg, RoNH, R3N). They
also include aromatic structure like benzene, phenols and anilines as well as more
complex aromatic systems. In addition various functional groups containing ni-
trogen like pyridine as well as carbonyl containing functional groups like ketones
and aldehydes. Besides that they also include a variety of other groups including
less specific ring and chain like groups, groups containing phosphorus atoms and
more. All in all many important and relevant functional groups.

3.2.1 Motif Datasets

When talking about a motif dataset we mean a dataset whose tasks only consist of
these 85 binary labels, we mark them with motif in the subscript i.e. MUV 04 ¢
corresponds to the MUV dataset relabeled with the 85 binary motif labels. As a
result a motif dataset always corresponds to a classification dataset, so ESOL,,04
is a classification dataset and not a regression dataset like ESOL. For all motif
datasets we use BCE as the loss function and ROC-AUC as the evaluation metric.

3.2.2 Datasets with Additional Motif Labels

We also experiment with adding these motif labels as additional tasks to the
default datasets by concatenating them to the default labels. We mark such
dataset by appending + to the dataset name i.e. MUV+ refers to the MUV
dataset with additional motif labels. MUV therefore now has 17 + 85 tasks.
Note that we also concatenate these labels to regression datasets where they
correspond to 85 additional regression targets with value either 0.0 or 1.0, hence
ESOL+ compared to ESOL has 85 additional regression targets all of which have
either value 0.0 or value 1.0. For all datasets with additional motif labels we
use the same loss function and evaluation metric as we use for the corresponding
default dataset.

3.3 Features

For all datasets we use the same nine node features and the same three edge
features, this is important for us because it allows sharing an encoder between
pretraining datasets as well as between pretraining datasets and downstream
dataset, which we will explain in Section 4.2. All features are categorical and we
provide an overview of the node features in Table 3.2 and of the edge features in
Table 3.3, note that the vocabulary size is the number of distinct values that are
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possible for a specific feature, but not necessarily the number of distinct values
that appeared in all used datasets.

The features can be computed for arbitrary molecular datasets, such that one is
not restricted to specific datasets for pretraining which would otherwise harm the
general applicability of the work. Given that one has a SMILES [9] (Simplified
Molecular Input Line Entry System) string of the molecule, which is the case
for most datasets, the features can be extracted using RDKIT [8]. In case no
SMILES string is provided one can simply compute it from an RDKIT molecule,
one should just make sure to correctly construct the RDKIT molecule from the
given molecular graph.

Node/Atom Features

feature

description

vocabulary size

atomic number
chirality tag
degree
formal charge
number of H
number of radical electrons
hybridization type
is aromatic
is in ring

like in periodic table identifier of the atom type (e.g. C, H)
indicates the stereochemical configuration of a chiral atom
number of bonds connected to an atom
charge assigned to an atom in the molecule
number of hydrogen atoms directly bonded to the atom
number of unpaired electrons associated with the atom
indicates the type of hybridization (e.g. sp, sp2, sp3, sp3d)
whether the atom is part of an aromatic system
whether the atom is part of a ring structure

119
)
12
11
9

NN

Table 3.2: Node Features

Edge/Bond Features

feature description vocabulary size
bond type type of the bond (e.g. single, double, ...) 5
stereochemical configuration spatial orientation of the chemical bond 6
is conjugated flag indicating whether the bond is conjugated or not 2

Table 3.3: Edge Features

3.4 Label Distribution

As the last part of this chapter we provide an overview over the label distribution
of the datasets, in order to make it comprehensive and at the same time well-
aranged we compute for each classification dataset the fraction of the majority
label per tasks as well as the mean over all tasks (see Table 3.4 as an example) and
collect the means of all default classification datasets in Table 3.5, of the motif
classification datasets in Table 3.6 and of the datasets with additional motif labels
in Table 3.7. The fraction of the majority label for a specific task is computed as

max(num(labels = 0), num(labels = 1))

(num(labels = 0) +num(labels = 1))

(3.1)
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where num(labels = z) returns the number of labels that are equal to x.

More detailed statistics about the label distributions can be found in Appendix A.
For the default regression datasets we provide the mean and standard deviation
of the targets in Table 3.8 (keep in mind that all default regression datasets only
have one task) and for the regression datasets with additional motif targets we
provide the mean and standard deviation over the target distribution of all tasks
in Table 3.9.

CLINTOX, fraction of majority class per task (%)

train

val

test

total

task 1
task 2

93.2
91.9

96.6
95.9

93.9
93.2

93.6
92.4

mean

92.6 £ 0.7

96.3 £ 0.3

93.

6=£0.3

93.0 £ 0.6

Table 3.4: Fraction of majority class (%) in the ClinTox dataset

Fraction of majority class averaged over all tasks (%)
train val test total

MUV 99.8+0.0 | 99.8+0.1 99.8+0.1 99.8 £+ 0.0
HIV 96.3+0.0 | 98.0£0.0 | 96.8£0.0 | 96.5+0.0
BACE 60.3£0.0 | 86.1£0.0 | 53.3+£0.0 | 54.3£0.0
BBBP 83.9+£0.0 | 59.3£0.0 | 52.9+0.0 | 76.5+0.0
TOX21 92.8+4.5 89.9+£6.3 89.9+6.5 92.2 £4.7
TOXCAST | 83.84+14.2 | 82.6 £14.3 | 82.1 +14.2 | 83.4+14.3
SIDER 74.3+12.7 | 77.5+12.3 | 76.9 £ 13.1 | 74.9+12.7
CLINTOX | 92.6+0.7 | 96.3+0.3 | 93.6+0.3 | 93.0£0.6

Table 3.5: Fraction of majority class averaged over all tasks for each default
classification dataset.

Fraction of majority class averaged over all tasks (%)

train val test total

MUV potit 91.7+12.1 | 92.0£11.5 | 92.0+11.4 | 91.7 £ 12.1
HIV motif 90.7+12.1 | 91.5£11.3 | 91.8 £11.2 | 90.9 +£12.0
BACE ot 90.9+14.1 | 91.8 £13.5 | 90.8 £13.3 | 90.8 4+ 14.2
BBBP y0tif 90.8 £12.2 | 89.0£12.9 | 89.8 £12.6 | 90.4 +12.0
TOX21 motif 92.8 +£10.5 | 90.8 £12.1 | 90.8 £11.9 | 92.3 +11.0
TOXCAST potis | 92.74+10.6 | 90.8 £12.0 | 90.5 +12.4 | 92.1 +11.2
SIDERmotit 89.9+12.8 | 89.3£12.6 | 88.2+13.2 | 89.6 = 12.9
CLINTOX potif | 89.6 +£13.2 | 89.6 £ 13.6 | 90.5 £ 12.7 | 89.6 + 13.2
ESOLpotit 94.7+86 | 92.7+11.9 | 925+12.0 | 94.2+9.4
FREESOLV ot | 96.2+6.7 | 95.5+£9.3 | 95.5+8.1 | 96.0+6.5
LIPOmotif 90.5+13.0 | 91.2£12.3 | 90.8 £12.6 | 90.6 = 12.9

Table 3.6: Fraction of majority class averaged over all functional groups for each
dataset relabeled with motif labels.
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Fraction of majority class averaged over all tasks (%)
train val test total
MUV+ 93.0+11.5 | 93.3£10.9 | 93.3+10.8 | 93.1+114
HIV+ 90.8+£12.0 | 91.6 £11.3 | 91.9+11.2 | 90.9 +12.0
BACE+ 90.5+14.4 | 91.7£13.5 | 90.4 +£13.8 | 90.4 +14.7
BBBP+ 90.7+£12.1 | 88.6 £13.2 | 89.4+£13.1 | 90.3 +12.0
TOX21+ 92.8 +£10.0 | 90.7£11.5 | 90.7+£11.4 | 92.3+104
TOXCAST+ | 84.9+14.1 | 83.6+14.3 | 83.1+14.3 | 84.4+14.2
SIDER+ 86.1 +14.4 | 86.4 £13.5 | 85.5+14.0 | 86.0 == 14.3
CLINTOX+ | 89.7+13.0 | 89.8+13.5 | 90.6 +12.6 | 89.7 +13.1

Table 3.7: Fraction of majority class averaged over all tasks for each classification
dataset with additional motif labels.

Mean and standard deviation of targets
train val test total
ESOL —287£2.07 | =3.77+£1.98 | =3.80£2.12 | —3.05 +£2.10
FREESOLV | —3.26 £3.28 | —6.05 £6.08 | —5.88 £3.64 | —3.80 £ 3.84
LIPO 2.16 £1.21 2.20+1.22 2.36 £1.10 2.194+1.20

Table 3.8: Mean and standard deviation of regression target for each default
regression datasets

Mean and standard deviation of targets
train val test total
ESOL+ 0.024+0.32 | 0.03+0.43 0.03+0.44 | 0.02+0.35
FREESOLV+ | 0.00 £0.36 | —0.03 £0.66 | —0.02 £ 0.64 | 0.00 £ 0.42
LIPO+ 0.154+0.30 | 0.15+0.30 0.15+0.31 | 0.15+0.30

Table 3.9: Mean and standard deviation over distribution of regression tasks for
each regression dataset with additional motif targets
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Multi-Dataset-Training

4.1 Idea

The idea is to train a single GNN on multiple datasets simultaneously in the hope
of extracting knowledge generally relevant and applicable to molecular property
prediction tasks. The thought behind is that if a single GNN has to perform as
good as possible on multiple datasets simultaneously it has to learn to compute
representations of molecules that are as useful as possible to as many datasets as
possible at the same time. If the collection of datasets is comprehensive enough
such that the distribution of possible molecular property prediction tasks as well
as the distribution of molecules is sufficiently covered and the GNN is able to
simultaneously perform good on all datasets then the GNN would have learned
to compute representations that are generally useful for molecular property pre-
diction tasks. And we think that such a GNN would then be a great foundation
for finetuning. Of course for a given set of datasets there is the possibility that
the GNN cannot cope with the variation of tasks, either because it does not have
the capacity or because its simply not possible, and then its best option is to
provide representations only useful for a subset of tasks or in the worst case to
just provide random representations.

In order to evaluate whether our idea has potential we will introduce a framework
in the next section to simultaneously train on an arbitrary number of datasets.

4.2 Framework

4.2.1 Train Batching

At the core of our idea is a shared GNN who simultaneously learns from /has to
adapt to all datasets at the same time, thus during training every batch must
contain data from every dataset. To enforce this we designed a custom batching
procedure for the train-split, which we will explain now.

Let Dypqin denote the datasets on which we train on simultaneously, as the

10
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framework works for an arbitrary number of datasets we distinguish between
training on multiple datasets simultaneously i.e. |Dypain| > 1 and training on a
single dataset i.e. |Dipgin| = 1.

Multiple Datasets

Note that we perform data splitting prior to batching, so we only sample from
the train split. When handling multiple datasets of potentially varying sizes at
the same time we want to ensure that all datasets contribute equally to each
gradient update in the training process. In order to do this we create multi-
dataset-batches, such a multi-dataset-batch is basically just a list containing one
batch from each dataset. Given that dataset-sizes vary strongly and therefore a
different number of batches can be extracted from each dataset we use sampling
to ensure that each dataset independent of its size is represented equally during
training. Thus, at the beginning of each epoch we sample n samples uniformly
with replacement from each training dataset d € Dyyqin, for every dataset these
samples are then partitioned into batches and to each batch metadata about
the corresponding dataset, including its name, the output dimension as well as
the loss function and evaluation metric associated with it, is added. Finally,
the multi-dataset-batches for this epoch are then obtained by zipping the list of
batches of all datasets. We provide Pseudocode 1 as well as a graphical illus-
tration of this batching procedure in Figure 4.1. The reason that we sample in
every epoch and not just once before the training starts is that if the sample size
n is much smaller than the size of the whole dataset we still want to make use
of the data distribution of the whole dataset and not only of a small subset, the
reason that we sample with replacement is that n might be larger than the size of
a dataset in Dy.q;, or more generally formulated we sample with replacement so
that n can be of arbitrary size. In the pseudocode the function getDatasetInfo
extracts the metadata of the dataset.

Single Dataset

In the case that we train on a single dataset, we obviously do not sample and just
use the whole training dataset as one would normally do. Note that the individual
batches are still wrapped inside a multi-dataset-batch that just contains the batch
of a single dataset and its associated metadata, this allows to use the same train
and test code and makes the following section generally applicable.

Test and Evaluation Batching

For test and evaluation we obviously also use the whole available test and eval-
uation data, no sampling is performed here. We also do not wrap the batches
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Algorithm 1 Pseudocode for Train Batching with more than one dataset
1: procedure GETTRAINBATCHES(trainDatasets, sampleSize, batchSize)
2 batchesPerDataset < | |
3 for (i, dataset) in enumerate(trainDatasets) do
4 info < getDatasetInfo(dataset)
5: samples <— sample(dataset, sampleSize, replace=True)
6
7
8
9

batches <— getBatches(samples, batchSize)
# add dataset info to each batch
batches <— [(batch, info) for batch in batches]
: batchesPerDataset|i] < batches
10 end for

11: multiDatasetBatches < zip(batchesPerDataset)
12: return multiDatasetBatches

13: end procedure

inside a multi-dataset batches instead we use default data-loaders to which we
add metadata of each dataset.

sample with .
[BACE || e | |_namvles |

multi-batch_1

multi-batch_2

multi-batch_3

1
1
2
2
3
3

le with X
v ||

Figure 4.1: Batching for multi-dataset training, performed in every epoch

4.2.2 Model Structure

In this section we present the general structure of the model, illustrated by Fig-
ure 4.2 and motivate our design choices, the detailed implementations we use for
each part throughout the experiments are provided in Section 4.3.

As mentioned before, the uniformity of features across the different datasets
allows us to share the encoders of node and edge features across the datasets
i.e. to use the same node feature and edge feature encoders for all datasets.
Encoders are required as our features are categorical. The reason we decided
to share the encoders is on one hand that if the shared GNN learns to compute
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generally useful representations then so do the encoders, thus using the pretrained
encoders during finetuning, which we do in all experiments, is coherent with the
overall idea and might benefit the downstream performance. On the other hand
if we would have separate encoders for each datasets the GNN might be able
to learn that specific encodings belong to specific datasets and thus will not
necessarily learn to compute representation that are useful for all datasets or in
other words using separate encoders would increase the probability that the GNN
learns on individual datasets rather than simultaneously on all. Nevertheless,
experimenting with separate encoders might be an interesting avenue for future
research. The node feature encoding is usually applied once before the first
GNN layer, while dependent on the GNN architecture each layer might have
its own edge decoder or just one applied before the first layer. Note that in
our illustration (Figure 4.2) the encoder placed in front of the shared GNN has
primarily the purpose to show that all datasets share the same encoder(s), we do
not distinguish between node and edge encoders in this general illustration and it
therefore is also not in perfect accordance with all possible GNN implementations.
After the shared GNN each dataset is assigned its own dataset-specific decoder.
Figure 4.2 already gives a glimpse about how the loss function is computed during
training and in the next subsection we will explain the training procedure in more
detail.

shared GNN

Encoder(s) >

Figure 4.2: Multi-Dataset-Training-Setup with shared encoder

4.2.3 Training procedure

The training procedure is generally straight-forward, given a multi-dataset-batch
we pass the batch of each dataset through the model and in the end uniformly add
the individual losses together before computing the gradients and performing the
optimization step, for a more detailed understanding we provide Pseudocode 2.

/| Decoder BACE }—»‘ Loss_BACE |
Shared

Decoder_MUV » Loss_MUV

[+]
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Formally the loss computation can be described as follows.

Lunuttivaten = Y, La(Decodery(GNN(multibatchy))) (4.1)
deDtrain

In equation 4.1 Ly refers to the loss function used for dataset d, Decodery to
the encoder corresponding to dataset d, the GNN is shared between all datasets
(encoders are part of the GNN), and multibatchy denotes the batch in the multi-
batch corresponding to dataset d. We use Binary-Cross-Entropy (BCE) as the
loss of choice for binary classification tasks and the Root-Mean-Squared-Error
(RMSE) for regression tasks. Keep in mind that an overview over the loss and
evaluation functions used for each dataset, as well as more information about the
datasets, can be found in table 3.1.

Algorithm 2 Pseudocode for Training Procedure

1: procedure TRAIN(model, loader, optimizer)

2 for multiBatch in loader do

3 optimizer.zerograd()

4 loss <— 0

5: # each batch in multiBatch has associated metdata in info
6 for (batch, info) in multiBatch do

7 # retrieve name of dataset of which the batch is
8 datasetName < info.name

9 out < model(batch, datasetName)

10: # retrieve loss function associated with dataset
11: criterion < info.criterion

12: loss < loss + criterion(out, batch.y)

13: end for

14: loss.backward|()

15: optimizer.step()

16: end for

17: end procedure

4.2.4 FEvaluation Procedure

In contrast to loss functions for evaluation metrics a lower value does not always
indicate better performance, this is exactly the case for the two evaluation metrics
we use, namely the RMSE for regression tasks and ROC-AUC for classification
tasks. While a lower value means better performance when using the RMSE,
a larger score means better performance in the context of ROC-AUC. As a re-
sult when training on our collection of datasets simultaneously where for some
datasets the RMSE is used and for some ROC-AUC we cannot simply use the av-
erage or sum over all datasets to judge the overall performance of our model when
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training on multiple-datasets-simultaneously. Fortunately, the ROC-AUC score
is by definition always between zero and one and therefore we use 1 — ROC-AUC
instead to compute the average-evaluation-score during training as now for all
datasets a lower value always means better performance. Note that throughout
this work the performance on the individual classification datasets is still reported
as the standard ROC-AUC value i.e. higher means better and that the main use
of the average-evaluation-score is to pick the weights of the epoch with the low-
est average-evaluation-score on the validation-split as pretrained weights to later
finetune on. For the evaluation procedure, i.e. computation of validation or test
scores, we perform deferred computations in the sense that we accumulate the
output and targets of each batch and then compute the loss over all predictions
and targets of the validation-split or test-split respectively. For this procedure
we again provide Pseudocode 3. Let D be a collection of individual datasets d,
formally we compute the average-evaluation-score as:

Average-Evaluation-Score =

1
D] Z Bval(d) - Limetric,=rMsE} + (1 — Eval(d)) - Limetric,;=rocaucy » (4:2)

where Fuval(d) refers to the deferred evaluation on validation-split or test-split
of dataset d, metricy to the evaluation metric used for dataset d and with 1 we
specify an indicator variable.

4.3 Architectual Details

In this section we present the architectures we used for the different parts of the
model i.e. for the encoders, the shared GNN and the decoders. We begin with
the GNN.

4.3.1 Encoder

The encoders are part of the GNN and are therefore included in the next subsec-
tion.

