e
Y/ Pal
m Y e

Distributed ~ j7ges®
Eidgendssische Technische Hochschule Ziirich . “““ A
Swiss Federal Institute of Technology Zurich ComPUt’ng LRt

The Peer Discovery Layer of the
Ethereum Network

Semester Thesis

Jérome Landtwing

jeromela@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Dr. Lucianna Kiffer
Prof. Dr. Roger Wattenhofer

January 12, 2024

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Lucianna Kiffer
for the supervision and guidance throughout this project. During our weekly
meetings her expertise helped me to develop a deepened understanding of the
subject and to shape the output of this research work. I am heartily thankful for
her support and patience throughout the journey of this project.

Abstract

The blockchain domain advanced significantly in recent years. While already in
broad use, there is still potential for technical improvements. Ethereum intro-
duced The Merge in late 2022 and transitioned away from traditional Proof-of-
Work to the more energy efficient Proof-of-Stake. From then onward Ethereum
consisted of two distinct networks: the execution layer and the consensus layer.
The consensus layer has been explored in previous work.

We focus our research on the peer-discovery of Ethereum. Our contribution
is the development of a crawler which was used to gather fine-meshed data on the
participants of the execution layer as well as their routing tables. As a summary,
this project highlights the structures of the Ethereum network and its discovery
protocol. The most recent crawl discovered a total of 236’606 unique enodes, of
which 42’363 were responsive. 86% of the active enodes stay in the network for
more than a week. On average an active node holds 147 unique enodes in its
local table.

i

Contents

Acknowledgements i

Abstract ii

1 Introduction

1.1 Motivation. 1
2 Background 2
2.1 TheMerge. 2
2.2 Enodes. 2
2.3 Distributed Hash Tables 3
2.4 Node Discovery Protocol (Discv4) 3
3 Gathering Network Data 5
3.1 Quering node’s local tables 5
3.2 Querying the network oo 6
3.3 Connectivity 7
3.4 Filtering for mainnet nodes 8
4 Results 9
4.1 CrawlInsights. o o
4.2 Statsover Time 10
4.3 EnodeInsights oo 11
4.4 Routing table cleanup00 14
4.5 Comparing Beacon and execution layer 15
5 Open Questions 16
Bibliography 17

i

CHAPTER 1

Introduction

1.1 Motivation

The motivation for this thesis evolved from the new dynamics created by Ethereums
Merge. Following The Merge the Ethereum protocol consists of two distinct net-
works: The Beacon Chain responsible for the consensus and the execution layer
responsible for transactions and state management. In this work we aim to ex-
plore and understand the execution network of Ethereum, connecting our results
to the findings of the recently explored Beacon Chain [1].

The key questions we aim to answer include metrics on how many nodes par-
ticipate in the execution network, how many of them are responsive and how
long active nodes stay in the network. For this purpose we aim to build a crawler
which explores the execution layer of Ethereum. Delving into the discovery pro-
tocol to get a complete view of a node’s local table. Assembling this knowledge
into a network crawler traversing the local table of all nodes.

CHAPTER 2

Background

2.1 The Merge

Originally the Ethereum mainnet was secured by proof-of-work. The Beacon
Chain first existed as a separate blockchain introducing proof-of-stake to Ethereum.
In September 2022 The Merge was the event where the Beacon Chain was in-
tegrated into the original execution layer of Ethereum. Thus transitioning from
proof-of-work to proof-of-stake with a promised reduction of the consumed energy
by 99.9%. Following The Merge the Ethereum network consists of two different
layers (but not two different chains anymore): the consensus layer and the ex-
ecution layer. The consensus layer is used to verify the consensus while all the
transactions happen in the execution layer. The execution layer’s network is di-
vided into two stacks: The discovery network stack is built on top of UDP and
is used to discover and find peers. Transactions and blocks are exchanged over
the peer-to-peer network in the DevP2P stack which runs over TCP.

