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Abstract

This thesis explores the application of Conditional Variational Autoencoders
(CVAES) for generating sonically meaningful waveforms in the context of wavetable
synthesis. Wavetable synthesis allows for the creation of diverse and evolving
sounds by using pre-recorded or algorithmically generated waveforms. However,
designing custom waveforms is a complex and often inaccessible task for many
music producers due to the specialized knowledge required. The goal of this
research is to explore the facilitation of waveform generation by conditioning
on perceptually relevant sonic parameters, thereby simplifying the sound design
process. A CVAE model was developed and trained on a dataset of single-cycle
waveforms labeled with spectral characteristics. The results demonstrate that
the model can generate a variety of high-quality waveforms based on user-defined
parameters, expanding creative possibilities in sound design. This approach not
only democratizes the creation of custom wavetables but also offers an efficient
and flexible tool for music producers seeking personalized and innovative sounds.
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CHAPTER 1

Introduction

1.1 Motivation and Background

Wavetable synthesis is esteemed for its ability to generate a wide range of complex
and nuanced timbres, making it a highly valuable tool in the field of digital
sound synthesis. This technique, which involves the rapid playback of single-cycle
waveforms, enables the efficient creation of diverse sonic textures. Consequently,
wavetable synthesizers have become a popular choice among both professional
and amateur music producers.

Despite its advantages, wavetable synthesis presents a significant challenge in
the realm of sound design. The process of designing waveforms that accurately
reflect a producer’s creative vision is inherently complex and specialized. For
many producers, the task of translating abstract auditory concepts into concrete
waveforms is difficult, particularly because this requires a deep understanding of
both the technical aspects of waveform construction and the perceptual qualities
of sound. This complexity means that the creation of waveforms is often relegated
to expert sound designers who possess the necessary skills to craft these intricate
audio elements.

These experts typically create and commercialize waveform packs or provide
them to synthesizer manufacturers. While this practice ensures the availability
of high-quality waveforms, it also introduces a notable limitation: producers are
constrained to using pre-designed waveforms, which can restrict their creative
potential. The reliance on pre-made waveforms inherently limits the range of
sonic possibilities, as producers are confined to the specific sounds provided,
reducing the opportunity for more personalized and innovative sound design.

This thesis aims to address these limitations by exploring the application of
Artificial Intelligence, specifically Conditional Variational Autoencoders (CVAEs),
in facilitating the process of waveform creation. By enabling the generation of
waveforms conditioned on user-selected, sonically meaningful parameters, this ap-
proach seeks to democratize the process of sound design in wavetable synthesis.
The ultimate goal is to empower music producers to transcend the constraints of
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pre-made waveforms, thereby unlocking greater creative potential and enabling
the realization of a more personalized sonic vision.

1.2 Problem Statement

The process of sound design in wavetable synthesis, while powerful, remains com-
plex and largely inaccessible to the average music producer. The creation of cus-
tom waveforms that accurately reflect a producer’s auditory intentions typically
requires specialized knowledge and skills, which most producers lack. Conse-
quently, the task of waveform creation is often left to professional sound designers,
whose products—whether in the form of waveform packs or as part of commercial
synthesizers—inevitably limit the creative flexibility of the user. This reliance on
pre-designed waveforms constrains the producer’s ability to fully explore and re-
alize their creative potential in sound design. There is a clear need for a solution
that can democratize the creation of sonically meaningful waveforms, allowing
producers of all skill levels to translate their creative ideas into tangible audio
forms without being confined to existing presets or packs.

1.3 Objectives

The primary objective of this thesis is to develop a method for generating soni-
cally pleasant and contextually relevant wavetables using Conditional Variational
Autoencoders (CVAESs). Specifically, this research aims to:

¢ Explore the use of Autoencoders for audio synthesis: Investigate the
suitability of Autoencoders, specifically CVAEs for generating single-cycle
waveforms in the context of wavetable synthesis.

e Define and utilize sonically meaningful parameters: Identify key au-
ditory parameters (e.g., brightness, warmth) that can be used to condition
the generation process, ensuring that the output waveforms align with the
intended sonic characteristics.