4.3.2 GNN

For our K-layer GNN backbone we rely on the GIN implementation proposed
by [1] which incorporates edge features in the node representation computation.
However, we also slightly adapt it to first of all incorporate an arbitrary number
of node and edge features. Secondly the original paper adds self loops with
corresponding edge feature values to each node, because assigning the self-loop a
stereochemical configuration as well as the is-conjugated flag cannot be done in a
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Algorithm 3 Pseudocode for Evaluation Procedure

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

procedure TEST(model, loaderList)
averageScore < 0
scorePerDataset < | |
# loaderlist contains the dataloader of each dataset
numDatasets < len(loaderList)
for (loader, info) in loaderList do

datasetName < info.name
predictions < | |
targets < | |
for batch in loader do
out < model(batch, datasetName)
predictions +— concatenate(predictions, out)
targets <— concatenate(targets, batch.y)
end for
metric <— info.metric
score < metric(predictions, targets)
scorePerDataset|datasetName| < score
if (metric == ROCAUC) then
averageScore < averageScore + (1 — score)
else if (metric == RMSE) then
averageScore <— averageScore + score
else
error("invalid metric")

end if

end for
averageScore < averageScore / numDatasets
return averageScore, scorePerDataset

28: end procedure
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well-reasoned manner we leave the addition of self-loops out. We will now take a
closer look at how this GNN implementation computes the node representation
update for the k-th layer (the following equations is adapted from [1]):

h¥) = ReLU | MLP®) >oooaF+ > Y (4.3)
ueN (v)U{v} e=(u,v):ueN (v)

In order to embed the categorical node and edge features embedding layers
(torch.nn.Embedding) are used. While the node features are only passed to the
embedding layer during the first layer pass, the edge features are passed through
an embedding layer during each layer pass. The edge feature encoders are not
shared between layers i.e. each GNN layer has its seperate edge feature encoder.
Let f, be the [-dimensional feature vector of node v and f, the p dimensional
feature vector of edge e, formally this results in:

!
hO) = Z NodeEmbeddeingLayer;(f,:), h{¥ e R?
i=1

p
h®) = 3" EdgeEmbeddingLayer(” (f.;), h{") € R*, for k=0,1...,K —1

=1

Where NodeEmbeddeingLayer; refers to the embedding layer of the i-th node

feature, and EdgeEmbeddingLayergk) to the embedding layer of the k-th layer
in the GNN that embeds the i-th edge feature. The embedding dimension z is
the same for all node and edge embedding layers and is a hyperparameter that
we specify later. The MLP has two layers and upscales the input first to 2 x z
before applying ReLLU and then downscales it again to z. Dropout is applied
throughout all GNN layers. After passing the data through the GNN we perform
mean pooling to obtain a graph presentation hg, formally

ha=— 3K (4.4)
|V| veEG

where |V| denotes the number of nodes in the graph.

4.3.3 Decoder

The decoder of each dataset consists of a linear layer, so the final predictions for
each dataset d in a set of Datasets D is obtained via

predictions,; = Lineary(hg), predictions; € R | (4.5)

where outy corresponds to the output dimension required by dataset d, which is
part of the metadata stored with the batches.



CHAPTER 5

Experiments

5.1 Overview

In our experiments we evaluate the potential of training a shared GNN on multiple
datasets simultaneously as a pretraining task. In addition to the simultaneous
supervised pretraining on the default datasets we explore two ways of adding
self-supervised motif pretraining and also perform pretraining purely on motif
data as comparison. Furthermore we try out different sample sizes. For every
pretraining configuration we analyze the downstream performance compared to
no pretraining, how well tasks are learned during pretraining and and how the
performance during pretraining relates to the downstream performance, as well
as how useful the GNN-weights learned during pretraining are out-of-the-box i.e.
when freezing the GNN during finetuning and only training the decoders on the
downstream dataset for 5 epochs. Keep in mind that the encoders are part of the
GNN and are thereby also frozen during finetuning. We present the experimental
setup in the following sections

5.2 Data Splitting

Randomly splitting datasets into train and evaluation set does generally not re-
flect the strong requirement for out-of-distribution generalization of real-world
applications in the molecular domain. As a consequence random-splitting often
leads to overly optimistic scores. To achieve a more realistic assessment of the
models performance the so called scaffold-splitting [10] is often used when evalu-
ation GNNSs in the molecular domain. Scaffold-splitting provides a more realistic
evaluation environment by sorting the molecules according to its scaffold, which
is the core structure of a molecule. Sorting the molecules this way places similar
molecules close-by and different ones further apart. The sorted list is then split
continuously (i.e. no reshuffling etc.) into train, validation and test set. As-
suming there is enough variation in the scaffolds this allows for a more realistic
evaluation. Note that there is no randomness in this process, so data splitting

18
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this way is deterministic. We provide an illustration of scaffold-splitting in Fig-
ure 5.1.

For all experiments we use scaffold-splitting to split our datasets into train, vali-
dation and test set with a 80% : 10% : 10% split.
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Figure 5.1: Illustration of scaffold splitting, adapted from |7]

5.3 Leave-one-out Experiments

For the rest of the chapter let Dgefauit be the set of default datasets we presented
in Table 3.1 and let Dpyetrain denote a set of datasets we simultaneously pretrain
on when evaluating downstream performance on a specific dataset d € Dgefaut-
Note that for better readability we write d4 instead of d+ to indicate the version
with additional motif labels of a dataset d € Dgefauls. As described in Chapter 3
dmotit denotes the version of dataset d € Dgeauit relabeled with the motif labels.

We perform the experiments in a leave-one-out manner in the sense that for
every pretraining configuration we evaluate the downstream performance on every
dataset d € Dgefaurs While during pretraining for the evaluation of the downstream
performance on d we strictly leave out d, dmotif and d4 from Dpretrain as well as
have for every dataset p € Dgefaurt \ {d} at least one representative i.e. p itself,

Pmotif OF Py In Dpretrain-
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More formally when evaluating downstream performance of a pretrained model
on an arbitrary downstream dataset d € Dgefauit it always holds that

(Dpretrain N {d7 ot d+} = [b) N
(VP € (Ddefault \ {d}) (p € Dpretrain V Pmotif € Dpretrain Vpy € Dpretrain))

The reason we never add dp,otif to the pretraining datasets when evaluating down-
stream performance on d is that we wanted to simulate the scenario that already
a model pretrained simultaneously on a very large corpus of datasets exists and
one then just finetunes it on the desired downstream dataset, thus its unlikely
that a relabeled version of the downstream dataset is always already part of the
pretraining datasets. But note that if one performs the pretraining process by
them-self adding dptif is feasible as the motif labels are of self-supervised nature.
The reason that we do not have d; in the pretraining datasets when evaluating
downstream performance on d is that d+ contains the labels of the downstream
dataset.

In the next section we introduce the different pretraining methods, which will
further clarify the previous paragraphs.

5.4 Pretraining Methods

In our experiments we analyze different multi-dataset-pretraining methods for
all of which we perform leave-one-out experiments as described in the previous
section. As mentioned in the previous chapter, we pick the weights from the
epoch with the best-average-validation score (see 4.2) as our pretrained GNN
weights that we use to finetune on the downstream dataset.

For this section let djefiout € Ddefault denote the dataset we evaluate downstream
performance on.

5.4.1 Default

In the default setup we pretrain on all default datasets except the left-out one
ie.
Dpretrain = (Ddefault \ {dleftout})

In the tables of the results section we refer to this method as
pretrained (default).
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5.4.2 Additional Motif Labels
We pretrain exclusively on the datasets with additional motif labels i.e.

Dpretrain = {dJr :d e (Ddefault \ {dleftout})}

In the tables of the results section we refer to this method as
pretrained (+ motif labels).

5.4.3 Additional Motif Datasets

Here we add relabeled versions of all datasets except for djefrout to the pretraining
dataset i.e.

Dpretrain - (Ddefault \ {dleftout}) U {dmotif 0 d S (Ddefault \ {dleftout})}

In the tables of the results section we refer to this method as
pretrained (+ motif datasets).

5.4.4 Only Motif Datasets

As the title of the section suggest for this pretraining method we only use datasets
relabeled with the functional group labels during pretraining i.e.

Dpretrain — {dmotif ) S (Ddefault \ {dleftout})}

In the tables of the results section we refer to this method as
pretrained (only motif datasets).

5.5 Terminology

We will use the terms pretraining configuration and pretraining method fre-
quently throughout the rest of the thesis. A pretraining configuration consists
of a pretraining method and the number of samples used during pretraining. So
there is a clear distinction between the term method and configuration in the
context of pretraining within this work. To indicate the sample size used for a
pretraining configuration in tables we add a subscript to the pretraining method
e.g. pretrainedy. sk (default) would specify the configuration of pretraining on
the default datasets with sample size 500.
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5.6 Pretraining analysis

In addition to comparing downstream performance of different pretraining con-
figurations and training from scratch, we also want to take a closer look at the
pretraining, therefore we analyze the different pretraining runs. Note that we
do not perform additional experiments for this, we just analyze the performance
during pretraining of the different leave-one-out runs. We introduce this more
thoroughly in the results section.

5.7 No GNN Finetune

We were also interested in evaluating the out-of-the-box usability of the pre-
trained weights and thus also perform experiments in which we which we freeze
the GNN including encoders completely during finetuning and only train the
decoders for 5 epochs. We again provide more details in the results section.

5.8 Hyperparameters

Throughout all experiments we use 5 GNN layers and an embedding dimension
of 300. We always pretrain for 100 epochs with a batch size of 32, training on
the downstream dataset is also performed with batch size of 32 and generally
with 100 epochs, only for the "No GNN Finetune"-experiments we finetune for
just 5 epochs on the downstream dataset. We train all models with the Adam
optimizer using a learning rate of 0.001 and a ReduceLROnPlateau learning rate
scheduler. During pretraining we use dropout of 0.2 and during finetuning we
increase the dropout ratio to 0.5. For all pretraining methods we try out a sample
size of 500 to create multi-dataset-batches during pretraining as well as sample
size of 3000. As the "Additional Motif Datasets" pretraining method contains
twice the number of datasets as all other methods in its pretraining corpus we
decided to additionally perform experiments with sample size of 250 and 1500
for this pretraining method.

5.9 Result Reporting

Throughout all experiments when reporting test performance of a model we use
the weights of the epoch with the best evaluation performance on the validation
set. Every experiment is repeated with three random seeds, we report mean and
standard deviation over the three runs.



CHAPTER 6

Results

6.1 Notation

An arrow next to a metric (ROC-AUC, RMSE, or AVG GAIN) indicates whether
higher or lower values are better, i.e. an upwards pointing arrow (1) indicates
the higher the value of the metric the better the performance of the model and
a downwards pointing arrow (}) indicates the lower the value the better the
performance of the model. For ROC-AUC the higher the value the better, for
RMSE the lower the value the better.

For many tables we provide the average gain of a method compared to the no-
pretraining baseline (the baseline is highlighted with a gray background), inde-
pendent of the evaluation metric (ROC-AUC or RMSE) we ensure that a positive
gain always indicates performance improvement and a negative one always per-
formance decrease i.e. the gain is defined as

. pretrained — baseline, if metric = ROC-AUC
ain =
& baseline — pretrained, if metric = RMSE

6.2 Downstream Performance

The first and most important results we are looking at is whether our pretraining
improved the downstream performance on the different datasets. We summarized
all downstream results in Table 6.1, grouping them according to the pretraining
method and the groups themselves are sorted by increasing sample size used
during pretraining. The best performing pretraining configuration per group is
marked as bold in black (i.e. black bold indicates which sample size performed
the best for a given pretraining method) and the best performing pretraining con-
figuration overall (i.e. across groups) is marked as bold in red. A green shaded
cell indicates a positive knowledge transfer i.e. a performance improvement com-
pared to the non-pretrained model. We also refer to the non-pretrained model
as baseline.

23
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6.2.1 Classification Datasets

First we focus on the classification datasets, looking at the average gain we can see
that the overall best performing configuration is pretraining just on motif datasets
with a sample size of 3000, showing an average gain of 2.38 and no negative
transfer on all classification datasets. The second best performing pretraining
configuration is pretraining with additional motif labels and 3000 samples with an
average gain of 2.36 and the third best configuration is pretraining with additional
motif labels and 3000 samples resulting in an average gain of 2.26. These three
configurations have in common that they utilize motif prediction tasks (either
purely or in combination with the default tasks) and use the highest number
of samples, they all outperform the no-pretrainig baseline on 7 out of the 8
classification datasets. Pretraining purely on motif datasets with a sample size
of 500 is able to outperform the baseline on all classification datasets, but with
2.15 it results in a lower average gain than the previous three configurations. In
comparison pretraining purely on the default datasets, i.e. without incorporating
any motif tasks, only results in an average gain of at most 0.92 and is able to
outperform the baseline on only 5 of the 8 classification datasets, interestingly
for this method using 500 samples performs better than using 3000 samples.

Now we are taking a closer look at the influence of increasing the sample size
on the downstream performance we do this group by group and then make an
overall conclusion. As we mentioned before, for the default pretraining method
using the lower number of samples performs better than using the higher number
of samples. For all other methods 3000 samples works the best, the performance
improvement between lower and higher sample size is the most significant for
the pretraining with additional /concatenated motif labels, whereas for pretrain-
ing only on motif datasets the improvement when increasing the sample size is
the least significant. Interestingly for pretraining with additional motif datasets
pretraining with 1500 samples performs the worst while pretraining with 3000
samples works the best. Overall there seems to be no clear relationship between
sample size and downstream performance on the classification datasets, however
using the highest number of samples, i.e. 3000, works best for most pretraining
methods.

6.2.2 Regression Datasets

Looking at the performance on the regression datasets, pretraining with addi-
tional motif datasets and 3000 samples displays the best average gain. However,
not a single pretrained model is able to outperform or match the baseline on
the FreeSolv dataset. If one would not take the FreeSolv dataset into account
pretraining with additional motif labels and 3000 samples would be the best
performing pretraining configuration. For all pretraining methods using 3000
samples works the best, but similar to the classification datasets using 1500 sam-
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ples when pretraining with additional motif datasets performs the worst for this
method.

6.2.3 Owverall

Overall pretraining methods that incorporate motif prediction tasks, either by
combining them with supervised tasks or purely training on them, show the best
downstream performance. Furthermore the highest sample size leads to the best
performance in most cases, but no clear relationship between sample size and
downstream performance can be derived. In the hope of better understanding
our previous observations we are going to analyze the pretraining process next.

ROC-AUC(%) 1
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX | AVG GAIN 1
# compounds 93087 41127 1513 2039 7831 8577 1427 1480
# tasks 17 1 1 1 12 617 27 2
no pretrain 70.7+24 75.1+1.0 79.0+1.2 63.2 + 2.2 73.2+0.2 61.3+0.7 56.7 + 0.4 84.3+£0.9
pretrainedg 5x (default) 71.2+24 739+1.1 80.5+2.9 68.0+1.0 73.6+0.7 60.3 +0.8 60.4+20 83.0+1.7| 0.92+2.29
pretrainedsy (default) 69.4+15 75.3+1.2 77.4+40 66.5+ 1.4 73.6+10 61.9+0.8 60.9+1.9 80.3+25 0.22 + 2.64
pretrainedg 5 (+ motif labels) 66.3 + 2.3 73.7+£23 80.3 £ 2.2 65.7+ 0.6 74.4+04 63.4+0.6 62.94+0.5 822404 0.68 + 3.26
pretrainedsy (+ motif labels) 72.4+55 74.2+0.8 80.7+2.6 68.3+0.8 76.3+0.5 64.1+04 61.2+13 84.4+1.4| 2.26+2.05
pretrainedg 255 (+ motif datasets) 68.3 +4.0 74.44+04 79.8 £ 2.5 65.2 + 2.5 726+ 1.1 60.5 + 1.1 59.9+0.3 86.5+2.5 0.46 +1.90
pretrainedg 55 (+ motif datasets) 73.5+0.8 75.4+0.8 794+24 679+19 T40+03 61.2+05 61.5+1.8 84.0+1.4 1.68 +2.12
pretrained; 55 (+ motif datasets) 67.6+26 T47+17 T766+27 65.1+£1.0 7T4.8+£0.8 61.3+04 60.6+0.7 83.5+2.2 0.09 +2.31
pretrainedsy (+ motif datasets) 72.5+4.0 743+12 82.1+2.7 69.2+1.0 745+05 63.6+0.2 61.3+1.5 84.9+3.7 2.36 + 2.18
pretrainedy 55 (only motif datasets) | 73.7+£3.4 755+1.0 796+1.1 662+23 748+09 627+0.7 63.2+15 85.0+£0.3 2.15+2.03
pretrainedsy, (only motif datasets) 70.7+36 76.2+1.8 79.7+0.9 68.7+24 76.7+1.1 63.44+0.2 608+21 86.3+2.2| 2.38+1.86
RMSE |

Dataset ESOL FREESOLV LIPO AVG GAIN 1

# compounds 1128 642 4200

+# tasks 1 1 1

no pretrain 1.407 £0.186  2.634 £ 0.072  0.773 +£0.013

pretrainedg 51 (default) 1.249 +£0.073  3.328 +0.166 0.764 + 0.020 —0.176 £ 0.455

pretrainedsy, (default) 1.306 +0.086  2.654 + 0.396 0.750 £ 0.009 | 0.035 + 0.061

pretrainedg 5, (+ motif labels) 1.339 £0.074 2.850 £0.550 0.747 £+ 0.021 —0.041 £0.153

pretrainedsy, (+ motif labels) 1.216 +0.061  2.995+0.406 0.724 4+ 0.019 | —0.040 £+ 0.287

pretrainedg o5r, (+ motif datasets) 1.305 £ 0.201 2.734 +0.249 0.759 &+ 0.039 0.005 £ 0.101

pretrainedg 5, (+ motif datasets) 1.365 £ 0.093 2.670 £ 0.247 0.756 &+ 0.019 0.008 £ 0.040

pretrained; 55 (+ motif datasets) 1.295 + 0.036 2.929 £ 0.589 0.742 £ 0.001 —0.051 £0.215

pretrainedsy, (+ motif datasets) 1.238 £ 0.055 2.644 +0.197 0.734 +0.014 | 0.066 £ 0.093

pretrainedg s; (only motif datasets) | 1.283 +0.039  3.018 & 0.065 0.749 £+ 0.023 —0.079 £ 0.269

pretraineds;, (only motif datasets) 1.303 +0.063 2.761 + 0.087 0.741 £0.023 | 0.003 £0.118

Table 6.1: Downstream test performance on all datasets, all configurations.

6.3 Pretraining Analysis

In this section we evaluate how well the different datasets were learned during
simultaneous multi-dataset-pretraining and whether we can see a clear relation
between pretraining performance and downstream performance. In order to as-
sess for a specific pretraining configuration how well datasets are learned during
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pretraining we computed the average of the pretraining test scores per dataset
over all leave-one-out runs with this configuration. As an example for this compu-
tation you can find in Table 6.5 the pretraining test scores for each leave-one-out
run when pretraining on the default datasets with sample size of 500. Each non-
shaded data row corresponds to one leave-one-out run indicated by the dataset
that was left out during that run. In the second to last row we provide for each
dataset the mean over all leave-one-out runs, this mean row is highlighted by the
blue shading and is followed by the no-pretraining baseline (i.e. how well the
datasets are learned when training on each datasets individually from scratch).
Note that for this table the diagonal is empty as the left out dataset is never,
neither in its default form nor in any modified form, part of the pretraining. The
detailed pretraining tables for every configuration including test and validation
scores can be found in Appendix C.

Table 6.2 provides for each configuration the average of the test scores on the
default datasets during pretraining over all leave-one-out runs, that is the mean
row we mentioned before (to emphasize this we kept the blue shading), the first
blue row of this table thus corresponds to the mean row in Table 6.5. Green
shading again indicates a better score than the baseline. Because some pretrain-
ing configurations train on motif datasets we provide the corresponding scores
for the motif datasets in Table 6.3, note that for the configurations that pretrain
with additional motif datasets the corresponding row in the default dataset ta-
ble (6.2) and the corresponding row in the motif dataset table (6.3) belong to
the same pretraining run i.e. these scores were achieved simultaneously as the
model trained simultaneously on the default and motif datasets. Furthermore,
we present in Table 6.4 the scores corresponding to the configurations that train
with additional /concatenated motif labels (indicated by the + at the end of the
dataset names), because these labels are concatenated to the default labels the
scores for these datasets can neither be directly compared to the default datasets
nor to the motif datasets and thus we present them in this additional table.