2.2 Enodes

Every node in the Ethereum network has its own (32 byte) private and public
key pair on the secp256k1 elliptic curve. The 64 byte node-ID is the Keccak-256
hash of the public key and is used as the primary identifier. The format used
to describe Ethereum nodes in the execution layer is called Enode. Enode is an
URL address format used to identify Ethereum nodes [2]. The present identifiers
are:

e node-ID: hexadecimal representation of the node-1D derived from the pub-
lic key.

e hostname: the node’s IP address. While it is possible to use IPv6 ad-
dresses, the vast majority uses the IPv4 address.

e port: describes the TCP listening port.

2. BACKGROUND 3

e discport (optional): If the TCP and UDP port (used for discovery) don’t
have the same value, the discovery port is passed with the additional disc-
port keyword.

These values are assembled in the format:

enode: //node—ID@IP : TCP—port?discport=UDP—port

The following example, describes the Enode of a node with (fictive) node-ID
deadcOffee, IP address 10.3.58.6, TCP port 30303 and UDP discovery port 30301.

enode://deadcOffee@10.3.58.6:303037discport=30301

2.3 Distributed Hash Tables

Kademlia [3] is an application of Distributed Hash Tables (DHT). In Kademlia
every node organizes it’s local table in buckets classified by the XOR distance
metric:

d(nl, TLQ) =n] D ne

The i-th bucket of node n’s routing table is the collection of all neighbors n, with
distance 2! < d(n,n;) < 2(i+1) " Depending on the client specification k-entries
are kept per bucket. When a new node is encountered, it is inserted into the
corresponding bucket. In case this bucket is full the specification [4] suggests to
remove the least recently seen node if it does not respond to a ping. If node;
wants to locate node; in the network, it sends a location request for node; to one
of its peers. This peer looks up in which bucket node; would fall into and returns
entries from this bucket. Then node; can relay the request to one of the nodes in
the response getting closer to node; with each iteration. This ensures that in a
network with n nodes every node can locate any other node by within O(log(n))
steps.

2.4 Node Discovery Protocol (Discv4)

The underlying principle of the discv4 protocol makes use of a modified form
of Kademlia. The goal of the protocol is to enable the discovery of other par-
ticipants in the peer-to-peer network. According to statistics of ethernodes.org
— "The Ethereum Network & Node explorer" — go-etherum is the most popular
client implementation [5|. Therefore this thesis focuses on go-ethereum’s imple-
mentation of the discovery protocol. The code is open source and available on
github [6]. All clients follow the Ethereum protocol which ensures that they
can communicate with each other. This allows the discovery of nodes regardless
which client they are running, while the guarantee that we query their full table

2. BACKGROUND 4

(as described in sec 3.1) does not necessarily hold for nodes running clients other
than go-etherum.

The most important packet-types are the Ping, Pong, FindNode and Neigh-
bors packets. The version field describes the IP version while it is possible to use
IPv6 this option is used only by a handful of nodes. The vast majority of traffic
in the Ethereum network uses IPv4. The expiration field is a UNIX time stamp,
if the time stamp lies in the past the packet is discarded.

Ping Packet:

packet—data = [version, from, to, expiration, ...]
from = [sender—ip, sender—udp—port, sender—tcp—port]
to = [recipient—ip, recipient—udp—port, 0]

Pong Packet:
packet—data = [to, ping—hash, expiration, ...]

When a Ping packet is received, the recipient should reply with a Pong packet.
Further the node can be added to the recipient’s local table. Pong is the reply to
a Ping packet, the ping-hash is the hash of the Ping packet. A Pong should be
ignored if the hashes mismatch. The exchange of Ping and Pong is executed over
UDP. The successful exchange of Ping and Pong is called bonding. A FindNode
packet requests information about nodes close to target (identified by its public
key). The response to a FindNode packet contains the 16 closest nodes to the
target from its local table assembled in a Neighbors packet.

FindNode Packet:
packet—data = [target, expiration, ...]