6.3.1 Analysis

When looking at the default datasets we can see that interestingly for some
datasets during pretraining the performance is already better than from scratch,
so they profit directly from simultaneous training on multiple datasets. There
are multiple possible reasons for that, we think that training on multiple datasets
might have a regularizing effect or that these datasets benefit directly from the
knowledge implied by the gradients of some or all of the other datasets. This
improvement of performance during pretraining can be especially seen for the
configuration with additional motif datasets and sample size of 3000, which is
able to outperform the baseline on 7 of the 8 classification datasets and is also
able to deliver decent performance on the eighth one. We speculate, based on the
fact that pretraining purely on motif datasets has shown to be an effective pre-
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training task, that during simultaneous training these additional motif datasets
support the model by directly providing gradients to learn to detect motifs which
are useful for the actual task. This is supported by the fact that during pretrain-
ing this configurations achieves in addition to good performance on the default
datasets also good performance on the motif datasets, which we can see when
looking at the corresponding row in Table 6.3 where an average ROC-AUC of
90.1% is achieved, compared to an average ROC-AUC of 97.5% when training
purely on motif datasets. Nevertheless, we just speculate that this is the reasons
so further investigation is necessary to better understand the performance gain
during pretraining. Simultaneously training only on the default datasets does
benefit some datasets, but there is a large decrease in performance for MUV,
HIV and CLINTOX, so it definitely seems that adding the motif datasets to the
simultaneous training is key for the performance. It is also interesting that when
adding the additional motif datasets to the simultaneous training with 3000 sam-
ples the GNN seems to be easily able to cope with training and performing on
all datasets simultaneously, so the GNN weights learned while training with this
configuration seem to be useful for all datasets and their corresponding decoders
at the same time.

6.3.2 Influence of Sample Size

We can clearly see that the sample size is essential for the performance of simul-
taneous training on multiple datasets, because for every method increasing the
number of samples always improved the performance during pretraining. This
makes sense as with increasing sample size the model sees more data of each
dataset. We think that it would be interesting to increase the sample size fur-
ther, because increasing the number of samples from 500 to 3000 for the default
datasets increased the average gain during pretraining from —7.30 to —3.42, and
an average gain of zero with low standard deviation, i.e. similar performance as
training from scratch on the individual datasets, seems desirable.

6.3.3 Relation between Pretraining and Downstream Performance

We cannot observe a clear relation between overall pretraining performance and
downstream performance. We hoped that within a method, as its hard to com-
pare across methods, a higher average gain or average score during pretraining
would imply better downstream performance, but for pretraining on the default
datasets using 500 samples showed an overall better performance on the down-
stream datasets although pretraining performance is better with 3000 samples.
While for pretraining with additional motif datasets the configuration with the
best pretraining performance (3000 samples) shows the best downstream per-
formance, but the model pretrained with 500 samples shows better downstream
performance than the model with 1500 samples. So there is no clear positive
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or negative relationship between pretraining performance and downstream per-
formance, at least not for the pretraining configurations that contain default
datasets (i.e. pretraining only on default datasets and pretraining with addi-
tional motif datasets). For the pretraining configurations that explicitly contain
motif tasks/labels in each dataset (i.e. pretraining with concatenated /additional
motif labels as well as pure motif pretraining) better pretraining always implies
better downstream performance, however one has to be careful when drawing a
conclusion here as we did not evaluate these configurations with 250 and 1500
samples.

ROC-AUC(%) 1
Dataset MUV HIV BACE BBBP TOX21  TOXCAST SIDER  CLINTOX | AVG GAIN 1
# compounds 93087 41127 1513 2039 7831 8577 1427 1480
# tasks 17 1 1 1 12 617 27 2
no pretrain 70.7+24 7514+10 79.0+12 632422 732402 61.3+£0.7 56.7+£04 84.3+0.9
pretrainedg 51 (default) 481+24 7124+16 753+46 604+16 68713 60.6+0.8 549+1.1 659+3.6 | —7.30+8.31
pretrainedsy (default) 53.7+59 706+28 787+18 645+31 71.1+14 61.5+1.0 59.6+24 764+7.7 | —3.42+6.46
pretrainedg os5x (+ motif datasets) | 45.5+2.1 69.7+1.6 764+3.0 59.9+13 67.6+1.3 59.8+£0.8 559+1.0 652+1.3 | —7.94+9.08
pretrainedg s (+ motif datasets) | 48.5+3.8 708+1.6 80.2+21 61.7+1.7 685+1.3 61.0+£0.7 574+17 67655 | —5.98£8.71
pretrained; 55 (+ motif datasets) | 58.3£5.9 71.7+1.0 809+13 659+16 71.0+£1.2 623+£0.7 622+1.0 841+29 | —0.89+5.43
pretrainedsy, (+ motif datasets) 709+22 723+12 802407 675+1.7 740+09 641+05 63.3+£08 85.3+34 1.76 £ 2.83
RMSE |

Dataset ESOL FREESOLV LIPO AVG GAIN 7t

# compounds 1128 642 4200

# tasks 1 1 1

no pretrain 1.407 £0.186 2.634£0.072 0.773 £0.013

pretrainedg 55 (default) 1.394 £ 0.097 3.983 £0.218 1.004 £ 0.029 | —0.522 £ 0.726

pretraineds, (default) 1.241 £0.096 4.344+£0.234 0.893 £0.076 | —0.555 & 1.011

pretrainedg o5x, (+ motif datasets) | 1.396 +0.082 3.998 £0.305 1.029 + 0.067 | —0.536 £ 0.729

pretrainedg 5 (+ motif datasets) | 1.255+0.026 4.250 +0.235 0.960 & 0.056 | —0.550 =+ 0.938

pretrained; 55 (+ motif datasets) | 1.201 £0.028 4.499 +0.076 0.842 +0.036 | —0.576 £ 1.125

pretrainedsy, (+ motif datasets) 1.101 +0.025 4.646 +0.156 0.800 £ 0.030 | —0.578 & 1.253

Table 6.2: Test performance on default datasets during pretraining.

6.4 No GNN Finetuning on Downstream Tasks

In this section we analyze how useful the GNN-weights learned during pretrain-
ing are out-of-the-box i.e. when directly using them for predictions on the down-
stream dataset. Therefore during finetuning on the downstream task we train
only the decoder for 5 epochs, the rest of the model is frozen throughout these 5
epochs of finetuning. Keep in mind that the decoder has not been pretrained i.e.
is randomly initialized as the downstream dataset is not, neither in its default
form nor in any modified form, part of the pretraining datasets. We also compare
with a randomly initialized GNN for which we again only train the decoder for 5
epochs, thus this model has to work completely with random GNN-weights. For
the baseline we use, as usual, fully training the model on each dataset individu-
ally from scratch for 100 epochs, so for the baseline no part of the model is frozen
and no pretrained weights are used. Green shading of cells again indicates better
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ROC-AUC(%) 1
Dataset MUViotit HIVmotit  BACEpotit  BBBPmotit  TOX21nmetif  TOXCASThotit SIDER ot
# compounds 93087 41127 1513 2039 7831 8577 1427
# tasks 85 85 85 85 85 85 85
pretrainedg o5;, (+ motif datasets) 694+23 71.1+23 719+16 73.1+19 69.6 £2.2 68.1+£2.3 73.8+£28
pretrainedg 55 (+ motif datasets) 749+29 756+26 752+24 T78.0+£23 748+31 73.1+£3.2 79.3+2.5
pretrained; 55, (+ motif datasets) 85.3£3.1 842425 81.8+3.7 86.1+2.6 85.3+2.8 84.1+2.9 86.2 £ 2.4
pretrainedsy (+ motif datasets) 92.8+1.7 900+1.6 91.0+19 91.4+£1.7 921417 91.1+1.9 91.1+1.9
pretrainedg 5 (only motif datasets) | 98.0£04 96.44+0.2 98.14+0.1 97.9+0.3 98.7+0.1 98.1+£0.1 98.5£0.2
pretrainedsy (only motif datasets) | 99.3+0.2 99.0+0.1 99.5+0.1 99.1+0.1 99.9+0.0 99.9 + 0.0 99.5+0.1
ROC-AUC(%) 1

Dataset CLINTOX otit  ESOLmotit  FREESOLVpotit  LIPOmotie | AVG 1

# compounds 1480 1128 642 4200

# tasks 85 85 85 85

pretrainedg 255, (+ motif datasets) 68.7+ 3.0 70.8+1.9 69.0 + 2.2 714426 | 70.6 + 1.8

pretrainedg 55 (+ motif datasets) 73.3+£3.0 75.3 £ 2.6 72.4+1.2 75.6+3.6 | 75.2+2.0

pretrained; 5 (+ motif datasets) 82.8 £ 2.7 83.6 1.5 79.4+1.2 85.6+3.0 | 84.0+2.1

pretrainedsy, (+ motif datasets) 89.3+1.6 88.0+ 1.4 822+ 1.1 92.6 £ 1.5 | 90.1 + 3.0

pretrainedg 5 (only motif datasets) 96.5 + 0.4 93.3+0.3 83.9+0.7 97.9+0.2 | 96.1 +4.3

pretrainedsy (only motif datasets) 98.5 4+ 0.2 93.7+0.2 84.2+0.4 99.8+0.2 | 97.5 £ 4.7

Table 6.3: Test performance on motif datasets during pretraining (the average is
over both tables).

ROC-AUC(%) 1

Dataset
# compounds
# tasks

93087 41127 1513 2039 7831 8577 1427 1480
(17+85)  (1485)  (1485)  (1+85)  (12+485)  (617+85)  (27+85) (2+85)

pretrainedg 55 (+ motif labels) | 90.8 £0.7 93.5+0.6 96.0+0.6 95.8+0.5 93.0+0.5 65.3+04 864+0.6 92.7+038

MUV+ HIV+ BACE+ BBBP+ TOX21+ TOXCAST+ SIDER+ CLINTOX+

AVG T

89.2 £10.1
92.7 +10.6

pretrainedsy, (+ motif labels) 95.24+0.3 98.24+0.2 99.0+0.2 98.64+0.2 96.3+0.1 68.0+0.2 88.4+0.2 98.3+04
RMSE |
Dataset ESOL+ FREESOLV+ LIPO+ AVG |
# compounds 1128 642 4200
# tasks (1485) (1+85) (1+85)
pretrainedg 5, (+ motif labels) | 0.136 & 0.002  0.165 +0.003  0.152 + 0.004 | 0.151 + 0.015
pretrainedsy, (+ motif labels) 0.110 £ 0.002  0.149 £0.003  0.119 4 0.004 | 0.126 =+ 0.020

Table 6.4: Test performance on datasets with additional motif labels during
pretraining.

performance than the baseline and red shading of cells indicates that the perfor-
mance is worse than the model with random GNN weights. We summarized the
results in Table 6.6.

First of all, the pretrained models perform overall significantly better than the
model with random GNN-weights. This shows us that was has been learned
during pretraining is generally of use for the different downstream tasks. Never-
theless one has to note that for the BACE dataset the random GNN performs
better than some pretraining configurations, interestingly this is only the case for
configurations that include default datasets. For some classification datasets fine-
tuning only the decoder for 5 epochs is already able to surpass the performance
of the baseline. It is noteworthy that pretraining configurations that use motif
data have a significantly higher rate of surpassing the baseline after 5 epochs of
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ROC-AUC(%) 1 RMSE |

Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER  CLINTOX ESOL FREESOLV LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
left out dataset
muv 722+07 784+17 608+14 69.7+03 61.2+0.5 56.4+0.5 64.8+6.3 1.266+0.032 4.085+0.108 0.984 + 0.069
hiv 48.6 £ 1.1 64.9+81 583+23 67.1+1.0 602406 53.4+1.4 629+20 1.5194+0.092 3.672+0.369 1.057+0.021
bace 46.2+4.4 689 +2.1 60.1+15 69.3+0.7 604+0.7 541+03 622+1.8 1.284+0.068 3.983+0.414 0.976+0.038
bbbp 464+13 T72.7+1.0 T77.8+20 69.9+02 61.0+£1.0 54.9+1.9 64.7+3.4 1.454+0.137 3.737+0.265 1.006 +0.011
tox21 45.04+19 727+£09 T76.6+4.0 61.7+0.9 61.9+0.0 55.8+1.7 63.0+£09 1.3724+0.160 4.110+£0.317 0.972 4+ 0.064
toxcast 47.8+3.1 70.7+11 79.0+1.9 59.4+09 69.0+04 54.0+0.8 67.9+1.8 1.396+0.041 4.128+0.213 1.002 £ 0.023
sider 486 +20 722+13 759+84 59.7+29 68.7+02 61.1+1.0 67.9+3.2 1.286+0.061 3.893+0.399 1.027 £ 0.065
clintox 483+46 71.3+1.7 69.7+18.0 59.0+32 67.9+26 59.2+23 54.14+0.6 1.463 £ 0.133  4.003 £0.478 0.987 + 0.089
esol 53.54+48 683+27 772426 61.5+25 668+00 60.0+0.6 56.1+05 66.0+3.1 3.808 +£0.189 1.043 + 0.054
freesolv 50.3+6.6 70.5+04 T795+31 63.7+14 709+03 602+06 56.3+09 T745+34 1.533+0.199 0.987 4 0.049
lipo 46.3+3.1 72.1+0.9 T74.0+4.1 5944+15 67.6+0.3 604+06 539+1.2 652+£20 1.367+0.061 4.413+0.189
mean 48.1+24 T712+1.6 T753+46 604+1.6 687+13 606+08 54.9+1.1 659+3.6 1.394+0.097 3.983+0.218 1.004 +0.029
no pretrain 70.7+24 751+1.0 79.0+1.2 632+22 732+02 61.3+£07 56.7+04 84.3+09 1.407+0.186 2.634+0.072 0.773+0.013

Table 6.5: Test performance during default pretraining with 500 samples, left
most column indicates dataset left out during pretraining on which the model is
subsequently finetuned on.

training only the decoder and also achieve a significantly better average gain with
the same sample size. This is in accordance with our previous observations that
incorporating motif prediction tasks into pretraining is effective. Pretraining with
additional /concatenated motif labels and a sample size of 3000 has the highest
rate of surpassing baseline performance with 5 out of 8 classification datasets and
also displays the highest average gain of all pretraining methods with —2.08. The
second best average gain is achieved by pretraining with additional motif datasets
and 3000 samples, but with —4.17 it is significantly lower than the best one and
this configuration also only achieves an improvement over the baseline on 3 out of
the 8 classification datasets. Furthermore, we can see that pretraining with more
samples improves the average gain for all methods on the classification datasets,
this also means that for a pretraining method better pretraining performance im-
plies better downstream performance on the classification datasets after 5 epochs
of decoder training. For the regression datasets no pretrained model was able
to surpass the baseline after 5 epochs of decoder training, this time pretraining
with additional motif datasets is the best performing pretraining method across
all sample sizes.

Overall for these experiments combining the default datasets with motif tasks
(i.e. additional motif labels or additional motif datasets) for the pretraining task
seems to provide the most useful out-of-the-box GNN weights.
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ROC-AUC(%) 1
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER  CLINTOX | AVG GAIN 1
# compounds 93087 41127 1513 2039 7831 8577 1427 1480
# tasks 17 1 1 1 12 617 27 2
no pretrain (full training) 70.7£24 751%+10 79.0£12 63.2+22 732+£02 61.3£0.7 56.7+£04 843£0.9
random GNN-weights 59.5+2.1 51.3+43 682+47 53.7+22 640+23 541+03 521+04 41.0+4.1 | —14.95+12.78
pretrainedg 51 (default) 63.7+1.7 68.6+12 67.0£25 54.8+0.7 681+08 61.3+0.3 54.0+09 63.7+£5.6 —7.79£6.31
pretrainedgy, (default) 68.0+49 699+21 670+£23 572+33 688+0.6 61.8+£0.2 57.1+06 62.9+22 —6.35 £ 7.27
pretrainedg s (+ motif labels) 745+£05 683+£34 722+£03 652+1.1 71.6+£0.7 61.0+£02 59.3+01 525+19 —4.86 £ 11.60
pretrainedsy, (+ motif labels) 72.7+£06 71.5+10 731+£19 67.1+16 75.0£0.1 63.0+£0.8 59.3+08 652=+3.1 —2.08 £7.66
pretrainedg os;, (4 motif datasets) 63.1+15 678+14 61.6+1.7 561+1.0 67.8+0.1 604+0.2 553+£0.5 59.0+0.6 —9.05 £ 8.29
pretrainedg 51, (+ motif datasets) 67.6+3.0 695+19 67.7£0.8 55.6+0.7 67.7+1.1 60.3+04 56.8+0.5 58.8+2.6 —7.44+8.15
pretrained; 55 (+ motif datasets) 70.8+0.7 67.0+2.1 66.7+24 576+1.6 706+03 61.1+0.5 59.8+0.5 61.4+0.9 —6.06 £ 8.41
pretrainedsy (+ motif datasets) 73.7£1.0 679+£23 719+£18 602+£1.0 721+£14 63.2£08 59.6+10 61.5+3.6 —4.17 £ 8.57
pretrainedg 5 (only motif datasets) | 73.0£2.1 66.6+1.2 74.0+04 654+1.3 70.0+0.7 60.3+01 584+06 60.1+1.0 —4.46 + 8.85
pretrainedsy (only motif datasets) | 68.7+14 64.3+39 734+14 67.0+£0.7 68.7+06 59.8+0.2 57.3+0.6 68.8+3.7 —4.44 +£6.23
RMSE |

Dataset ESOL FREESOLV LIPO AVG GAIN 1

# compounds 1128 642 4200

# tasks 1 1 1

no pretrain (full training) 1.407+0.186 2.634+0.072 0.773 £0.013

random GNN-weights 3.801 £0.174 5.679£0.109 1.795+0.121 | —2.154 +1.033

pretrainedg 55 (default) 1.642 £0.018 4.681 £0.154 1.067 +0.020 | —0.859 £ 1.030

pretrainedsy (default) 1.636 £ 0.057 4.330£0.116 1.071+£0.011 | —0.741 £0.828

pretrainedg 5 (+ motif labels) 1.802 +£0.052 4.746 +£0.132 0.984 £0.004 | —0.906 £ 1.048

pretrainedgy, (+ motif labels) 1.468 +0.040 4.5194+0.122 0.952 +0.012 | —0.708 + 1.021

pretrainedg o5 (+ motif datasets) 1.683 £0.035 3.958 +0.368 1.048 +0.024 | —0.625 £ 0.605

pretrainedg 51, (+ motif datasets) 1.496 £0.015 4.005+0.028 1.047+0.015 | —0.578 £ 0.693

pretrained; 55 (4 motif datasets) 1.466 £0.092 4.081 £0.061 1.014 +0.017 | —0.582 4+ 0.754

pretrainedgy, (+ motif datasets) 1.415+0.035 4.263+£0.093 0.943 +0.014 | —0.602 £ 0.893

pretrainedg 55 (only motif datasets) | 1.899 +0.059 4.578 £0.313 1.011 +0.021 | —0.891 & 0.920

pretrainedsy, (only motif datasets) 1.866 £ 0.055 4.499 +£0.088 0.988 +0.003 | —0.846 &+ 0.891

Table 6.6: Test performance when finetuning only the decoder for 5 epochs com-
pared to full training from scratch each individual dataset

6.5 Key Observations

In this section we present the key observations, we group them according to their
corresponding section in the results chapter. To avoid potential confusion we want
to clarify that the three key observations listed in the subsection "Downstream
Performance" refer to the performance after finetuning the complete pretrained
model on the downstream dataset for 100 epochs and thereby do not include the
"No GNN Finetune" (i.e. only finetuning the decoder for 5 epochs) experiments
in their scope.

Downstream Performance

e Observation (1): All pretraining configurations achieve a positive aver-
age gain over the no-pretraining baseline and always outperform it on the
majority of datasets i.e. on at least 6 out of the 11 datasets.
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e Observation (2): The three pretraining configurations that perform best
on the classification datasets, all of which display a comparable average
gain, use motif prediction tasks (either purely or incorporated as concate-
nated tasks or additional datasets) and the highest number of samples i.e.
3000 samples.

e Observation (3): There is no clear relationship between pretraining per-
formance and downstream performance across all configurations.

Simultaneous Pretraining

e Observation (1): Sample size is essential for simultaneously training on
multiple datasets, increasing the sample size clearly and always improves
the test performance during simultaneous pretraining.

e Observation (2): Adding motif datasets to the default pretraining datasets
(i.e. pretraining with additional motif datasets) clearly improves the perfor-
mance on the default datasets during simultaneous pretraining compared
to training simultaneously on just the default datasets. During simulta-
neous pretraining with additional motif datasets and sample size of 3000
the performance on most datasets already outperforms pretraining on each
dataset individually from scratch.

No GNN Finetune

e Observation (1): On some classification datasets finetuning only the de-
coder for 5 epochs on the downstream datasets after pretraining is already
able to surpass the performance of the baseline. This is especially the case
for pretraining configurations that use motif data, pretraining with addi-
tional motif labels and 3000 samples allows to outperform the baseline on
5 out of 8 classification datasets after just 5 epochs of decoder training.

e Observation (2): For a fixed pretraining method better pretraining per-
formance implies better performance on the downstream classification datasets
after 5 epochs of only training the decoder.



CHAPTER 7

Discussion

In this work we evaluated whether pretraining a GNN simultaneously on multiple
datasets is a potential way of effectively improving the downstream performance
in the molecular domain. We explained the intuition of our idea as the need of
the GNN to learn to compute molecular representations during pretraining that
are as useful as possible for as many pretraining datasets as possible and thereby
in the optimal case generally useful for molecular downstream tasks. In order
to investigate the idea we introduced a framework that enables simultaneous
training of a single GNN on an arbitrary number of datasets. We chose a corpus
of 11 supervised datasets on which we performed leave-one-out experiments and
also experimented with different ways of incorporating self-supervised motif tasks
to the pretraining datasets. We one one side looked at the direct effect of this
pretraining on the downstream performance. On the other side we looked at the
performance during pretraining as well as the out-of-the-box performance of the
pretrained GNN-weights, because we want to understand what is learned during
pretraining and whether it corresponds to our intuition.

The results of our experiments indicate that pretraining on multiple datasets at
the same time, especially with incorporation of additional motif data, is benefi-
cial for the downstream performance and that performing further experiments in
this direction makes sense. Based on the fact that, especially when incorporating
additional motif data, the GNN is able during pretraining to achieve good test
performance on all pretraining datasets simultaneously and in addition to that
the learned weights are useful out-of-the box for the majority of downstream
datasets we speculate that the GNN indeed learns during our proposed pretrain-
ing to compute molecular representations that are generally useful for at least our
set of molecular downstream tasks and that this is what benefits the downstream
performance when finetuning. This supports our intuition and suggestion to fur-
ther investigate the idea. However, from our results it is not clear whether the
collection of supervised tasks in the corpus of datasets, the self-supervised motif
prediction or the combination of both is the main driver of the positive results,
although we believe that the motif data currently plays a crucial role. To further
evaluate the potential of the idea, to allow for more ultimate conclusions and to
answer open questions the most crucial next step is to to add more datasets to the
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pretraining corpus in order to increase the variation of tasks and molecules during
pretraining. We also suggest to increase the sample size used during pretraining,
which might be even more important with a larger corpus of datasets. Given the
increase in computation implied by our previous two suggestions we want to point
out that the pass of a multi-dataset batch through the model can be parallelized
as the dataset-specific batches in the multi-dataset-batch are independent of each
other, currently, as one can see in Pseudocode 2 and 3, we sequentially predict
on each dataset-specific batch. In order to further asses the general applicability
of the approach more GNN backbones should be evaluated in future works to
find out if the pretraining is agnostic to the GNN architecture or whether some
architectures profit more than others from the pretraining. Furthermore we want
to point out that the way we add the motif labels to the regression tasks, i.e. by
concatenating default targets and motif labels, can be considered rather naive
as binary labels are predicted as a regression task, so one can potentially come
up with a better way of combining them or try out only adding them to the
classification datasets and leaving the regression datasets untouched. Also the
calculation of the average-evaluation-score for model selection is suboptimal be-
cause the values of 1 — ROCAUC can be much larger than the RMSE scores,
meaning that the RMSE scores are less meaningful when choosing the optimal
epoch. Lastly, also related to the previous point, we suggest to explore different
dataset weighting schemes during pretraining for example nonuniform or even
dynamic ones.
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APPENDIX A

Datasets

A.1 Dataset Label Distribution

We provide counts for the binary labels of each task in the default classification
datasets, we omit ToxCast as it has 617 tasks. Not that the datasets not neces-
sarily provide every label for every molecule i.e. sometimes a molecule does not
have a specific label. We also omit the motif datasets as well as the datasets with
additional motif labels as they all have upwards of 85 tasks.

A.1.1 Classification Datasets

MUV

MUV train val test total

label 0 1 0 1 0 1 0 1
Task 1 11894 22 | 1431 5| 1489 0 | 14814 27
Task 2 | 11445 21 | 1557 2 | 1703 6 | 14705 29
Task 3 | 11638 20 | 1465 3 | 1595 7 | 14698 30
Task 4 | 11677 23 | 1391 4 | 1525 3 | 14593 30
Task 5 | 11648 18 | 1569 4 | 1656 7 | 14873 29
Task 6 | 11568 25 | 1507 2 | 1497 2 | 14572 29
Task 7 | 11774 25 | 1379 3 | 1461 2 | 14614 30
Task 8 | 11418 21 | 1496 3 | 1469 4 | 14383 28
Task 9 | 12159 24 | 1294 3 | 1354 2 | 14807 29
Task 10 | 12011 21 | 1317 3 | 1326 4 | 14654 28
Task 11 | 11815 21 | 1387 2 | 1460 6 | 14662 29
Task 12 | 12002 23 | 1312 2 | 1301 4 | 14615 29
Task 13 | 11679 24 | 1443 6 | 1515 0 | 14637 30
Task 14 | 11684 26 | 1547 2 | 1450 2 | 14681 30
Task 15 | 11487 22 | 1600 4 | 1535 3 | 14622 29
Task 16 | 11957 23 | 1345 4 | 1443 2 | 14745 29
Task 17 | 11830 21 | 1386 0 | 1506 3 | 14722 24
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DATASETS

HIV
HIV train val test total
label 0 1 0 1 0 1 0 1
Task 1 | 31669 1232 | 4032 &1 | 3983 130 | 39684 1443
BACE
BACE train val test total
label 0 1 0 1 0 1 0 1
Task 1 | 730 480 | 21 130 | 71 &1 | 822 691
BBBP
BBBP train val test total
label 0 1 0 1 0 1 0 1
Task 1 | 262 1369 | 121 83 | 96 108 | 479 1560
TOX21
TOX21 train val test total
label 0 1 0 1 0 1 0 1
Task 1 5586 248 | 693 29 | 677 32 | 6956 309
Task 2 5323 190 | 602 25 | 596 22 | 6521 237
Task 3 | 4718 590 | 531 89 | 532 89 | 5781 768
Task 4 | 4585 210 | 469 46 | 467 44 | 5521 300
Task 5 | 4444 648 | 483 68 | 473 77 | 5400 793
Task 6 | 5347 297 | 632 30 | 626 23 | 6605 350
Task 7 | 5174 134 | 546 30 | 544 22 | 6264 186
Task 8 | 4177 717 | 360 107 | 353 118 | 4890 942
Task 9 | 5542 195 | 634 33 | 632 36 | 6808 264
Task 10 | 5054 282 | 520 44 | 521 46 | 6095 372
Task 11 | 4060 711 | 413 111 | 419 96 | 4892 918
Task 12 | 5223 278 | 574 75 | 554 70 | 6351 423




DATASETS

SIDER
SIDER train val test total
label 0 1 0 1 0 1 0 1
Task 1 553 588 | 64 79 | 67 76 | 684 743
Task 2 354 787 | 34 109 | 43 100 | 431 996
Task 3 1125 16 140 3 140 3 1405 22
Task 4 440 701 | 48 95 | 63 80 | 551 876
Task 5 234 907 | 27 116 | 15 128 | 276 1151
Task 6 356 785 | 43 100 | 31 112 | 430 997
Task 7 108 1033 | 12 131 | 9 134 | 129 1298
Task 8 940 201 | 113 30 | 123 20 | 1176 251
Task 9 330 811 | 35 108 | 38 105 | 403 1024
Task 10 | 580 561 | 61 82 | 59 84 | 700 727
Task 11 | 839 302 | 107 36 | 105 38 | 1051 376
Task 12 | 109 1032 | 10 133 | 16 127 | 135 1292
Task 13 | 874 267 | 119 24 | 111 32 | 1104 323
Task 14 | 966 175 | 120 23 | 128 15 | 1214 213
Task 15 | 261 880 | 27 116 | 31 112 | 319 1108
Task 16 | 431 710 | 54 89 | 57 86 | 542 885
Task 17 | 99 1042 | 5 138 | 5 138 | 109 1318
Task 18 | 928 213 | 121 22 | 125 18 | 1174 253
Task 19 | 347 794 | 35 108 | 39 104 | 421 1006
Task 20 | 301 840 | 31 112 | 35 108 | 367 1060
Task 21 | 336 805 | 33 110 | 42 101 | 411 1016
Task 22 | 412 729 | 48 95 | 56 87 | 516 911
Task 23 | 1039 102 | 129 14 | 134 9 | 1302 125
Task 24 | 602 539 | 77 66 | 89 54 | 768 659
Task 25 | 358 783 | 37 106 | 44 99 | 439 988
Task 26 | 111 1030 | 2 141 | 10 133 | 123 1304
Task 27 | 394 747 | 44 99 | 43 100 | 481 946

CLINTOX
CLINTOX train val test total
label 0 1 0 0 0 1
Task 1 80 1104 | 5 143 | 9 139 | 94 1386
Task 2 1088 96 | 142 138 1368 112
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APPENDIX B

Downstream Performance

Here we provide additional validation scores for the downstream performances of
the epoch chosen for test evaluation.

B.1 Low Sample Count

Downstream Performance, low sample count, Validation

ROC-AUC(%) 1t RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
no pretrain 75.6+£0.9 809+20 709+19 934+03 763+£03 640+1.1 60.54+09 98.7+0.5 1.234 +0.070 1.723 +£0.141 0.804 £ 0.007
pretrainedg s, (default) 76.6 +0.2 80.8+0.9 72.3+2.1 93.8+0.2 76.4+0.6 64.0+0.8 60.8 +1.3 98.8£0.5 1.135 4+ 0.032 1.321 £0.116 0.787 £ 0.019
pretrainedg s, (+ motif labels) 75.0£07 821+15 759+1.8 928+03 77.8+0.0 64.0+03 64.9+04 983+1.1 1.166 + 0.074 1.840 £ 0.140 0.781 £ 0.013
pretrainedg 255 (+ motif datasets) 75.9+0.8 80.4+0.8 74.5+0.5 92.8+1.0 76.6 +0.5 63.4+0.5 60.8 +1.3 988 +1.1 1.162+0.093 1.309 +0.191  0.796 + 0.018
pretrainedg s, (+ motif datasets) 77.0+£25 80.2+20 728+05 934409 77.2+05 64.4+£0.2 629+06 99.04+0.6 | 1.190=+0.050 1.416 £ 0.080 0.784 £ 0.010
pretrainedg 55, (only motif datasets) | 75.1+£1.0 83.2+£0.9 725+06 94.1+£0.1 78.3+0.4 64.3+06 64.7+0.6 98.74+0.6 | 1.116 £0.016 2.216+£0.320 0.769 £ 0.015

Downstream Performance, low sample count, Test

ROC-AUC(%) t RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
no pretrain 70.7+£24 751410 79.0+1.2 63.2+22 732£02 61.3+£0.7 56.7+04 84.3+0.9 1.407+£0.186 2.634+0.072 0.773 +£0.013
pretrainedg 5, (default) 71.2+24 739+11 80.5+29 68.0+1.0 73.6+0.7 60.3+0.8 60.4+£2.0 83.0+1.7 | 1.249 £0.073  3.328 £ 0.166 0.764 £ 0.020
pretrainedg s, (+ motif labels) 66.3+23 73.7+£23 803+22 65706 T744+04 63.4+£0.6 629+05 822+04 1.339 £ 0.074 2.850 £0.550 0.747 +0.021
pretrainedg 255 (+ motif datasets) 68.3 £4.0 744+£04 79.8+2.5 65.2+£2.5 726+1.1 60.5+1.1 59.94+0.3 86.5+2.5 1.305 +0.201 2.734 £0.249 0.759 £ 0.039
pretrainedg s, (+ motif datasets) 73.5+08 754+08 794+24 679+19 740+03 61.2+05 61.5+1.8 84.0+1.4 1.365 + 0.093 2.670 £0.247 0.756 £ 0.019
pretrainedg s;, (only motif datasets) | 73.7+3.4 75.5+£1.0 79.6+1.1 66.2+23 748409 627+0.7 63.2+1.5 85.0+03 1.283 +£0.039 3.018 £ 0.065 0.749 £ 0.023

Table B.1: Validation and Test downstream performance of configurations with

low sample count.
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DOWNSTREAM PERFORMANCE B-2

B.2 Increased Sample Count

Downstream performance, increased sample count, Validation

ROC-AUC(%) 1 [ RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
no pretrain 75.6+£09 809+£20 709+19 934+£03 763+03 640+£1.1 60.5+£09 98.7+0.5 1.234+0.070 1.723 +£0.141 0.804 £ 0.007
pretraineds;, (default) 76.2+1.9 81.9+0.1 723+04 94.0£0.9 76.6+05 646+05 64.0+1.7 98.4+0.8 1.091+0.052 1.987 +£0.211 0.788 £ 0.020
pretraineds;, (+ motif labels) 76.1+03 827+0.3 T744+16 93.8+04 79.7+05 65.7+06 66.8+£0.8 98.7+0.4 1.095+0.017 2.647 £ 0.150 0.750 £ 0.009

pretrained; 5, (+ motif datasets) | 75.9+1.5 822+0.8 71.0+1.0 93.5+08 781+05 64.6+03 632+20 98.9+0.1 1.088+0.026 1.879 & 0.065 0.790 £ 0.009
pretrainedsy, (+ motif datasets) 75.9+£08 80.7+£22 764£25 938+£03 786%£04 653£09 65.7£1.1 98.4%0.9 1.072+£0.036 2.414 £ 0.240 0.767 £ 0.008
pretraineds;, (only motif datasets) | 75.6 +1.6 814+13 77.84+0.4 938406 793+04 65.9+0.4 664+06 985+0.6 1.083+0.026 3.205+0.256 0.770 £ 0.004

Downstream performance, increased sample count, Test

ROC-AUC(%) 1 [ RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
no pretrain 70.7+24 751+£1.0 79.0+12 632+22 732402 61.3+07 56.7+04 843+09 1407+0.186 2.634+0.072 0.773 £0.013
pretrainedsy, (default) 69.4+1.5 753412 774440 665+14 T73.6+1.0 61.9+£08 60.9+1.9 80.3+25 1.306+£0.086  2.654+0.396  0.750 = 0.009
pretrainedsy, (+ motif labels) 72.44+5.5 742408 80.7+26 683+08 763+05 641404 61.2+1.3 844414 1.2164+0.061 2.995+0.406  0.724 4 0.019

pretrained; s, (+ motif datasets) | 67.6+2.6 74.7+1.7 76.6+27 651+10 T748+08 61.3+£04 60.6+0.7 835+22 1.295+0.036 2.929 £ 0.589 0.742 £ 0.001
pretraineds;, (+ motif datasets) 725+4.0 T743+12 821427 692+1.0 T745+£05 63.6+£0.2 61.3+1.5 84.9+37 1.23840.055 2.644 £0.197 0.734 £0.014
pretraineds;, (only motif datasets) | 70.7+3.6  76.2+1.8 79.7+0.9 68.7+2.4 76.7+1.1 634+02 60.8+21 86.3+2.2 1.303+0.063 2.761 £ 0.087 0.741 £ 0.023

Table B.2: Validation and Test downstream performance of configurations with
high sample count.




APPENDIX C

Pretraining

In this chapter of the Appendix we provide detailed pretraining tables, including
validation and test performance, for all pretraining configurations. The chapter
is divided into the different pretraining methods, which are sub-divided into the
different sample sizes used for the corresponding method.

C.1 Pretraining Overview

Multi-Dataset-Pretraining performance, Validation

ROC-AUC(%) 1 RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
no pretrain 75.64+09 80.9+20 709+19 934+03 76.3+03 640+11 605+09 98.7+0.5 1.234+0.070 1.723+0.141 0.804 £ 0.007
pretrainedg 55, (default) 522443 69.1+£1.6 638+35 90.3+1.1 71.3+0.6 608+12 56.0+£0.5 83.0+49 1.278+0.086 4.328+0.331 1.102+£0.041
pretraineds, (default) 592+73 71.7+£19 695+34 91.3+05 725+1.6 626+13 57.3+21 87.7+35 1.152+0.094 4.841+0.285 0.965+0.091
pretrainedg oz, (+ motif datasets) | 49.24+1.9 69.4+1.0 64.0+3.8 91.0+£09 69.0+14 604+1.0 568+04 828+3.6 1.301+0.076 4.276+0.361 1.136+0.070
pretrainedg s (+ motif datasets) | 51.94+3.4 71.0+1.7 67.8+2.0 91.2+1.0 704+12 61.8+08 56.6+08 83.0+28 1.172+0.040 4.789+0.160 1.050 + 0.054
pretrained; 5;, (+ motif datasets) | 56.14+6.5 73.3+09 728+23 923+0.6 722+17 64.0+0.7 569+1.6 941+1.7 1.074+£0.043 5.4644+0.174 0.904 +0.047
pretrainedsy, (+ motif datasets) 69.4+25 759+1.0 73.6+15 926+05 762+1.0 6494+08 614418 922+22 0.996+0.026 5.447+0.136 0.858 & 0.031

Multi-Dataset-Pretraining performance, Test

ROC-AUC(%) 1t RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV ~ LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
no pretrain 70.7+24 751+£1.0 79.0+£12 632+22 732+£02 61.3£07 56.7+0.4 843+0.9 1.407+0.186 2.634+0.072 0.773 +0.013
pretrainedg 5;, (default) 481+£24 712416 753+4.6 604+1.6 68.7+£13 606+08 549+1.1 659+3.6 1.39440.097 3.983+0.218 1.004 +0.029
pretrainedsy, (default) 53.74+59 70.6+28 787+18 645+3.1 T71.1+14 61.5+£1.0 59.6+24 764+77 1.241+0.096 4.344+0.234 0.893 £0.076
pretrained o5, (+ motif datasets) | 45.5+£2.1 69.7+1.6 764+3.0 59.9+1.3 67613 59.8+0.8 55.9+1.0 65.2+1.3 1.396+0.082 3.998+0.305 1.029 + 0.067
pretrainedg s (+ motif datasets) | 48.5+3.8 70.8+1.6 80.2+21 61.7+1.7 685+13 61.0+0.7 574+1.7 67.6+£55 1.2554+0.026 4.250+0.235 0.960 + 0.056
pretrained; 5 (+ motif datasets) | 58.3+£5.9 71.7+1.0 80.9+13 65.9+1.6 71.0£1.2 623+0.7 622+1.0 84.1+29 1.201+0.028 4.499+0.076 0.842 +0.036
pretrainedsy, (+ motif datasets) 709422 723+12 802+£07 675+1.7 74.0£09 641+£05 633+£08 853434 1.101+0.025 4.646+0.156 0.800 =+ 0.030