Neighbors Packet:
packet—data = [nodes, expiration, ...]
nodes = [[ip, udp—port, tcp—port, node—id], ...]

Clients come with a handful of hardcoded bootnodes whose purpose is to serve
as an entry point for new nodes connecting to the network. After bonding to the
bootnode the node can send a FindNode request to it (using a random public key
or it’s own public key for example). The response contains a list of peers which
the new node can (try) to connect to. The same procedure can be repeated with
the newly added peers.

CHAPTER 3

(Gathering Network Data

To better understand the execution layer of Ethereum our goal was to collect a
dataset of network participants and their routing tables over time. This involved
the development of a crawler capable of querying node’s full routing tables. The
network changes at a high frequency: nodes change their node-ID or their host-
name, nodes go offline and new nodes join the network. To get a meaningful
snapshot, we set the limit for crawling the full network to 30 minutes. To dig fur-
ther into the network’s properties the crawler was extended with a connectivity
checker tracking the responsiveness of discovered participants. The connectivity
checker collects connectivity metrics based on responsiveness over the Ethereum
network and the ICMP ping. The crawler was scheduled to run daily, the con-
nectivity checker was scheduled to run on a hourly basis.

3.1 Quering node’s local tables

The first task for the crawler is querying all buckets of a node’s local table. To
achieve this, it sends at least one Findnode query with a target that falls into
each bucket.

To query a bucket, the crawler needs a public key, that will fall into this
bucket, figure 3.1 shows the relation between node-IDs and buckets. While the
relation between public keys and node-IDs is determined by the hash function.

XOR mask node-ID to query
bucket 0 0x 0000°0000 node-ID & 0x00
bucket 1 0x 1000°0000 node-ID & 0x80
bucket 2 0x 0100°0000 node-ID & 0x40
bucket 3 0x 0010°0000 node-ID & 0x20
bucket 4 0x 0001°0000 node-ID & 0x10
bucket 5 0x 0000’1000 node-ID & 0x08

Figure 3.1: Relation between buckets and bit-flips in the node-ID.

3. GATHERING NETWORK DATA 6

The Neighbors packet (visualized in section 2.4) is defined to carry 16 neigh-
bors, in practice it is common that nodes store more than 16 nodes in each bucket
of their local table. To query the node’s full table the crawler queries each bucket
multiple times with different targets as input until no further new neighbors are
returned. Heuristically we determined that after three queries no new nodes were
returned from the corresponding bucket. To save time during the crawl, the rela-
tion of node-IDs and public keys was pre-computed and stored in a lookup table.
Limited by computational resources the lookup table comprises 3%2'4 public keys
which cover the 14-bit prefixes from 0x0000 to Oxfffc in the node-IDs, for each
possible prefix three public keys were stored. This allows the crawler to fully
query 14 buckets from every node. The pseudocode in Figure 3.2 summarizes
how the node’s full local table are parsed. For every bucket a Findnode query is
sent for each of the precomputed public keys. The returned neighbors are filtered
for duplicates and stored.

def parse node(ID):
local table = []
for i in {0..14}
pkl, pk2, pk3 = lookup table[node—ID XOR mask(i))]
for pk_i in {pkl, pk2, pk3}:
neighbors = FindNode(pk i)
for n in neighbors:
if n not in local table:
add n to local table
return local table

Figure 3.2: Pseudocode for parsing a node’s local table

3.2 Querying the network

To query the whole network within a short time, many nodes need to be queried
in parallel. Therefore the centerpiece of the crawler is responsible for the or-
chestration and collection of the results from parsing many nodes in parallel.
The crawler makes use of go’s primitives channels and syncMaps. Channels
can be thought as FIFO stacks which can be used for communication between
go-routines. SyncMaps are dictionaries optimized for concurrent access. The
pseudocode in Fig 3.3 explains how these primitives were assembled to query the
network efficiently.