Table C.1: Validation and Test performance on default datasets during pretrain-

ing.
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PRETRAINING

C.2 Default

C.2.1 500 samples

C-2

Pretraining Default, 500 samples, Validation

ROC-AUC(%) 1 RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
left out dataset
muv 70.1+3.0 63.1+4.4 90.7+08 723+1.0 614+1.2 56.0+0.6 74.8+44 1.179+£0.038 4.5474+0.124 1.076 +0.081
hiv 51.3+2.0 58.1+12.2 88.2+26 704+1.0 60.1+1.2 55.2+0.8 77.7+86 1.372+0.076 3.638+0.586 1.177 4+ 0.004
bace 51.5+94 65.4 + 3.6 89.3+1.6 7214+0.9 60.4+0.4 55.3+2.2 T77.2+33 1.170+0.067 4.243+0.542 1.077 £0.047
bbbp 55.1+14 69.9+14 653+2.7 71.7+1.0 61.4+0.9 56.4+0.8 84.1+2.1 1.3254+0.139 4.594 +0.244 1.094 £ 0.009
tox21 471+45 T706+18 679+15 90.8+04 624+06 55.7+1.0 843425 1.2744+0.095 4.585+0.190 1.058 £ 0.094
toxcast 51.4+2.0 682+1.6 623+21 904+09 71.6=+0.8 56.2+1.1 87.3+1.2 1.258+0.075 4.426+0.405 1.100 =+ 0.051
sider 52.7+£45 70.0+£1.6 629+49 914+0.7 71.4+£0.6 61.2+0.6 84.5+1.5 1.197+0.084 4.475+0.345 1.144 £0.081
clintox 48.7£8.7 69.6+20 64742 903+12 T709+23 59.3£21 57.0£0.8 1.337+£0.102 4.376 £0.554 1.082 £ 0.108
esol 53.0+£11.1 685+£3.7 66717 89.2+12 70.7£04 589+14 559+0.8 83.6x+1.3 3.844 £0.142 1.151 +£0.067
freesolv 624+7.3 70.6+1.0 68.0+0.5 92.0+0.2 714+13 626+1.7 56.1+1.0 90.4+0.9 1.426+0.176 1.064 £+ 0.037
lipo 486+73 683+£05 58.6+37 90.7+08 70.8+0.2 602+£06 557+04 858+28 1.2394+0.052 4.555+0.116
mean 522+43 69.1+£16 638+35 903+1.1 71.3+06 60.8+12 56.0+0.5 83.0+49 1.278£0.086 4.3284+0.331 1.102+0.041
no pretrain 75.6+09 809+20 709+19 934403 76.3+0.3 64.0+1.1 60.5+09 98.7+0.5 1.234+0.070 1.723+0.141 0.804 &+ 0.007
Pretraining Default, 500 samples, Test
ROC-AUC(%) 1 | RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
left out dataset
muv 722+0.7 784+17 608+14 69.7+0.3 61.2+0.5 56.4+0.5 64.8+6.3 1.266+0.032 4.085+0.108 0.984 £ 0.069
hiv 48.6 = 1.1 64.9 £ 8.1 583+23 67.1+1.0 60.2+0.6 53.44+14 629+£2.0 1.519+0.092 3.672+0.369 1.057 4+ 0.021
bace 46.2+4.4 68.9+2.1 60.1+1.5 69.3+0.7 60.4+0.7 54.14+03 6224+1.8 1.284+0.068 3.983+0.414 0.976 £ 0.038
bbbp 46.4+13 72.7+£1.0 77.8+2.0 69.9+02 61.0+£1.0 549+19 64.7+34 1.454+0.137 3.737+0.265 1.006+0.011
tox21 45.0+£19 727+£09 766+40 61.7+£0.9 61.9+00 558+1.7 63.0+09 1.372+0.160 4.110+0.317 0.972 £+ 0.064
toxcast 478+31 70.7+£1.1 79.0+19 59.4+0.9 69.0+0.4 54.0£0.8 67.9+1.8 1.396+0.041 4.128 £0.213 1.002 £ 0.023
sider 48.6+20 722+13 759+84 59.7+29 68.7+02 61.1+1.0 67.9£3.2 1.286+0.061 3.893+0.399 1.027 =+ 0.065
clintox 483£46 71.3£1.7 69.7£18.0 59.0£3.2 67.9£26 59.2+23 54.140.6 1.463 +£0.133 4.003 £0.478 0.987 £ 0.089
esol 53.5£48 683£27 772+£26 61.5£25 66.8+£00 60.0£06 56.1+0.5 66.0+3.1 3.808 £0.189 1.043 £ 0.054
freesolv 50.3£6.6 70504 795+31 63.7£14 709+£03 602+£06 56.3+09 T745+34 1.533£0.199 0.987 £ 0.049
lipo 46.3+3.1 72.14+09 74.0+4.1 594+15 67.6+0.3 60.4+0.6 539+12 6524+20 1.367+0.061 4.4134+0.189
mean 481+24 712+16 753+46 604+1.6 68.7+13 60.6+0.8 549+1.1 659+£3.6 1.394+0.097 3.983+0.218 1.004 £ 0.029
no pretrain 70.7+24 751+10 79.0+12 632+22 732+02 61.3+07 56.7£04 843£09 1.407+£0.186 2.634=+0.072 0.773+0.013

Table C.2: Validation and Test performance during default pretraining with 500

samples.
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C.2.2 3000 samples

C-3

Pretraining Default, 3000 samples, Validation

ROC-AUC(%) 1 | RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
left out dataset
muv 71.0+£32 T71.64+22 91.1+09 728+09 63.2+13 57.34+24 89.6+2.0 1.080+0.048 4.793 +0.612 1.001 £+0.137
hiv 60.2 +4.1 702+16 918409 735+1.1 63.7+0.7 5844+19 9294+2.6 1.092+0.073 5.147+0.170 0.903 £0.071
bace 58.6£50 T7l.1+21 91.7+£03 722+19 63.8+0.5 56.8+0.4 90.9+3.5 1.099+0.018 5.085+0.139 0.913 £ 0.053
bbbp 64.5+47 70.7+£42 724+6.3 725+0.7 634+1.1 56.7+0.9 84.6+1.6 1.090+0.068 5.023+0.349 0.957 £ 0.099
tox21 46.1 £11.1 67.5+4.8 62.0+43 91.2+1.7 59.9+28 56.44+0.9 834+1.6 1.312+0.057 4.369+0.507 1.167 £0.077
toxcast 54.3+4.1 740+£16 73.9+04 91.2+06 72.9+04 574+0.2 89.6+4.6 1.120+0.036 5.241 +£0.387 0.903 £ 0.082
sider 56518 71.1£14 70.0£06 91.0£09 71.0£1.7 62.7+£04 83.0£5.3 1.318 £0.164 4.525+0.295 0.940 4 0.043
clintox 60.2+£43 727£14 70.7£1.0 91.0£1.0 72.7£09 62.6+0.2 55.5+£0.9 1.198 £ 0.155 4.698 £0.820 0.966 £+ 0.171
esol 65.7+5.2 73.5+08 688+£27 90.7+0.7 724+1.1 61.2+0.3 56.1+0.3 90.7+4.4 4.646 £ 0.203 1.050 4+ 0.143
freesolv 724+1.7 73.3+£18 70.3+27 925+0.3 75.8+0.6 64.1+09 628+ 1.5 86.84+24 1.063+0.021 0.848 £ 0.030
lipo 53.4+8.2 71.9+25 656£50 91.2+0.7 69.6+1.4 61.5+0.1 55.3+16 854438 1.144+0.021 4.884+0.306
mean 59.2+73 T71.7£19 695+£34 91.3+£05 725+16 626+13 573+21 87.7+35 1.1524+0.094 4.841+0.285 0.965+ 0.091
no pretrain 756+09 80.9+20 709+19 934+03 763+0.3 64.0+1.1 60.5+09 98.7+05 1.234+0.070 1.723+0.141 0.804 +0.007

Pretraining Default, 3000 samples, Test

ROC-AUC(%) 1 RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
left out dataset
muv 70.74+0.9 81.1+£19 63.6+21 720+1.7 62.3+04 60.6+1.4 783+7.6 1.173 £ 0.057 4.386 +0.101 0.907 £0.118
hiv 57.8 +2.7 79.1+32 64.74+08 T71.8+1.3 61.9+0.8 60.7+3.1 784485 1.204 £0.076  4.275+0.113 0.828 £ 0.061
bace 524 +28 68.8+2.7 66.9+14 715+1.1 61.9+04 60.3+1.7 80.7+1.2 1.182 +£0.040 4.755+0.147 0.872 £ 0.041
bbbp 56.9+22 69.1+23 79.6+0.5 709+1.1 61.7+16 60.0+£34 74.0£6.1 1.166+0.066 4.4124+0.145 0.888+0.081
tox21 46.2+58 64.1+£10.2 74.9+34 59.1+2.0 59.6 £23 5554+1.6 654427 1.409+0.064 4.184+0.281 1.052 £ 0.039
toxcast 483+34 70.7+£18 781+1.0 654+08 71.6+14 60.6£0.5 83.9+1.0 1.197+0.081 4.625+0.339 0.843 +0.049
sider 53.9+5.7 708+14 805+13 60.5+2.0 70.0+23 61.4+0.6 67.3£14.0 1.421+0.185 3.9154+0.471 0.883£0.038
clintox 56.2+54 734x09 799+29 649+26 71.2+05 61.4+0.2 57.3+£1.7 1.261 +£0.192 4.398 £0.529 0.900 £ 0.137
esol 55.7+48 T71.9+1.5 7844+16 651+£3.0 70.1+23 60.8+0.2 58.6 0.8 78.2+9.6 4.214 £0.120 0.9724+0.135
freesolv 64.4+35 T73.8+1.9 785+19 705+14 73.6+04 63.1+£04 64.4+1.0 894425 1.171 + 0.056 0.781 £ 0.043
lipo 44.8+4.0 T72.8+1.1 76.8 2.3 646+3.3 68.4+1.8 60.8+0.7 58.1+3.2 68.3+54 1.230 £ 0.072 4.272+0.123
mean 53.7£59 70.6+28 787+18 645+£31 71.1+14 61.5+£1.0 59.6+24 T76.4+7.7 1.2414+0.096 4.344+0.234 0.893 £ 0.076
no pretrain 70.7+24 751+10 79.0+12 632+22 732+02 61.3+07 56.7+£04 84.3+£09 1.407+0.186 2.634+0.072 0.773+0.013

Table C.3: Validation and Test performance during default pretraining with 3000
samples.




PRETRAINING

C.3 Additional Motif Labels

C.3.1 500 samples

C-4

Pretraining Additional Motif Labels, 500 samples, Validation

ROC-AUC(%) 1 | RMSE |
Dataset MUV+ HIV+ BACE+  BBBP+ TOX21+ TOXCAST+ SIDER+ CLINTOX+ ESOL+ FREESOLV+ LIPO+
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks (17+85) (1+85) (1+85) (1+85) (12+85) (617+-85) (27+4-85) (2-+85) (1+85) (1+85) (1+485)
left out dataset
muv 94.0+04 96.5+0.1 94.0+0.2 92.7+0.1 672+1.0 86.5+04 96.8+0.2 0.126 £0.002 0.154 4+ 0.004  0.158 £ 0.003
hiv 91.94+0.9 96.5+0.3 949+0.0 93.0+0.2 67.3+04 87.0+0.3 96.8+0.3 0.125+0.002 0.156 £0.004  0.156 £ 0.002
bace 90.4+0.3 93.8+0.1 94.1+0.2 92.9+0.3 67.3+£0.1 86.2+0.4 96.5+0.5 0.124 +£0.002 0.152+0.003  0.159 + 0.002
bbbp 914403 93.7+0.1 96.5+0.4 92.6 0.2 67.1+04 86.0+0.4 96.3+0.5 0.127 £0.002 0.155+0.006  0.156 + 0.002
tox21 90.6+0.3 93.8+0.5 964403 94.5+0.2 66.9 + 0.6 86.5+0.2 96.9+0.1 0.128 £0.002 0.153 £0.001  0.154 £ 0.004
toxcast 922+04 955+0.1 982+02 97.0+0.1 942+0.1 88.2+0.3 98.0+0.1 0.1224+0.001  0.157 £0.003  0.146 + 0.004
sider 91.1+09 939+02 969+03 942+06 925+0.3 66.6+0.2 96.7+0.4 0.128 +0.003  0.154 £0.003  0.161 £ 0.003
clintox 90.1+£0.1 93.8+0.2 965+0.1 93.6+04 925+0.5 67.1+£0.5 85.8 £ 0.6 0.125 £0.001  0.156 +0.001  0.155 £ 0.006
esol 90.74+04 94.0+0.2 97.0+0.5 949+0.1 932+0.1 66.7+0.6 86.7+0.3 97.3+£0.3 0.156 +0.003  0.152 £ 0.002
freesolv 91.0+0.7 944402 972+0.1 952402 93.3+£05 66.9+0.4 87.5+£0.2 97.1+£04 0.128 £ 0.004 0.150 £ 0.003
lipo 91.0+09 93.8+0.2 965+04 94.0+0.3 925+0.1 66.4+0.7 86.3+0.1 96.8+0.3 0.130 £ 0.004 0.156 £ 0.003
mean 91.0+0.7 94.1+£05 96.8+0.6 946+1.0 929+05 67.0+0.3 86.7+£0.7 96.9+0.5 0.126 +0.002 0.155 £0.002  0.155 £ 0.004

Pretraining Additional Motif Labels, 500 samples, Test

ROC-AUC(%) 1 | RMSE |
Dataset MUV+ HIV+ BACE+  BBBP+ TOX21+ TOXCAST+ SIDER+ CLINTOX+ ESOL+ FREESOLV+ LIPO+
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks (17+85) (1+85) (1+85) (1+85) (12+85) (617+85) (27+85) (2-+85) (1+85) (1+85) (1+485)
left out dataset
muv 929+0.3 95.5+0.2 959+0.5 92.7+0.2 659=+0.8 86.0+0.4 91.9+0.7 0.1354+0.001  0.162 £0.001  0.154 £ 0.003
hiv 90.9+ 1.0 95.8+0.2 95.7+0.2 93.0+0.2 65.1+0.5 86.5+0.6 92.7+0.4 0.136 £0.001 0.164 +0.004 0.154 £+ 0.001
bace 90.44+0.6 93.1+04 95.7+0.1 93.1+0.2 65.1+0.5 85.9+0.5 92.1+0.2 0.133+0.002 0.164 £0.003  0.156 £ 0.001
bbbp 904+04 929+0.6 95.6+0.5 92.6+0.0 64.9+0.6 85.3+0.2 92.6+0.1 0.137+£0.002 0.165 £ 0.003  0.153 £ 0.003
tox21 90.6+04 93.1+0.5 96.0+0.1 954+0.3 65.5 £ 0.7 86.5+0.4 91.9+0.1 0.137 £0.002 0.167 +0.003  0.152 £ 0.004
toxcast 91.8+0.5 95.0+03 97.5+02 97.1+0.0 942+0.2 87.4+0.2 94.7+0.1 0.131+£0.001  0.169 £0.005  0.145 £ 0.004
sider 90.9+0.7 93.6+03 96.0+03 954+06 927+0.1 658+0.1 92.5+0.5 0.136 +0.001  0.165 £ 0.003  0.159 + 0.004
clintox 89.6+0.5 934+0.1 96.0+02 955+0.3 926+0.2 654+05 86.1+0.7 0.134 +0.000 0.165£0.001  0.153 £ 0.007
esol 92.0+08 93.7+0.3 963+0.1 958+0.6 934+0.1 652+0.9 86.3+0.2 92.4+0.3 0.170 +0.001  0.150 £ 0.002
freesolv 90.8+0.1 93.7+04 962+04 96.1+0.6 93.5+0.2 65.3+04 87.3+0.2 93.4+0.8 0.138 £ 0.002 0.148 4 0.002
lipo 90.6+0.8 93.3+£0.0 953+04 95.6+04 925+0.3 64.7+0.8 86.3+0.1 92.7+0.2 0.139 £0.002 0.163 + 0.001
mean 90.8+0.7 93.5+£0.6 96.0+£0.6 958+0.5 93.0+£0.5 65.3+£04 86.4+£0.6 92.7+0.8 0.136 +0.002 0.165 £ 0.003  0.152 £ 0.004

Table C.4: Validation and Test Performance during pretraining with additional
motif labels and 500 samples.
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C.3.2 3000 samples

C-5

Pretraining Additional Motif Labels, 3000 samples, Validation

ROC-AUC(%) 1 | RMSE |
Dataset MUV+ HIV+ BACE+ BBBP+ TOX21+ TOXCAST+ SIDER+ CLINTOX+ ESOL+ FREESOLV+ LIPO+
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks (17+85) (1+85) (1+85) (1+85) (12+85) (617+-85) (27+485) (2-+85) (1+85) (1+85) (1+485)
left out dataset
muv 98.6£0.1 99.2+00 98.6+0.1 96.5+0.0 70.9+0.2 89.3+04 99.3+0.1 0.101 £0.002 0.1454+0.003  0.131 £ 0.001
hiv 94.9 +0.1 99.0+00 98.5+0.1 964+00 71.2+0.2 89.4+0.1 99.1+0.2 0.101 £0.000 0.142 4+0.004 0.129 £ 0.001
bace 94.3+04 98.7+0.1 99.0+0.1 96.6+0.1 70.8+0.4 89.6 £0.3 99.1+0.2 0.099 £0.002 0.145 4 0.005 0.128 + 0.003
bbbp 94.6+05 985+0.1 99.2+0.1 96.6 £0.1 70.4+0.3 89.3+0.1 99.1+0.2 0.098 £0.001 0.146 +0.001  0.127 £ 0.003
tox21 94.6+03 98.7+£0.0 99.2+0.1 99.0+0.5 69.8£0.3 89.6 0.1 99.1+0.2 0.102 £0.000 0.148 +£0.003  0.124 £ 0.002
toxcast 94.6+03 99.0+£0.1 99.3+0.1 99.4+0.2 96.8+0.0 89.8+0.1 99.4+0.1 0.109 £0.005 0.144 +£0.001  0.116 £ 0.004
sider 95.2£0.5 98.8=£0.0 99.3£00 99.5+£0.1 96.8+0.1 70.7£0.2 99.1+£0.1 0.105£0.002 0.14540.001  0.121 £ 0.002
clintox 94.8+£0.2 98.6+£0.1 99.2+£01 989+£03 96.7+£0.2 71.0+0.2 89.7+0.1 0.099 £0.001 0.1424+0.003  0.127 £ 0.002
esol 945+05 98.6+0.1 991+£0.0 98.7+0.1 96.6+£0.1 69.8+0.1 89.6£0.4 99.2+0.1 0.148 £0.002  0.127 +0.001
freesolv 94.6£05 98.7+£0.1 99.1+£0.0 99.0+£0.1 96.6+0.0 70.2+0.3 89.8+0.2 99.2+0.1 0.102 £ 0.001 0.125 £ 0.001
lipo 94.8+04 98.7+£0.2 99.0+0.1 99.0+04 96.7+£0.0 70.5+0.7 89.6 £0.3 99.0+0.1 0.106 £ 0.000 0.143 £ 0.004
mean 94.74+02 98.7+£0.1 992401 99.0+£0.3 96.6+0.1 70.5+0.5 89.6+0.2 99.2+0.1 0.102 £0.003 0.145+0.002  0.126 £ 0.004

Pretraining Additional Motif Labels, 3000 samples, Test

ROC-AUC(%) 1 | RMSE |
Dataset MUV+ HIV+ BACE+ BBBP+ TOX21+ TOXCAST+ SIDER+ CLINTOX+ ESOL+ FREESOLV+ LIPO+
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks (17+85) (1+85) (1+85) (1+85) (12+85) (617+-85) (27+4-85) (2-+85) (1+85) (1+85) (1+485)
left out dataset
muv 98.1+0.1 99.1+0.1 985+£0.2 96.3+£0.1 68.1+0.1 88.7+0.2 97.8+0.3 0.108 £0.002 0.147 £0.002  0.125 £ 0.001
hiv 95.0£0.4 98.8+0.1 98.7+£0.1 96.1+£0.1 67.9+£0.3 88.8+0.2 97.9+0.1 0.109 £0.001 0.147 £0.001  0.122 £ 0.001
bace 95.4+£0.2 98.1+0.1 98.4+0.1 96.2+0.1 68.4+0.3 88.4+0.1 98.3+£0.2 0.107 £0.002 0.147 £0.003  0.121 £ 0.002
bbbp 95.3+£0.2 98.2+0.1 99.1+0.1 96.3+0.1 67.9+0.3 88.2+0.1 98.2+0.1 0.109 £0.001 0.148 £0.001  0.120 £ 0.003
tox21 952403 979+0.2 99.0+0.1 98.3+0.2 67.7+0.2 88.2+04 984+0.1 0.110 £0.000 0.151 +£0.001  0.118 £ 0.002
toxcast 95.3+0.2 98.6+0.1 994401 99.1+£0.3 964+0.1 88.3+0.1 99.0+0.1 0.111 £0.001  0.150 +£0.002  0.109 =+ 0.003
sider 94.6+02 982+£0.0 99.3+0.0 98.6+0.2 964+0.0 68.0+0.3 98.8 £0.3 0.111 £0.000 0.156 +0.001  0.116 £ 0.002
clintox 95.6£0.1 98.4+£0.1 988+0.2 98.7+£0.2 96.3+£0.0 68.0+0.5 88.7+£0.2 0.108 £0.001  0.149 +£0.001  0.120 £ 0.002
esol 95.2£0.1 983£0.0 99.0+£0.1 98.7£0.1 96.2+£0.2 68.0+£0.3 88.2+0.3 98.1+0.4 0.153 £0.001  0.11940.001
freesolv 954+0.2 98.0+0.2 99.1+0.0 984402 964+0.2 67.7+0.3 88.4+£0.2 98.1+£0.2 0.111 £ 0.002 0.118 £ 0.002
lipo 95.2+£04 98.1+£02 989+00 984+£02 96.3+£0.0 68.4+0.3 88.4+0.2 98.1+£0.3 0.114 £0.001  0.146 £ 0.003
mean 952403 982+0.2 99.0+02 98.6+0.2 96.3+0.1 68.0+0.2 88.4+0.2 98.3+04 0.110 £0.002 0.149 +£0.003  0.119 £ 0.004

Table C.5: Validation and Test Performance during pretraining with additional
motif labels and 3000 samples.