To collect ground material the crawler sends Findnode requests to the bootn-
odes with random public keys. All nodes which need to be queried are added
to the queue (implemented as channel). When a worker becomes idle, it takes
a node from the queue and checks if it has been parsed by another node since

3. GATHERING NETWORK DATA 7

initialize queue
syncMap parsed nodes = {}

many workers in parallel
while queue not empty:

take node from queue

if node in parsed nodes:

continue
add node to parsed nodes
peers = parse node(node.ID)

for peer in peers
if peer not in parsed node:
add peer to queue

Figure 3.3: Pseudocode describing the parallel execution from one worker’s per-
spective

it was added to the channel. If the node has been parsed by another node it is
dropped and a new node is fetched from the queue. If the node is fresh, it is
added to the syncMap blocking it for other nodes. Then the worker parses the
node as described in 3.2. All discovered peers are added to the queue unless they
are found in the dictionary of parsed nodes. Finally, the local table is stored to
a file for later analysis.

The output of the crawl is a list of unique enodes, unique meaning the com-
bination of node-1D, IP, port and discport is unique. This implies that the same
node-ID can be associated with multiple IP-port combinations or vice-versa. Ad-
ditionally the list of unique IPs is stores as well as the local table of every node.
The crawler is run everyday at midnight and takes approximately 30 minutes to
complete.

3.3 Connectivity

The connectivity checker runs two different instances. First is sends a ping over
the Ethereum network to all unique enodes discovered in today’s crawl. After-
wards an ICMP ping is sent to all unique IPs. The list of responsive enodes and
IPs is archived. Tracking the enodes provides information about the connectivity
of the nodes while the ICMP ping gives insight into the connectivity of the ma-
chines running the nodes. The connectivity checker is run once every hour and
takes as input the list of discovered IPs and enodes from the most recent crawl.
For the network ping we used the code of Go Ethereum and for the ICMP ping
we used the command line tool ping. Since this program is run every hour the
code is run in parallel again in order to complete in under 5 minutes.

3. GATHERING NETWORK DATA 8

3.4 Filtering for mainnet nodes

The Ethereum ecosystem consists of many independent networks that follow the
Ethereum protocol but are not interacting with each other. In the discovery
layer it is not possible to conclude in which network a node is participating.
The mainnet is Ethereum’s production blockchain, this what is referred to when
talking about the cryptocurrency. To get a lower bound on the portion of IPs and
enodes participating in the actual mainnet the data from our crawler is compared
to the data collected by ethernodes.org [5].

CHAPTER 4

Results

4.1 Crawl Insights

Discovered Enodes and IPs per crawl
240000 42—y, =& unique Enodes

——

220000 - unique IPs
—> active Enodes
o 200000 -

= active IPs
180000 A

160000 -
140000 A
120000 H
100000 A
80000 +
60000
40000 4 F—=——% ro3 3 == zo3 zo3 Fog
20000 -

Number of Enodes / |

0 T T T T T T T T T T

Figure 4.1: Crawl statistics from December 22nd to 29th.

In Fig 4.1 the key figures of the crawls are depicted. The chart’s blue and
orange line represent the number of unique Enodes respectively unique IPs dis-
covered during the crawl. Unique Enodes means, as described in section 3.2, the
unique combination of node-ID, IP, port and discport (if present). The number
of active Enodes respectively active IPs are visualized by the green respectively
blue line. An enode or IP is marked as active if it has been discovered during the
crawl and replied to the Ping in the first connectivity check after the crawl.

The chart shows that the number of discovered Enodes is much higher than
the number of discovered IPs. By the pigeon hole principle this means that some
IPs are used by different node-IDs, these IPs rotate through different enodes. The
active enodes to active IPs ratio is close to 1. All four values did not fluctuate
significantly during the measurement period. It is noticeable that the difference
between active Enodes and IPs is much smaller than the difference between dis-

4. RESULTS 10

covered Enodes and IPs. For both the IPs and enodes more than half of the
discovered values were inactive. The obvious reason why an enode or IP was

unreachable, is that it was shut down. However, it is also possible that they hide
behind a NAT which makes those IPs harder to track.

4.2 Stats over Time

Persistence of IPs over time Persistence of Enodes over time

48000

46000

Number of active Enodes
»
I
S
S
S

42000

40000

22.12 4
23.12
24.12
25.12
26.12
27.12 4
28.12
29.12
30.12
31.12
22.12 4
23.12
24.12
25.12
26.12
27.12 4
28.12
29.12
30.12
31.12

Persistence of IPs over time (mainnet) Persistence of Enodes over time (mainnet)

4200
2950

4100
2900

2850

N
@
o
o
woow oW s
N ® © o
o 9o 9 o
5 © o o

Number of active IPs
Number of active Enodes

2750

3600

2212
23.12
2412
25.12
26.12
27.12
28.12
29.12
30.12
31.12
2212
23.12
24.12
25.12
26.12
27.12
28.12
29.12
30.12
31.12

Figure 4.2: Active IPs and enodes over time

The plots in Figure 4.2 visualize the evolution of the active IPs and enodes
over time. As described in section 3.3 the IPs and enodes discovered during
each of the daily crawls serve as input to the connectivity checks throughout the
next day. In 4.2 the list of discovered IPs and Enodes are traced over the days
following the crawl and the number of responsive IPs and enodes is plotted.

There is a significant drop of active IPs following each crawl, describing that
a number of IPs that responded to the ICMP ping one hour prior to the crawl
were not discovered during the crawl. Manual inspection resolved this anomaly.
The IPs that drop out every day after the crawl translate to enodes which were
inactive for a longer time. The responsiveness of IPs is checked using ICMP ping,
which does not allow to specify a port, therefore only the responsiveness of the
actual IP is checked but not what service is running behind this IP. Out of all
enodes corresponding to the IPs dropping out in the new crawl, only a handful
were reachable over the Ethereum network throughout last day. This indicates

4. RESULTS 11

that these IPs correspond to ’dead’ entries which have not been erased from all
routing tables and that the IPs used by enodes are used for multiple services.

The charts in Figure 4.3 describe the overlap between crawls. The overlap
measures which percentage of active IPs and enodes from a crawl were discovered
future crawls again. The plot shows that 5% to 7% of the active enodes and IPs
left the network after one day. After one week the overlap in IPs is close to
85%, while the overlap of active enodes is slightly higher. The IPs and enodes
discovered in the mainnet are much more consistent. More than 95% of the IPs
and more than 90% of the enodes stayed in the mainnet for more than a week.
This suggests that participants of the mainnet stay in the network for longer
periods than in the rest of the network.

Overlap of active IPs Overlap of active Enodes

100.0 4 1001
97.5 981
95.0 91
£ 925 s %
c £
a a 924
& 90.01 8
o v
4 >
> © 90+
© 875
88
85.0
86
82.5
84
80.0
R T N o "% o o % & % % % %
> ' " " "a ' g " " '
[U S AR S A S A S A [SR A S AN SR A
time time
Overlap of active IPs (mainnet) Overlap of active Enodes (mainnet)

-
=)
=3

100

98 1

©
©

96 1

©
©

94

overlap in %
©
~
overlap in %

©
o

90 1

©
o

88 1

Figure 4.3: IP and enode Overlap over time interval of one week

4.3 Enode Insights

In this section the insights of the enode’s local table are presented. Figure 4.4
portrays the distribution of the bucket contents in the format of a boxplot. In

4. RESULTS 12

Figure 4.5 the bucket counts of are displayed as a cumulative distribution func-
tion. Lastly, the statistics about the local tables are summed up in a histogram
in Figure 4.6 counting the total number of entries in the local table of each node.