C.4 Additional Motif Datasets

In order to fit the whole table into one page we chose a to not give additional
dataset information like metric, number of compounds and tasks in this table.
The downwards pointing arrow in the left most column of the second row indicates
that the left most column specifies the left out dataset so it has exceptionally no
meaning of order.




PRETRAINING

C.4.1 250 samples

Pretraining Additional Motif Datasets, 250 samples, Validation

left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 69.4+16 60.0+£33 89.9+0.7 66.3+36 58.8+21 56.6 £0.5 82.7+1.7 1.236+0.058 3.620+0.455 1.276 £+ 0.040
hiv 46.5 £ 7.2 62.0+£6.5 90.6+0.7 68.9+05 60.0+t1.1 57.2+1.6 79.7+09 1.412+0.271 3.781 £0.585 1.136 £+ 0.064
bace 499+39 67.9+21 90.1£09 69.5+05 59.8+0.5 56.4+04 81.7+1.7 1.339+0.040 4.510+0.166 1.117 £ 0.057
bbbp 498+29 68.8+23 66.2+1.0 70.7+£0.2 61.2+0.3 57.3+0.5 84.7£2.0 1.246+0.105 4.512+0.029 1.055=+0.044
tox21 485+0.9 67.5+42 629+1.2 90.8+1.6 61.5+04 56.3+0.3 78.0£1.3 1.441+0.087 4.321+£0.123 1.176 +0.045
toxcast 476+£0.7 705+18 656+£0.6 91.1+05 694+1.3 574+£0.1 83.6+3.1 1.245+0.089 4.786+0.167 1.138 £ 0.006
sider 51.8+08 70.1£1.9 60.1+64 909+1.2 694+0.7 61.2+0.5 79.6£5.0 1.282+0.005 4.090+0.537 1.149 £ 0.053
clintox 50.7+15 703+12 61.7+22 90.5+0.7 68.7+0.8 59.7+0.5 56.8 +0.2 1.2724+0.034 4.574+£0.169 1.195 £ 0.059
esol 49.0+2.7 696+1.0 65.8+£09 91.84+0.2 682+1.6 59.4+1.5 56.6 £2.1 86.7+1.0 4.242 £0.293 1.088 +0.023
freesolv 51.3+04 69.7+16 726+1.0 932+06 709+0.7 61.8+0.4 57.1+1.0 89.9+24 1.314+0.091 1.033 +£0.028
lipo 46.5+0.5 702+10 626+18 91.1+£20 67.7£09 60.3+14 56.5+09 81.6+24 1.2224+0.099 4.322 +0.208
mean 492+19 6944+1.0 640+38 91.0+£09 69.0+£1.4 60.4+1.0 56.8+0.4 828=+3.6 1.301+0.076 4.276+0.361 1.136 £+ 0.070
no pretrain 75.6+09 80.9£20 709+19 934+£0.3 76.3+03 64.0£1.1 60.5£09 98.7£0.5 1.234+£0.070 1.723 £0.141 0.804 = 0.007
Pretraining Additional Motif Datasets, 250 samples, Test
left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 67.0+£3.7 724451 588+0.7 654+25 585+24 55.3+£0.7 62620 1.4154+0.084 3.455+£0.380 1.177£0.033
hiv 44.4+4.2 741+54 59.2+21 67.3+1.1 589+1.1 549+£0.7 643+3.6 1.516+0.288 3.770£0.333 1.028 £ 0.042
bace 455+ 1.3 69.5+£1.3 59.84+0.5 67.7+t1.2 60.4+0.3 55.9+0.5 64.7+1.1 1.436 +0.050 4.382+0.012 1.023 £ 0.047
bbbp 44.0+14 66.9+3.7 80.3+£0.7 68.9+£09 60.6+0.5 55.3+15 65.6+1.8 1.332+0.063 4.111+£0.306 0.961 £ 0.048
tox21 46.2+6.5 68.7+23 T745+0.8 592414 60.1 £0.2 55.6£1.7 654+0.6 1.544+0.087 3.986+0.092 1.061 £ 0.036
toxcast 415+1.1 71.1+£16 781+£14 60.2+04 67.9+0.8 56.1+0.7 65.6+1.2 1.303+0.080 4.437+0.206 1.029 £ 0.005
sider 45.6+22 71.5+£03 T740+£77 584+1.1 68.7+05 60.5+0.2 64.3+23 1.387+£0.023 3.650 +0.604 1.022+0.038
clintox 481+1.1 70.7+£09 781+28 59.6+06 67.7£04 60.2+04 55.5+0.2 1.335+0.016 4.073+0.025 1.076 £+ 0.062
esol 459+53 704+1.7 77.4+24 60.7£09 66.3+15 59.3+0.7 56.1+1.7 654+1.5 4.104 +£0.043 0.961 +0.010
freesolv 488 +2.2 70.7+0.7 81.0+1.3 6324+08 69.7+£0.3 60.3+0.2 58.6 04 67554 1.349+0.079 0.951 £+ 0.029
lipo 451+25 704+10 740+44 59.7+14 66.2+05 58.8+28 55.8+1.0 66615 1.338+0.138 4.016 £0.308
mean 455+21 69.7£16 76.4+£30 59.9+13 67.6+£13 59.8+0.8 55.9+1.0 65.2+13 1.396+0.082 3.998+0.305 1.029 £ 0.067
no pretrain 70.7+£24 751+£10 79.0+12 632+22 732+02 61.3+07 56.7£04 843+£09 1.407+0.186 2.634+0.072 0.773+0.013
Pretraining Additional Motif Datasets, 250 samples, Validation
left out dataset | | MUViotit HIVmotis BACEnotit BBBPuotit  TOX21yotit  TOXCASThotit SIDERmotit  CLINTOXinotit  ESOLmotit  FREESOLVietit LIPOmotit
muv 654+1.7 748+22 664+17 658+1.7 67.7+1.8 67.6 £ 3.3 71.5+2.6 73.7+46 714415 65.2 +2.2
hiv 66.3 £ 3.7 77.0£26 674+£32 66.7+3.1 68.2 £ 3.8 69.8 £ 5.3 73727 75.3+3.0 722+3.1 65.1 +£2.3
bace 69.1+£1.0 68.8=+0.7 69.7+£0.7 67.9+0.8 69.9+0.9 73.7+0.3 74.1+£0.8 75.9+08 76.1+1.1 66.3 £0.5
bbbp 72.1+0.7 71.8+03 79.2+0.9 71.3+1.0 729+0.8 74.5+0.5 76.6 £1.2 80.2£0.6 759+£26 67.9+0.4
tox21 69.0£15 69723 78310 702412 70.7£2.1 71.7+18 75.0£0.6 76.0+1.0 73.7+1.6 66.7 £ 2.8
toxcast 71.0+04 70.0+£03 77.8+03 T703£1.3 69.44+0.6 73.3+04 75.9+0.4 781+08 77.0+1.2 68.8 1.8
sider 69.2+3.7 685+29 77.1+31 69.6+24 68.2=£3.0 69.5 + 3.0 73.4+4.1 75.8+3.0 75.14+23 66.5 + 3.4
clintox 70.8+0.5 70.0+04 77.6+0.2 69.7£0.2 69.84+0.6 71.7+£0.7 74.2+0.8 79.6+09 77.24+1.1 67.0£1.5
esol 70.1+18 69.6+1.2 781405 T71.1+24 68.6+22 71.1+1.2 72.4+24 75.6 £0.4 75.0£0.8 68.4+0.7
freesolv 772+£06 76.0+£0.2 81.2+06 76.3+04 74.0+£1.0 76.4£0.7 79.2+04 79.1+£0.2 81.0£1.1 75.2+0.9
lipo 67.0+2.7 68.7+09 77.1+1.7 686+15 69.3+1.2 70.7+£1.2 71.3+3.1 742+1.3 76.8+21 735+19
mean 70.2+3.0 69.8+27 T77.8+1.7 699£26 69.1+23 70.9+25 728 £3.1 749+2.1 77.2+24 74.7+£2.0 67.7£2.9
Pretraining Additional Motif Datasets, 250 samples, Test
Teft out dataset | | MUViorr  HIVmont  BACEmonr BBBPmotir  TOXZ2lmonr TOXCASTmont  SIDERmonr  OLINTOXmotit ESOLmotit  FREESOLVimotit  LIPOrmot
muv 674+20 699+09 695+1.6 66.8+15 65.6 £ 1.6 69.5 £ 3.4 63.4+24 69.1+4.5 67.0+2.0 68.1+29
hiv 66.3 £3.2 703+£0.3 71.8+24 67.7E£25 66.1 £2.9 71.2+4.3 66.7 £4.0 68.6 £4.0 68.7£25 69.6 £2.5
bace 68.8+0.6 70.1+0.6 72.3+09 684=£1.0 67.4+0.5 72.6 +£0.2 68.3 1.1 69.1£0.3 689+1.1 69.9+0.4
bbbp 71.1+05 73.14+£06 71.3+0.1 71.3+£0.5 69.4 +0.3 76.3+ 1.1 70.4+£0.3 722+12 724405 73.0£0.2
tox21 685+20 71.2+25 71.0+18 724415 67.1+1.8 73.5+0.6 68.5+ 1.7 70.7+15 69.9+1.8 71.1+1.6
toxcast 699+0.8 71.1+02 732+10 749408 70.1+0.1 73.9+£0.4 69.8+0.5 71.9+1.1 70.6+1.9 72.4+0.9
sider 68.7+£39 70.1+27 716+19 727+23 679+3.1 66.3 £ 3.0 68.0 £ 2.3 69.7+3.3 69.9+45 69.7 £ 2.7
clintox 70.2+07 71.3+£0.2 71.8+13 T7414+0.8 70.2+0.3 68.9+0.6 745+1.0 72.0+£05 70.2+0.6 71.4+£0.5
esol 69.0+2.0 70.8+0.7 73.1+08 742+08 69.5+1.9 68.1 £2.2 73.9+25 69.0£1.0 64.4+1.0 708+ 1.3
freesolv 74.6+09 76.2+07 754+13 T763£04 T74.7+1.2 73.6 0.9 79.9+0.2 75.1+£04 74610 77.7£0.8
lipo 67019 699+16 715+16 728+17 694+1.2 68.1+1.5 72.7+2.6 67.9+1.2 69.7+1.3 684+£38
mean 694+23 71.1+£23 719+16 73.1+19 69.6=L£2.2 68.1 +2.3 73.8 £2.8 68.7 £+ 3.0 70.8+1.9 69.0+2.2 71.4+2.6

Table C.6: Validation and Test Performance during pretraining with additional
motif datasets and 250 samples.




PRETRAINING

C.4.2 500 samples

Pretraining Additional Motif Datasets, 500 samples, Validation

left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 71.9+02 670+1.1 922+0.1 71.1+03 620+1.1 58.1+0.7 84.3+89 1.155+0.037 4.600+0.430 1.060 + 0.074
hiv 54.2 +6.1 68.2+10 90.3+£04 71.1+£0.2 61.9+0.2 57.6+0.4 90.0+23 1.205+0.052 4.738+0.209 1.077 £ 0.019
bace 52.0+1.2 67.6+1.7 89.1£0.8 69.7+£05 61.7+£0.8 55.8+0.6 88.4+22 1.123+0.031 4.783+0.094 1.177 £ 0.059
bbbp 471+£39 695+1.2 65.8+7.5 699+1.2 60.6+0.8 55.94+0.2 86.1£6.8 1.213+0.147 4.691 £0.848 1.039 & 0.092
tox21 46.4+24 705+1.1 67.3+£1.8 91.1+£0.3 61.7+04 56.7+£0.8 90.5+1.2 1.195+0.068 5.036=+0.105 1.009 £ 0.024
toxcast 53.1+09 70.6+04 674+09 91.6+0.8 70.2+0.7 56.44+0.0 87.7+£2.0 1.118+0.009 4.924 +0.144 0.988 +0.034
sider 55.2+27 708+09 669+12 91.0+06 70.3+0.1 61.7+0.3 83.9£5.0 1.158+£0.034 4.579+0.219 1.036+0.031
clintox 55.24+34 T7294+1.1 67.5+15 90.5+0.5 71.1+£0.1 61.8£0.5 55.9+0.1 1.190 £ 0.017 4.877+0.229 1.034 £0.071
esol 53.0+14 734+03 665+05 91.6+03 694+04 61.0+04 56.8+ 0.5 87.6+1.7 4.674 +0.264 1.084 4+ 0.022
freesolv 545+09 714+08 731+16 92.7+03 727+08 63.5+1.3 56.0+2.2 93.0+2.1 1.131+0.016 1.000 + 0.063
lipo 484+54 714+£11 683+14 91.5+£03 685+0.7 62.1+04 57.2+0.7 88.1+14 1.2294+0.035 4.985+0.061
mean 51.9+34 71.0£1.7 678+20 91.2+1.0 704+12 61.8+0.8 56.6£0.8 88.0+28 1.172+0.040 4.789 £0.160 1.050 £ 0.054
no pretrain 75.6+09 80.9£20 709+19 934+£0.3 76.3+03 64.0£1.1 60.5£09 98.7£0.5 1.234+£0.070 1.723 £0.141 0.804 = 0.007
Pretraining Additional Motif Datasets, 500 samples, Test
left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 71.3+13 76.7+48 61.3+24 685+0.7 60.0+1.1 574+19 683+3.1 1.291+0.017 3.816£0.685 0.967 £ 0.049
hiv 49.1 +£2.7 83.0+£1.1 61.7+£05 686+04 61.34+0.5 57.5+£09 63.0x£09 1.263+0.043 4.185+£0.063 0.982+0.014
bace 46.8+1.9 673+14 61.2+0.1 68.6+0.3 60.8+04 572406 67.0£1.8 1.229+0.039 4.493 +0.022 1.094 4+ 0.055
bbbp 427+45 70.0+4.2 T76.7+£5.9 69.1+0.1 60.2+1.5 548 +23 682+44 1.272+£0.145 3.920+0.515 0.950 £ 0.074
tox21 445+29 709+16 81.0£16 61.1+15 61.1+0.2 575+16 66.0+1.8 1.241+0.086 4.339+0.112 0.924 £0.014
toxcast 50.8+0.7 70.6+03 80.1+13 61.1+23 68.2+04 56.5+0.4 629+1.1 1.205+0.026 4.332+0.083 0.904 £+ 0.021
sider 486+0.3 71.4+03 809+19 593+06 684+00 61.6+0.2 65.4+3.1 1.271+£0.031 4.196 +0.047 0.944 +0.038
clintox 525+32 71.1+11 81.3+16 61.5+1.1 684+0.8 60.9+0.2 56.3+0.3 1.265+0.031 4.367 £0.119 0.949 £ 0.060
esol 486+1.5 69.9+0.7 821+£10 61.4+19 66.4+08 60.2+0.3 57.0+0.9 66.2+3.6 4.284 +0.138  0.989 4+ 0.031
freesolv 55.56+1.7 726+12 81.3+12 659+1.1 71.7+0.8 623+0.7 61.5+09 824+85 1.237+0.016 0.899 £ 0.072
lipo 46.0£29 73.14+02 789+0.3 62.14+0.7 674+0.7 61.6+0.1 57.8+0.8 66.2+3.0 1.276+0.013 4.570+£0.036
mean 485+38 70.8+16 80.2+£21 61.7£1.7 685+£13 61.0+£0.7 574+1.7 67.6+55 1.255+0.026 4.250+0.235 0.960 £ 0.056
no pretrain 70.7+£24 751+£10 79.0+12 632+22 732+02 61.3+07 56.7£04 843+£09 1.407+0.186 2.634+0.072 0.773+0.013
Pretraining Additional Motif Datasets, 500 samples, Validation
left out dataset | | MUViotit HIVmotis BACEnotit BBBPuotit  TOX21yotit  TOXCASThotit SIDERmotit  CLINTOXinotit  ESOLmotit  FREESOLVietit LIPOmotit
muv 73.3+50 79.6+29 749451 749+47 76.7+£5.0 77.2+£5.3 788 +4.0 809+24 793+4.1 70.8+ 7.1
hiv 74.9+0.2 80.5+0.8 742+£07 T735+1.1 75.1£0.9 78.0+04 789+04 80.2+0.8 79.6+1.5 72.7+04
bace 749+05 73.5+£0.1 745+£12 73.6+0.7 75.0 £0.9 784+1.0 781+04 81.9+£0.6 79.1+£0.3 73.1£0.3
bbbp 73.9+59 743+45 80.1+4.7 73.5+£4.2 76.1£4.0 76.2+5.1 78.3+£34 804+£35 781+£6.2 71.1+£5.7
tox21 75.1+08 739+17 81.2+1.0 754+£1.0 76.1 £2.0 78.0+ 1.8 79.3£0.7 81.3+1.3 809+£19 725+1.3
toxcast 76.1+13 742+16 814+12 749+£1.0 732418 78.3+1.3 80.2+0.7 80.7£1.8 T79.1+£15 73112
sider 73.4+02 71.8+07 779+1.1 T718+£0.8 T71.1+1.2 734+1.1 77.2+0.6 789+0.7 78.8+1.3 69.2+0.5
clintox 749+14 738+13 80.6+06 T734+16 T726+14 75.1+2.0 782+1.0 79.6+15 79.44+14 71.1+1.0
esol 75.3+0.7 749+06 80.1+0.2 743+£04 745408 76.7+1.0 76.5+ 1.2 79.4+0.7 789+ 3.0 73.7+1.6
freesolv 8.1+1.3 828+1.7 877+04 835+11 83.5+1.5 85.6 1.1 86.4 £ 0.8 84.5+1.8 85.6 £0.9 81.7+1.2
lipo 741+£26 734+£18 80.1+0.7 73.8+1.6 T74.1+22 76.0 £ 2.7 78.5+2.0 78.7+1.0 79.7+11 78.0+23
mean 75.8+34 746+3.0 809+26 T751+£31 T74.5+33 76.6 £ 3.3 78.6£2.9 79.3£2.0 809£19 79.1+£0.8 729+ 34
Pretraining Additional Motif Datasets, 500 samples, Test
Teft out dataset | | MUViorr  HIVmont  BACEmonr BBBPmotir  TOXZ2lmonr TOXCASTmont  SIDERmonr  OLINTOXmotit ESOLmotit  FREESOLVimotit  LIPOrmot
muv 745+48 T743+£27 T76.8+£47 T748+5.0 72.9+4.7 784+4.1 72.9+4.7 76.1+34 73.8+24 74.0£5.3
hiv 74.8 +£0.3 74010 77.1+14 T40£1.0 72.4+0.6 78.9+0.9 71.9+0.6 75.5+13 732416 75.3£0.7
bace 74.7+0.6 75.0+0.2 77.3+09 73.6=£0.6 71.8+£0.7 77.7+£0.0 71.4+0.8 75.3+1.0 73.440.1 74.4+0.6
bbbp 73.3+59 75.0+46 753+1.9 73.9+4.6 721+4.1 76.9 +4.7 722147 73.7+4.0 71.14+46 744 +£4.7
tox21 74.0+10 7524+11 7414+07 T73+£1.0 73.1+£1.6 784+ 15 73.1+£1.3 73.9+20 73.6+18 74.4+0.8
toxcast 75.1+1.1 75.14+1.0 75.14+06 786=£0.7 740418 79.2+£0.9 73.8+1.8 75.2+22 729425 75.6 +1.2
sider 72.7+04 733+£03 735+05 T5.6+05 T71.6+£18 70.1£1.0 70.9 £0.3 721+£08 71.8+25 72.6+0.8
clintox 743+£09 744+£13 733+02 T74+13 T73.8+16 71.8+1.3 79.1+0.3 752+18 71.6+£0.8 742+1.2
esol 744+£08 75.9+£03 75.7+05 780+0.6 744+1.7 725+£1.0 79.2+04 72.9+£0.7 72.1+2.0 75.1£0.5
freesolv 829+14 826+£16 81.6x09 843+14 834£14 81.8+1.5 86.2 £ 1.6 81.4+0.8 81.9+£0.5 85.5 £ 1.1
lipo 73.2+24 7494+18 749+08 T7.6+15 74727 723+£25 79.14+1.0 726+ 1.4 743+21 702+1.1
mean 749+29 756+26 752+24 T780%£23 T74.8+3.1 73.1+£3.2 79.3+£2.5 73.3+£3.0 75.3+26 724412 75.6 £ 3.6

Table C.7: Validation and Test Performance during pretraining with additional
motif datasets and 500 samples.