In Figure 4.4 the orange line represents the median, the boxes visualize the
25%, respectively 75% quartile and the whisker has the length of 1.5 Inter quartile
ranges. As expected, with increasing bucket index the number of entries in the
local table decreases. For indexes greater than 12 most buckets are empty. For
bucket 0 the median lies at 16 peers and the deviation is fairly small. The
deviation increases with larger bucket indexes. This described the mode how
nodes act when they cannot return 16 nodes from a bucket. In this case entries
from buckets with higher index are returned (thus cleaning out the rest of the
local table).

Distribution of non-empty routing tables accross all crawls

24 A

20 A

16

12 4

HH
—il—
L
L

Number of entries per bucket

Bucket Index
Figure 4.4: Boxplot of the Bucket contents

For each data point in Figure 4.5 the y-value describes the percentage of nodes
that returned less neighbors then the number displayed on the x-axis. The main
insight from this plot is as in 4.5 the rapid decrease of returned neighbors around
bucket 11.

Throughout the measurement period the median of entries in the routing ta-
bles was 153 nodes, slightly higher than the mean value of 146.9. In the histogram
three peaks can be recognized. A main peak around 160 entries and two minor
spikes around 100 entries and 20 entries. The peaks around 160 and 100 can be
explained with different configurations. Go-ethereum keeps by default 16 entries
per bucket plus a replacement cache with 10 entries. While different clients use
other values it is also possible to configure go-ethereum to use a different value.
The peak to the very left of the graphic likely originates from nodes that joined
the network very recently before the crawl.

4. RESULTS
CDF of nodes with non-empty routing tables accross all crawls
1.0
0.8
—— bucket 0
= bucket 1
% = bucket 2
-8 0.6 —— bucket 3 |
c = bucket 4
S —— bucket 5
o = bucket 6
& 0.4 = bucket 7 |
——— bucket 8
—— bucket 9
—— bucket 10
0.2 = bucket 11 |
= bucket 12
—— bucket 13
—— bucket 14
0.0 ,
15 20 25 30 35 40
Number of neighbors returned
Figure 4.5: CDF of Bucket contents
Total neighbors per node
---‘- Mean 146.‘9
300004 7 Median 153.0
25000
20000
o
§15000
10000
5000

75 100 125
Number of Neighbors in routing Table

Figure 4.6: total Bucket contents

13

4. RESULTS 14
4.4 Routing table cleanup

In Figure 4.7 it is portrayed how long it takes until entries of IPs that went
offline disappear from all routing tables. A random set of IPs was chosen, by
the criteria that they were discovered during the crawl of December 27 and went
offline during the day and stayed offline for the rest of the measuring period.
The plot counts the number of routing tables that carried the corresponding IP
a few days before they went offline until the end of the measurement period on a
logarithmic scale. A clear trend that the number of routing table entries reduces
rapidly as soon as it gets offline, while it can take a long time until the entry
is removed from all tables. It is noticeable that a few IPs are erased from the
routing tables while their IP was still reachable. Further it is remarkable that
it can take quite a while until the entries get erased from all routing tables, in
Figure 4.7 it is clearly visible that the inactive enodes entries have not been
fully erased from all tables after a week. Likely this can be explained with the
replacement strategy of the discovery protocol, inactive entries only get replaced
when a new node of the same bucket is encountered. The chance of triggering this
replacement mechanism decays with increasing bucket index, thus it is harder for
an entry to get replaced in a bucket with a higher index.

Occurrences of tracked IPs in routing tables
|

==~ all IPs last seen online

102 .

101 .

Number of routing tables that contain IP

0]

10 - I —

A O 0N DA D

;]] L2 L AN MR A S LA SN

NN RN RN RN RN RN RN RN A S S\
date

Figure 4.7: Tracking of IPs that went offline

4. RESULTS 15

4.5 Comparing Beacon and execution layer

In this section we compare the execution layer to the consensus layer of Ethereum.
In Figure 4.8 the orange line describes the number of IPs discovered during our
execution layer crawl sole in the execution layer crawl. The blue line describes
the number of IPs discovered only in the crawl of the consensus layer. The green
line represents the number of IPs that appeared in both crawls. On the right
side in Figure 4.8 we plot the same characteristics for the participants identified
to take part in the mainnet. The procedure to identify the mainnet participants
of the execution layer is described in 3.4, for the consensus layer we filtered the
mainnet ENRs by their fork digest as described by [1].