PRETRAINING

C.4.3 1500 samples

Pretraining Additional Motif Datasets, 1500 samples, Validation

left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 74.0+05 752+12 928+02 71.5+0.1 64.1+04 56.1+04 948+3.8 1.076+0.028 5431 +0.111 0.917 £+ 0.051
hiv 53.4+5.2 741+05 920+02 71.6+04 643+0.8 56.3+0.9 953+0.7 1.082+0.094 5.592+0.278 0.911 £ 0.041
bace 48.1+4.6 71.8+1.0 91.2+06 71.5+14 64.0+0.6 56.7+1.9 93.1+23 1.163+0.036 5.033+0.364 0.944 £+ 0.067
bbbp 51.8+09 744+04 68.5+23 720+0.3 64.2+0.3 55.5+£0.8 96.0+0.2 1.046+0.070 5.604+0.064 0.856 £ 0.022
tox21 53.9+40 741+£18 714+15 928=+0.6 64.0 £ 0.6 56.9+1.0 949+14 1.063+0.010 5.513+£0.168 0.875=£0.017
toxcast 533+£31 729+£03 741+14 91.9+06 71.6+0.6 56.0£0.5 95.7+£27 1.062+0.034 5.601+£0.055 0.889 £ 0.012
sider 59.2+22 726+06 726+24 922+08 720+05 645+0.2 93.5£1.7 1.074+£0.026 5.520+0.041 0.832+0.024
clintox 53.1+27 724+09 746+15 923+04 71.8+0.7 63.6+1.3 57.5+0.7 1.032+£0.038 5.430 £0.084 0.958 £+ 0.032
esol 59.2+36 728+08 735+26 929+0.7 728+03 626+0.7 56.8+0.2 94.5+0.6 5.565 £ 0.076 0.981 £+ 0.036
freesolv 720+1.1 745+16 746+22 928+12 768+02 654+04 61.2+£0.1 93.4+£15 1.019+0.068 0.873 £ 0.025
lipo 56.9+34 73.6+08 69.8+03 91.8+0.7 709+13 63.7+0.7 55.7+£04 90.0£51 1.125+0.013 5.352 £ 0.094
mean 56.1£6.5 73.3+£09 728+23 923x06 722x17 64.0x07 569+£16 94.1£1.7 1.074£0.043 5.464+0.174 0.904 +0.047
no pretrain 75609 80.9+£20 709+19 934+03 763+03 640x1.1 60.5£09 98.7£0.5 1.234+£0.070 1.723 £0.141 0.804 = 0.007
Pretraining Additional Motif Datasets, 1500 samples, Test
left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 71.0+13 828+0.7 652+18 705+1.2 61.8+0.2 62.0£06 83.1£24 1.184+0.020 4.461+0.153 0.853+0.048
hiv 58.6 £ 6.5 81.4+£17 65.6£12 71.4+£04 623£0.5 63.4+14 84.0£33 1.243+£0.083 4.452+0.170 0.836 &+ 0.026
bace 52.6£5.5 72.2+0.6 67.4+£17 698+15 61.7£06 61.2+1.6 84.5+0.5 1.202+0.070 4.613+0.212 0.888 £0.058
bbbp 54.6£5.0 71.0+0.8 823+2.0 70.2+0.5 61.8+0.1 61.4+04 85.2+21 1.188+0.082 4.371+0.097 0.816+0.011
tox21 54.6+15 70.7+1.0 81.9+03 650+0.9 62.3+03 63.8+1.0 84.8+4.3 1.213+0.017 4.462+0.053 0.825+0.025
toxcast 53.1+27 71.9+05 789+39 642+06 70.6+1.0 62.2+0.8 81.5+£3.0 1.212+0.023 4.595+0.063 0.826 + 0.009
sider 62.1+04 725+04 79.2+1.0 652+19 71.6+04 625+0.2 81.8+14 1.195+0.020 4.439+0.143 0.781+0.017
clintox 589+54 71.1+£05 81.7+08 654+05 708+15 624+08 61.7+1.7 1.203 £0.030 4.570 £ 0.176 0.876 £ 0.044
esol 61.5+£1.0 70.6+£09 798+1.6 656=x0.7 70.8+1.0 61.8+0.1 60.7£1.1 87.3£25 4.514 £0.127 0.898 +0.051
freesolv 721+£11 73.7+£08 81.2+26 700x1.0 740x05 640x+03 626=+£05 89.6+£23 1.139+£0.046 0.821 £ 0.028
lipo 548+23 726+£05 80.2+11 656+0.7 704+14 624+0.7 63.1£12 79.4+£42 1.228+0.054 4.510=£0.073
mean 58.3+59 71.7+1.0 809+13 659+16 71.0+12 623+0.7 622+1.0 84.1£29 1.201+£0.028 4.499+0.076 0.842+0.036
no pretrain 70.7+24 751+£10 79.0+12 632+22 732+02 61.3+07 56.7+£04 84.3+£09 1.407+0.186 2.634+0.072 0.773+0.013
Pretraining Additional Motif Datasets, 1500 samples, Validation
left out dataset | | MUViotit  HIViotit  BACEmotit  BBBPmotit  TOX21motit  TOXCASTmetit SIDERmotit  CLINTOXnotit  ESOLmotit  FREESOLV yotit LIPOmotie
muv 81.7+1.6 881+0.8 84.0+01 82.7+138 84.7+1.6 85.2+1.2 84.7+0.7 84.7+04 86.9+26 80.9+0.9
hiv 85.5£2.0 89.3+1.7 8.1+£10 85.6+1.6 87.1+1.3 87.0+ 1.6 86.4+1.8 86.1+2.2 86.8+1.0 824+1.6
bace 84.1+1.6 828+1.1 84.4+15 845+1.6 86.3 1.1 86.3 1.2 86.1 1.4 85.9+1.0 859+24 81.6 1.1
bbbp 85.0+04 828+04 889+04 84.6 £0.4 85.8+ 0.6 85.9+0.7 86.6+£0.7 86.4+0.5 87.3+0.7 81.1+0.7
tox21 8.5+1.6 843+15 894+13 86.1+1.1 869+ 1.5 87.5£1.6 874+1.8 86.5+1.0 87.5+£0.7 82.6+1.3
toxcast 839+14 822+09 8.1+1.6 84.7+1.0 835+14 85.5+0.3 84.6+05 85.1+0.5 87.4+0.7 81.4+1.2
sider 86.6+1.4 843+14 904+0.9 86.1+1.0 86.2+2.0 87.5+1.6 87.1+1.8 86.4+0.6 888+1.1 83.4+1.4
clintox 85.5+22 834+22 8.6+1.6 853+1.1 842421 86.1+1.8 86.0+ 1.5 87.1+1.2 872+15 82.2+2.2
esol 85.0+£0.1 83.6+04 881+19 84.3+08 842404 86.6 £ 0.2 85.5£0.3 85.7+0.4 87.3 £ 1.7 82.3+£0.2
freesolv 944+£0.1 91.0+£0.1 945+03 91.6+0.8 92.7+0.2 93.7+£0.2 93.3£0.1 93.7+£0.2 91.3£0.5 91.0 £ 0.6
lipo 845+14 822+13 884+14 844+20 844+£16 85.8+1.6 85314 84.6 £ 1.5 854+04 86.6=£19
mean 86.0+3.1 838+27 894+19 85.6+22 853+28 87.0+2.5 86.7+24  86.7+t2.7 86.5+1.8 87.2+0.7 82.9+29
Pretraining Additional Motif Datasets, 1500 samples, Test
left out dataset | | MUVpotie HIV ot BACEpotit BBBPpotit  TOX21potif  TOXCASTotit SIDERmotit  CLINTOXnotit  ESOLpotit  FREESOLVyotir LIPOpotif
muv 826+13 791+12 845+11 829=£1.8 81.5+1.6 84.7£0.9 81.2+1.2 829+£0.3 783+£0.3 83.1+£0.8
hiv 84.7£1.9 82.0+2.8 8.4+20 85.7£1.5 83.9+1.7 85.9+1.2 83.2+2.1 83.0£14 79.1+£19 85.4+15
bace 83.8+1.8 83.0+1.0 85.2+1.5 839+15 82.8+1.3 84.7+08 81.6+1.6 83.1+0.6 80.8+1.0 83.7+1.6
bbbp 84.2+0.6 832+0.2 80.1+0.7 84.6 £0.2 83.1+0.2 86.1+04 81.1+1.0 81.6+0.6 79.9+0.6 84.4+0.3
tox21 85.1+21 847+1.3 81.1+37 861+1.1 84.3+1.6 86.9+1.2 825+2.0 839+1.0 80.6+0.9 85.6 + 1.7
toxcast 829+12 825+1.0 79.2+1.6 84.6+0.7 83.6+1.1 85.0+0.7 80.8+0.8 824+0.8 79.0+0.3 83.6+£0.8
sider 85.9+1.8 84.7+1.0 821+3.0 86.6+13 86.1+1.7 84.7+1.9 84.2+1.2 83.9£05 81.0+12 86.5 £ 2.0
clintox 848+23 838+£19 81.0x39 85.6x15 84.9=£2.0 83.1+£22 85.4+1.9 84115 787x21 85.4+19
esol 844+0.1 83.3x04 81.2+14 8524+03 84.7+0.1 82.8+0.5 86.3 £0.4 82.0£0.6 79.5+1.3 84.5+£0.2
freesolv 93.8+0.3 91.0+0.2 91.9+0.3 93.3+04 92.9+0.3 92.0+0.4 92.6+0.6  90.0+£0.3 87.4+1.3 93.7+0.3
lipo 835+15 829+13 805+1.8 844+12 837+1.6 82.4+1.6 84.4+14 81.5+0.9 84.0+0.6 77.1+09
mean 85.3+3.1 842+25 81.8+3.7 86.1+26 85.3+238 84.1+29 86.2+24  828+2.7 83.6+15 794+1.2 85.6 + 3.0

Table C.8: Validation and Test Performance during pretraining with additional
motif datasets and 1500 samples.




PRETRAINING

C.4.4 3000 samples

Pretraining Additional Motif Datasets, 3000 samples, Validation

left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 745+08 734+27 922+11 754+03 64.1+04 59.7+0.5 92.5+2.0 1.000+0.026 5.590 +0.084 0.839 £ 0.020
hiv 70.2+23 745+0.7 928+0.1 756+12 658+0.7 602+12 91.1+£26 0.982+0.033 5.405+0.218 0.835+0.029
bace 69.9+25 74.8+2.1 925+03 77.2+04 64.7+04 6324+1.6 87.8+24 0.996+0.012 5.284+0.218 0.862 +0.028
bbbp 721+04 774401 75.0+1.0 77.14+£06 65.3+04 62.8+1.0 928+21 0.970+0.021 5.450=+0.067 0.853 £ 0.029
tox21 68.7+46 76.0+1.1 71.5+1.1 923+1.0 63.4+£06 627+22 91.84+0.8 1.018£0.028 5.597+0.154 0.837£0.033
toxcast 68.1+22 755+£23 73.8+1.1 92.7+0.9 75.8+0.6 61.7£0.7 94.7£0.7 0.979+£0.042 5.380£0.147 0.842 4+ 0.029
sider 720+43 76.6+0.7 748+22 93.0+06 76711 656+0.3 92.5+£2.1 0.967+0.063 5.232+0.108 0.839+0.018
clintox 65.1+4.2 758+1.7 75.0+21 932+04 756+1.2 64.7+0.2 60.5£0.5 1.008 £0.023 5.606 £0.073 0.877 £ 0.012
esol 702+13 749+17 71.7+0.7 91.7+05 755+0.8 643+04 59.4+12 959+1.1 5.364 £0.085 0.937 £+ 0.049
freesolv 722+10 773+18 745+11 93.0+13 783+04 66.1+08 644+£10 91.4+21 0.982+0.015 0.857 £ 0.027
lipo 65.7+3.1 765+12 71.5+06 93.0+0.7 75.0+1.1 651+04 59.5+1.8 91.1+4.3 1.054+0.033 5.562+0.078
mean 69.4+£25 759+£1.0 73.6x15 926x05 762x1.0 649+08 61.4£18 922£22 0.996=£0.026 5.447+0.136 0.858=+0.031
no pretrain 75.6+09 80.9£20 709+19 934+£0.3 76.3+03 64.0£1.1 60.5£09 98.7£0.5 1.234+£0.070 1.723 £0.141 0.804 = 0.007
Pretraining Additional Motif Datasets, 3000 samples, Test
left out dataset | | MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
muv 709+05 79.6+£1.2 675+05 73.1+£04 641+08 642+04 79.84+34 1.114+£0.011 4.835+0.123 0.796 = 0.009
hiv 71.0+2.2 79.7+£13 679x0.7 740x08 639+0.7 62.7£04 86.5£1.7 1.105£0.071 4.789£0.135 0.791 =+ 0.030
bace 68.1+3.5 73.2+0.6 69.1£20 739+£06 64.0+£04 63.2+0.5 873+14 1.093+0.006 4.661+0.052 0.804=+0.012
bbbp 73.3+19 729+£22 79.7+1.8 75.24+0.5 644+04 63.0+0.6 86.44+1.2 1.059+0.024 4.554+0.201 0.774 +0.002
tox21 69.5+45 T71.5+1.8 79.9+1.3 675+1.1 64.0 £ 0.6 64.0+0.8 82.3+2.2 1.1124+0.022 4.727+£0.173 0.778 £0.032
toxcast 70.2+3.1 71.9+04 798+0.7 66.6+15 73.0+0.8 62.7+£0.6 823+£12 1.097+0.028 4.644+0.172 0.791 +0.022
sider 71.7+25 71.9+08 81.3+05 648+13 748+0.7 649+0.9 84.2+14 1.081 £0.041 4.328+0.072 0.786 +0.015
clintox 69.9+12 71.6+05 80.3+06 663+22 729+0.7 64.1+06 64.6+1.0 1.1294+0.041 4.747 +£0.128 0.820 £+ 0.033
esol 721+26 71.0+15 81.5+14 662+09 73.7+02 63.6+03 624+05 88.7+£4.0 4.463 +£0.174 0.876 +0.041
freesolv 75.1+18 74.6+0.7 80.7+1.6 71.1+08 752+0.2 64.9+0.2 62.3+£08 91.2£19 1.076£0.031 0.788 £ 0.035
lipo 68.1+13 735+£08 799+13 67.7x1.7 73708 63.5+0.5 63.8+£15 84.3£13 1.143+£0.002 4.708 £ 0.094
mean 70.9+22 723+12 80.2+0.7 675+17 740+09 641+05 63.3+£08 85.3£34 1.101+£0.025 4.646 £ 0.156 0.800 % 0.030
no pretrain 70.7+£24 751+£10 79.0+12 632+22 732+02 61.3+07 56.7£04 843+£09 1.407+0.186 2.634+0.072 0.773+0.013
Pretraining Additional Motif Datasets, 3000 samples, Validation
left out dataset | | MUViotit HIVmotis BACEnotit BBBPuotit  TOX21yotit  TOXCASThotit SIDERmotit  CLINTOXinotit  ESOLmotit  FREESOLVietit LIPOmotit
muv 88.6+0.3 939+0.5 89.5+0.7 90.6=+0.6 91.1+04 90.4 £0.3 91.4+0.7 89.6 0.6 90.7+t1.0 87.6 £ 0.6
hiv 914 +1.3 934+14 89.3+10 905+1.4 91.2+1.2 90.8 £0.7 91.3£0.8 89.9+0.8 89.8+24 86.9 +£1.2
bace 93.6£0.7 90.9+0.9 91.9+1.0 92.7+0.7 93.1+0.8 93.1£0.9 92.7+£0.5 91.0£0.5 91.6£0.8 90.1+£0.5
bbbp 948+ 1.0 91.7+1.1 95.3+0.7 92.7£0.9 934+1.1 929+1.1 93.4+£0.7 921£04 92.0+£0.3 90.8 £ 1.0
tox21 91.5+£26 894+24 939+14 90.3+2.0 91.6 1.8 91.1+£1.8 91.5+14 90.6 £2.0 90.0£1.6 88.3 24
toxcast 925+1.6 90.0£1.3 93.8+0.5 90.0+15 91.3+£1.2 916 £1.2 92.1+1.0 89.5+1.5 89.2+28 88.9+ 1.7
sider 943+16 91.5+£1.2 954+1.2 91.8+21 926=£1.6 93.7+1.3 929+ 0.6 91.8+1.2 915+15 90.9 £ 2.0
clintox 91.7+15 8.9+1.1 934+0.7 89.6+13 90.2+1.2 91.3+1.2 90.3+£1.2 90.6 £0.4 91.1+£04 88.1 +£2.0
esol 93.1+1.7 90715 946+12 90.0+1.2 91.3+1.7 925+ 1.4 91.5+1.5 927+ 1.1 909+ 1.6 90.0 £ 2.3
freesolv 96.7+0.3 93.2+0.3 965+0.2 945+0.1 951403 96.3 £0.4 95.1£0.9 95.2+0.2 92.4+0.8 94.4+£0.7
lipo 91.3+£0.7 83.5+0.7 934+0.7 894+0.8 90.2+0.6 90.9+0.6 90.6 £0.9 90.8+£0.5 89.0£0.5 89.6£0.6
mean 93.1£1.8 903+£15 944+11 90.6+16 91.7£1.6 925+ 1.7 91.7£1.5 924+1.3 90.7£1.2 90.6£0.9 89.6 £2.2
Pretraining Additional Motif Datasets, 3000 samples, Test
Teft out dataset | | MUViorr  HIVmont  BACEmonr BBBPmotir  TOXZ2lmonr TOXCASTmont  SIDERmonr  OLINTOXmotit  ESOLmorit  FREESOLVimorit  LIPOrmot
muv 883+£0.1 89.2+£0.1 89.9+05 90.6=+£0.5 89.5+0.4 89.6 £0.2 88.2+0.7 86.7+1.8 81.2+0.5 91.1+0.4
hiv 909+£1.5 89.8+04 90.2+13 909+£1.3 89.9+1.3 90.5 £ 1.0 87712 874+15 819+£1.0 91.5+1.6
bace 93.4+£0.5 904+0.9 92.1+0.4 92.7+0.6 92.0£0.7 91.4+£1.0 88.7+£ 0.6 88.5+1.4 829+£0.3 93.1+£0.9
bbbp 942+0.9 91.1+1.1 93.3+09 93.6 £0.9 927+ 1.1 92.5+£0.4 90.8+1.4 89.7+1.9 839+£0.7 93.8+£0.8
tox21 91.3+26 89.1+£20 895+19 90.5+1.7 90.1 £2.3 90.3 £ 1.5 88.1+1.7 86.6 1.8 83.0+£0.5 91.5+24
toxcast 927+14 894+10 91.0+1.1 91.04+1.2 91.6+1.1 90.7£ 1.0 88.5+1.5 88.3+1.1 81.1+23 923+1.2
sider 940+£1.6 91.2+1.3 924+18 926+13 93.3+1.5 924+ 1.7 90.5 £ 1.1 89.5+1.5 832412 94.1+1.3
clintox 91.3+14 88.5+£13 90016 909+12 905=£1.3 89.3+14 89.6£1.1 86.6+1.0 81.0x1.1 91.1+1.7
esol 93.0+1.7 899+14 914+15 91.8+14 922+1.8 91.2+1.7 91.7£1.2 88.8 1.8 82.4+£0.8 92.0£15
freesolv 96.0£0.3 93.5£0.1 94.6+0.7 95.5+0.2 95.6=£0.3 94.8 £0.2 95.6 £0.3 93.0£0.3 90.4£0.9 95.7+£0.3
lipo 91.0£0.5 88.3+£0.5 89.3+10 89.84+0.1 90.2£0.5 89.1 +0.6 89.4£0.2 88.5+0.3 86.8+1.6 809+£19
mean 928 £1.7 90.0£1.6 91.0x19 914+17 921+£1.7 91.1+19 91.1+£1.9 89.3+1.6 88.0+1.4 822+1.1 926+1.5

Table C.9: Validation and Test Performance during pretraining with additional
motif datasets and 3000 samples.




PRETRAINING

C.5 Only Motif Datasets

C.5.1 500 samples

C-10

Pretraining only on motif datasets, 500 samples, Validation

ROC-AUC(%) 1

Dataset h’IUVmotif HIVmotif BACEmom BBBPmOtif TOXZlmOm TOXCASTmOtif SIDERmom CLINTOXmOtif ESOLmOm' FR,EESOLVmom LIP()mom
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 85 85 85 85 85 85 85 85 85 85 85
left out dataset
muv 96.5+0.1 99.2+0.1 97.2+0.3 98.2+0.3 98.4+0.3 98.0+0.2 984+0.1 95.3+04 93.8+1.2 97.5+0.2
hiv 97.7+ 0.0 99.24+0.1 97.0+0.3 98.2+0.1 98.3+0.2 97.8+£0.1 98.6 + 0.2 94.94+0.1 94.2+0.8 98.1+04
bace 97.4+£0.3 96.5+0.2 97.0£0.1 98.2+0.2 98.5 £ 0.2 98.0£0.3 98.5+0.1 95.3+£0.8 93.6+0.8 98.1£0.3
bbbp 97.4+£0.2 96.8+0.1 99.2+0.2 98.3£0.1 98.5+£0.1 98.0£0.1 98.2+0.1 95.2+0.5 93.4+04 98.1+0.3
tox21 97.8+04 96.6+0.3 99.2+0.1 974+0.2 98.4+0.1 97.9 £ 0.2 98.4+0.1 949+£0.6 93.9+0.3 98.0£0.4
toxcast 97.7+£04 96.8+£0.1 99.2+0.2 97.3+0.0 984+£0.2 97.9+0.2 98.6 £0.1 94.7£15 94.2+0.6 98.1+£0.2
sider 97.94+06 96.8+0.2 99.3+0.1 97.3+0.3 983+0.2 98.6 £ 0.2 98.3+£0.1 95.54+0.7 93.8+1.3 98.1+0.3
clintox 97.7+0.1 96.5+0.1 99.2+0.1 97.1+04 98.3+0.1 98.6 + 0.0 97.7+0.3 9524+ 0.6 93.2+0.4 98.24+0.3
esol 97.74+0.1 96.9+0.1 99.3+0.0 974+04 98.4+0.1 98.6 + 0.1 98.0+0.2 98.6+0.0 94.0+ 1.0 98.4+ 0.0
freesolv 97.84+0.2 96.8+0.2 99.3+0.1 97.6+0.1 98.3+0.1 98.4+ 0.0 98.1+0.1 98.4+0.1 95.1+0.2 98.24+0.1
lipo 976 £0.3 96.5+0.1 993+0.1 974+03 98.1+0.1 98.4+0.2 97.6 £0.1 98.5+0.2 95.1+£0.9 94.3+1.3
mean 97.7+£0.2 96.7+0.2 99.2+0.1 973+0.2 983+0.1 98.5+£0.1 97.9 £ 0.2 98.5+£0.1 95.1+0.2 93.8+04 98.1+£0.2

Pretraining only on motif datasets, 500 samples, Test

ROC-AUC(%) 1

Dataset MUVttt HIVmotit  BACEmotit  BBBPmotit  TOX21motit  TOXCASTrotit SIDERmotit  CLINTOXpotit  ESOLmotit  FREESOLVmotit  LIPOmotit
# compounds | 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 85 85 85 85 85 85 85 85 85 85 85
left out dataset
muv 96.0+0.3 98.0+0.2 98.0+04 98.6+0.3 97.9+0.2 98.5+ 0.1 96.4 4+ 0.1 93.6+0.8 83.0+1.5 974+ 0.5
hiv 97.24+0.1 98.2+0.1 98.1+0.3 985+0.1 98.2+0.1 98.6+0.2 96.5+0.3 93.4+04 84.0+2.7 97.8+ 0.4
bace 97.5+0.5 96.3+0.4 98.24+0.1 98.6+0.1 98.0 +£ 0.0 98.3+0.1 96.8 + 0.2 93.9+13 84.4+1.5 98.0+0.3
bbbp 97.9+0.2 96.4+0.2 98.1+0.2 98.7+ 0.1 98.0+0.1 98.24+0.2 95.7+0.6 92.9+0.5 83.1+0.7 98.0+£0.1
tox21 98.3+0.1 96.2+04 982+0.2 97.7+0.2 98.0+£0.2 98.4+0.2 96.5+£0.3 93.2+£05 85.1+1.3 98.1+£0.3
toxcast 98.0+£0.2 96.6+0.1 982+0.2 982+0.2 98.7+0.1 98.6 £0.1 97.0 £ 04 928 +£0.3 839+14 97.9+0.2
sider 98.1+0.3 96.6+0.2 981+0.2 97.5+£0.3 98.7+£0.2 98.2+0.2 96.2+0.2 93.3+£0.7 83.8+0.5 97.8+£0.2
clintox 983+£0.1 96.5+£0.2 98.1+0.2 97.6+0.1 985£0.2 98.2+0.1 98.7 £ 0.1 93.1£1.0 839+£1.0 98.2+0.3
esol 98.14+0.1 96.4+0.2 983+0.2 982+0.3 98.7+0.1 98.24+0.2 98.4+0.1 96.7+ 0.3 83.1+1.2 97.9+04
freesolv 98.3+0.1 96.6+0.2 983+0.2 979+04 98.7+0.1 98.1+0.2 98.6 + 0.1 96.3+ 0.5 93.5+0.4 97.8+£0.1
lipo 98.0+0.3 96.4+0.2 97.9+0.3 97.8+04 98.8+0.1 98.3+0.2 98.74+0.2  96.6+0.3 93.0+£0.7 84.9+24
mean 98.0+£04 96.4+0.2 981+0.1 979+0.3 98.7+0.1 98.1+0.1 98.5+0.2 96.5+0.4 93.3+0.3 83.9+0.7 97.9+0.2

Table C.10: Validation and Test Performance during pretraining only on motif
datasets and 500 samples.




PRETRAINING C-11
C.5.2 3000 samples
Pretraining only on motif datasets, 3000 samples, Validation
ROC-AUC(%) 1
Dataset MUViotit  HIVmotif BACEnotit BBBPuotit  TOX21yotif  TOXCASTpotis  SIDERpyotit  CLINTOXinotit  ESOLpotit  FREESOLV potir LIPOpotit
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 85 85 85 85 85 85 85 85 85 85 85
left out dataset
muv 99.24+0.1 999+0.1 99.3+0.2 99.8+0.1 99.8+0.1 99.5+0.1  99.8+0.0 96.3+0.3 93.4+04 99.9 + 0.0
hiv 99.6 + 0.1 99.7+0.0 99.5+0.2 99.9+0.1 99.8+ 0.0 99.8+0.0 99.7+0.1 96.7+ 0.6 93.5+0.8 99.8+0.1
bace 99.9+0.0 99.2+0.1 99.5+0.1 99.9+0.0 99.9+0.0 99.9+0.0 99.8+0.0 96.2+0.2 93.4+0.5 100.0 £ 0.0
bbbp 99.8+0.1 99.2+0.1 99.9+0.0 99.9+0.0 99.9+0.1 99.8+£0.0 99.8+0.0 96.4+0.1 94.7+0.3 99.9+£0.0
tox21 99.8+0.1 99.1+£0.2 999+0.1 99.7+0.1 99.9+£0.1 99.7+£0.1  99.6£0.1 96.5+0.3 94.2+0.6 99.9 £ 0.0
toxcast 99.6+0.2 99.3+0.2 999+0.1 99.6+0.1 99.9+0.0 99.6 £0.1  99.8+0.1 96.9+0.6 93.3+0.9 99.9 £ 0.0
sider 99.8+0.1 99.3+0.1 999+0.1 99.6+0.1 99.9+0.0 99.9 £ 0.0 99.6 £ 0.1 96.7+0.1 93.1+0.3 100.0 £ 0.0
clintox 99.84+0.1 99.2+0.0 99.9+0.0 99.5+0.1 99.9+0.1 99.9+ 0.0 99.7+ 0.1 96.3+0.3 94.0+0.4 99.9+0.1
esol 99.84+0.1 99.3+0.1 100.0+£0.0 99.6+0.1 99.9+0.0 99.9 4+ 0.0 99.9+0.1  99.8+0.1 94.3 + 0.6 100.0 £ 0.0
freesolv 999401 99.2+0.2 99.9+0.1 99.7+0.1 99.9+0.0 99.9+0.0 99.8+0.2  99.8+0.0 97.0+0.9 100.0 £0.0
lipo 99.8+0.1 99.2+0.1 999+0.1 99.6+0.1 99.9+0.0 99.9+£0.0 99.7+£0.1  99.8+0.0 96.6 0.7 94.1+0.8
mean 99.8+0.1 99.2+0.1 999+0.1 99.6+0.1 99.9+0.0 99.9 £ 0.0 99.7+£0.1  99.7+0.1 96.6 £0.3 93.8+0.5 99.9+£0.1
Pretraining only on motif datasets, 3000 samples, Test
ROC-AUC(%) 1
Dataset MUViotit HIVmotit  BACEpotit  BBBPpotit  TOX21yetit  TOXCASThotit SIDERuotit  CLINTOXjhotit  ESOLpotit  FREESOLV notit LIPOpotif
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 85 85 85 85 85 85 85 85 85 85 85
left out dataset
muv 98.8+0.0 99.5+0.0 99.1+0.3 99.8+0.1 99.8 £ 0.1 99.54+0.1 98.1+0.1 94.0+04 83.5+0.8 99.8 + 0.1
hiv 99.2 4+ 0.2 99.5+0.2 99.1+0.2 99.8+0.0 99.8 + 0.1 99.54+0.0 984+0.3 934408 83.7+0.5 99.4+0.1
bace 99.3+0.2 99.2+0.1 99.24+0.3 99.9+0.0 99.9 4+ 0.0 99.54+0.0 98.5+0.1 94.0+0.8 84.5+1.1 99.6 + 0.1
bbbp 99.5+0.0 99.0+£0.1 99.5+0.1 99.9+£0.0 99.9+0.0 99.5+0.1 98.4+0.1 93.8+0.5 84.3+0.7 99.9+0.0
tox21 99.5+£0.1 989+0.1 99.5+0.0 98.9+0.2 99.8+0.1 99.2+0.1 98.7+£0.1 93.8+0.2 84.6+0.5 99.9+0.1
toxcast 99.0£0.2 989+£0.1 995+0.1 99.24+0.1 99.8£0.0 99.3£0.1 98.7+£0.1 940+£04 84.2+14 99.9+0.0
sider 99.1+0.3 989+0.2 994+0.1 99.0+0.1 99.9+0.0 99.9+0.0 98.6 +0.1 93.4+05 84.2+04 99.7+0.2
clintox 99.6+0.2 98.8+0.1 994+0.1 98.9+02 99.9+0.0 99.9+0.1 99.6 +0.1 93.8+£04 84.7+1.9 99.8 +0.2
esol 99.34+04 989+0.2 99.6+0.1 99.0+0.0 99.9+0.0 99.9 4+ 0.1 99.6+0.1  98.6+0.0 84.5+ 0.7 99.9 4+ 0.1
freesolv 99.24+04 99.1+0.1 99.6+0.0 99.1+0.1 99.9+0.0 99.9 4+ 0.0 99.7+0.1  98.7+0.2 93.6 + 0.2 99.8 0.2
lipo 99.5+0.1 99.0+£0.2 99.5+0.0 99.1+01 99.9+0.0 99.9+0.0 99.5+0.1 98.8+0.2 93.6+0.5 838+1.2
mean 99.3+£0.2 99.0£0.1 995+0.1 99.1+0.1 99.9=£0.0 99.9+0.0 99.5 £ 0.1 98.5+£0.2 93.7+0.2 842404 99.8+£0.2

Table C.11: Validation and Test Performance during pretraining only on motif
datasets and 3000 samples.




APPENDIX D

No GNN Finetuning

Here we provide in addition to the test scores, that have been already presented
in the results chapter, the validation scores of the "No GNN Finetuning" setup.

No GNN Finetuning, Validation

ROC-AUC(%) 1 | RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV ~ LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
random GNN-weights 624+39 54.6+1.7 578+52 71.2+6.2 65.7+18 541408 52.7+1.3 57.3+12.7 3.747+£0.169 7.296+0.092 1.732+0.110
pretrainedg 5, (default) 715423 693+14 550+49 835+14 70.7+£0.5 626+09 557+£07 79.5+24 1.476+0.024 6.250+0.222 1.136 £0.027
pretrainedsy, (default) 71.34+47 703+1.7 600+37 8314+01 69.5+0.5 63.0+1.0 557+£05 799420 1.405+0.021 6.233+0.163 1.135+0.004
pretrainedg 5 (+ motif labels) 73.5+22 714413 69.6+£09 91.7+04 744406 634+11 59.6+0.8 823+55 1.798+£0.015 6.522+0.135 1.084 4 0.010
pretrainedsy, ( motif labels) 729+25 722412 732+17 93.0+£03 76.7+02 653+02 608+0.5 853+36 1.516+0.112 6.303+0.139 1.005 =+ 0.001
pretrainedg o5y, (+ motif datasets) 704425 700+£0.7 581+1.0 86.3+0.8 702£0.9 627+£05 56.1+0.1 783+3.0 1.624+0.035 5.354+0.387 1.138£0.012
pretrainedg 5 (+ motif datasets) 709+1.9 70.0+29 578+16 835+1.6 69.8+09 620+08 557+1.0 787416 1.434+0.061 5494+0.080 1.131+0.010
pretrained; 5 (+ motif datasets) 748423 68.7+0.8 599+35 87.2+12 709+0.8 626+04 565+06 82.6+29 1.339+0.016 5.806+0.010 1.103+0.014
pretrainedsy, (+ motif datasets) 75.6+11 694+0.7 61.4+30 89.6+1.0 728+1.6 635+09 57.9+08 81.8+1.5 1.349+0.021 5.941+0.066 1.028+0.010
pretrainedy 5 (only motif datasets) | 72.1+0.5 71.3+1.0 725+0.6 91.94+0.3 71.7+04 61.6+0.5 59.7+0.5 858421 1.962+0.043 6.269+0.234 1.080 %+ 0.016
pretrainedsy, (only motif datasets) | 68.5+23 71.9+1.8 752+14 923+1.0 692+0.7 614+04 61.5+£05 846421 1.825+£0.064 6.290=+0.254 1.043 +0.004

No GNN Finetuning, Test

ROC-AUC(%) 1 RMSE |
Dataset MUV HIV BACE BBBP TOX21 TOXCAST SIDER CLINTOX ESOL FREESOLV  LIPO
# compounds 93087 41127 1513 2039 7831 8577 1427 1480 1128 642 4200
# tasks 17 1 1 1 12 617 27 2 1 1 1
random GNN-weights 59.5+2.1 51.3+43 682+47 53.7+22 64.0+23 541+03 521+04 41.0+41 3.801+0.174 5.679+0.109 1.795+0.121
pretrainedg 55, (default) 63.7+1.7 68.6+12 67.0+£25 548+07 68.1+08 61.3+£03 540+0.9 63.7+£56 1.642+0.018 4.681+£0.154 1.067 £ 0.020
pretraineds, (default) 68.0+49 69.9+21 67.0+£23 572+33 688+06 61.8+02 57.1+0.6 629+22 1.636+0.057 4.330+0.116 1.071+0.011
pretrainedg 5 (+ motif labels) 745+05 683+34 722+03 652+1.1 71.6+0.7 61.0£0.2 593+£0.1 525+1.9 1.802+0.052 4.746+£0.132 0.984 £ 0.004
pretrainedsy, (1 motif labels) 72.7+06 71.5+1.0 731+19 671+16 75.0+01 63.0+£08 593+0.8 652+31 1.468+0.040 4.519+0.122 0.952+0.012
pretrainedg o5 (+ motif datasets) 63.1+15 678+14 61.6+1.7 56.1+1.0 67.8+0.1 604+£02 553405 59.0+0.6 1.683+0.035 3.958=+0.368 1.048+0.024
pretrained s, (+ motif datasets) 67.6+3.0 69.5+19 67.7+08 55.6+0.7 67.7+1.1 60.3+£04 56.84+0.5 588+2.6 1.496=+0.015 4.005=+0.028 1.047+0.015
pretrained; 55 (+ motif datasets) 70.8+0.7 67.0+2.1 66.7+24 57.6+16 70.6+03 61.1+05 59.8+0.5 61.4+09 1.466+0.092 4.081+0.061 1.014+0.017
pretrainedsy, (+ motif datasets) 73.7+1.0 67.9+23 719+18 602+1.0 721+14 632+08 59.6+1.0 61.5+36 1.415+0.035 4.263+0.093 0.943+0.014
pretrainedy 51 (only motif datasets) | 73.04+£2.1 66.6+1.2 74.0+04 654+1.3 70.0+0.7 60.3+0.1 584+0.6 60.1+£1.0 1.899+0.059 4.578+0.313 1.01140.021
pretrainedsy, (only motif datasets) 68.7+14 643+39 734+£14 67.0£0.7 68706 59.8+0.2 57.3+06 68.8+3.7 1.866+0.055 4.499+0.088 0.988+£0.003

Table D.1: Validation and Test performance when finetuning only the decoder
for 5 epochs.
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