These graphics have to be interpreted with a grain of salt. The total number
of IPs discovered in the execution is in the order of 240’0000 while the consensus
layer crawl only holds 30000 IPs. In the mainnet the opposite holds in the con-
sensus layer roughly 15’000 IPs could be identified as mainnet participants, while
the maximum number of mainet participants for the execution layer is around
5'000. Nevertheless, the conclusion can be made that most people participating
in the consensus layer also take part in the execution layer.

Overlap of IPs of beacon and execution layer Overlap of IPs mainnet of beacon and execution layer

70000 — — S — 10000 { F———
60000
8000
50000
£ &
'S 40000 — consensus layer 5 —— consensus layer
5 execution layer 5 6000 execution layer
£ —— both layers £ —— both layers
5 30000 H
2 2
4000
20000
10000
2000
4
N . 3 2 <] 5y 3 42 <
g > N & N > > NS N &

date date

Figure 4.8: Assigning IPs to consensus and execution layers

CHAPTER 5

Open Questions

Given the results of this project, the following questions remain open:

e We showed that the discovery protocol as it is used leads to local tables
with a lot of dead entries. This might be one of the reasons Ethereum wants
to upgrade their discovery protocol to discv5. For further research it would
be interesting to measure how much this improves with the upgrade.

e We developed the hypothesis that the latency until these dead entries are
replaced in a node’s local table increases for higher bucket indexes. Further
research could investigate how quickly the old information gets cleaned out
of different buckets and how this could be improved.

e The information we could use to identify nodes were the node-ID and the
IP. The analysis could be extended up to the TCP-layer which holds much
more information about its participants. Enabling to classify which enodes
belong to the mainnet on our own, removing the dependency on ethern-
odes.org.

e We did not take nodes behind NATs into consideration. If node is behind
a NAT this might impact it’s reachability. This topic could be explored
by the investigation of enodes that persist in the local tables but are not
reachable by the connectivity check.

16

Bibliography

[1] S. Késer, “Understanding peer-discovery in eth 2.0,” Aug. 2023.

[2] Ethereum Foundation. (2023, Jan.) Enode. [Online|.
Available: https://ethereum.org/en/developers/docs/networking-layer/
network-addresses /#enode

[3] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information
system based on the xor metric,” 2002.

[4] Ethereum Foundation. (2023, Jul.) Discovery v4. [Online|. Available:
https://github.com/ethereum/devp2p/blob/master/discv4.md

[5] Bitfly GmbH. ethernodes.org. [Online|. Available: https://ethernodes.org/

[6] the go-ethereum Authors. (2023, Sep.) Official go implementation of the
ethereum protocol eth. |Online|. Available: https://github.com/ethereum/
go-ethereum

17

https://ethereum.org/en/developers/docs/networking-layer/network-addresses/#enode
https://ethereum.org/en/developers/docs/networking-layer/network-addresses/#enode
https://github.com/ethereum/devp2p/blob/master/discv4.md
https://ethernodes.org/
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation

	2 Background
	2.1 The Merge
	2.2 Enodes
	2.3 Distributed Hash Tables
	2.4 Node Discovery Protocol (Discv4)

	3 Gathering Network Data
	3.1 Quering node's local tables
	3.2 Querying the network
	3.3 Connectivity
	3.4 Filtering for mainnet nodes

	4 Results
	4.1 Crawl Insights
	4.2 Stats over Time
	4.3 Enode Insights
	4.4 Routing table cleanup
	4.5 Comparing Beacon and execution layer

	5 Open Questions
	Bibliography