e Automate the process of waveform creation: Develop and train a
CVAE model that can generate waveforms based on user-specified param-
eters, thereby reducing the complexity and expertise required for custom
sound design.

e Evaluate the generated waveforms: Assess the quality and usability
of the generated waveforms through both quantitative measures and qual-
itative listening tests, comparing them to traditional, manually designed
waveforms.
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1.4 Thesis Structure

This thesis is structured as follows:

e Introduction: Introduces the topic, presents the motivation for the study,
outlines the problem statement, and specifies the objectives of the research.

e Background and Related Work: Provides a detailed overview of wavetable
synthesis, discusses the challenges in waveform creation, and reviews exist-
ing approaches in Al-driven audio synthesis, with a focus on related work
in the field.

e Methodology: Describes the architecture of the Conditional Variational
Autoencoder (CVAE) used in this study, details the selection of sonically
meaningful parameters, and outlines the data preparation, model training,
and validation processes.

e Results: Presents the findings of the study, including the performance of
the CVAE model, the characteristics of the generated waveforms, and their
evaluation in comparison to traditional methods.

e Discussion: Analyzes the results, highlighting the strengths and limita-
tions of the approach, and discusses the implications of these findings for
the field of sound synthesis.

e Conclusion and Future Work: Summarizes the key contributions of the
thesis, reflects on the research outcomes, and suggests directions for future
work to further enhance the capabilities of Al-driven waveform generation.
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Background and Related Work

2.1 Synthesizers: An Overview

Synthesizers have been a cornerstone of modern music production, revolutioniz-
ing the way sound is created and manipulated. Since their inception, synthesizers
have evolved through various technological advancements, each bringing new ca-
pabilities and expanding the sonic palette available to musicians.

The earliest synthesizers, such as the Moog Modular Synthesizer introduced
in the 1960s, were analog devices that used voltage-controlled oscillators (VCOs),
filters, and amplifiers to generate and shape sound [1]. These early analog syn-
thesizers were primarily based on subtractive synthesis, a method where complex
waveforms (rich in harmonics) are generated and then shaped using filters to re-
move (or subtract) certain frequencies, creating the desired timbre. Subtractive
synthesis became the foundation of many classic synthesizers, such as the Min-
imoog and the Roland Jupiter series, which remain iconic in music production
[2].

The 1980s marked a significant shift with the introduction of frequency modu-
lation (FM) synthesis, popularized by the Yamaha DX7. FM synthesis generates
complex sounds by modulating the frequency of one waveform with another, cre-
ating intricate harmonic structures that were difficult to achieve with subtractive
methods [3]. This era also saw the rise of digital synthesizers, which allowed
for more precise control and the ability to produce entirely new types of sounds
through methods such as additive synthesis (building sounds by adding together
simple waveforms) and sample-based synthesis (using recorded audio samples as
the source material) [4].

As digital technology advanced, synthesizers became more compact, afford-
able, and accessible, leading to widespread adoption across various genres of
music. The 1990s and 2000s saw the emergence of virtual analog synthesizers,
which emulated the sound and behavior of classic analog synths using digital
signal processing (DSP). These developments paved the way for modern software
synthesizers (soft synths), which offer immense flexibility and integration within
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digital audio workstations (DAWSs). [5]

Each type of synthesis method—subtractive, FM, additive, sample-based,
and virtual analog—has contributed to the vast and diverse landscape of sound
design in music production. However, as technology continues to evolve, newer
methods, such as wavetable synthesis, have gained prominence due to their ability
to produce highly detailed and dynamic sounds with greater ease and flexibility.

2.2 Wayvetable Synthesis

Wavetable synthesis represents a significant advancement in the evolution of syn-
thesizers, providing a powerful tool for generating complex and evolving sounds.
Unlike traditional synthesis methods, which often rely on manipulating simple
waveforms or samples, wavetable synthesis uses a series of pre-recorded or al-
gorithmically generated waveforms stored in a table (hence the name). These
waveforms, each representing a different harmonic content or timbre, can be in-
terpolated, modulated, or sequenced in real-time to produce sounds that can
evolve dynamically over time. [6]

The concept of wavetable synthesis was first introduced in the late 1970s
and early 1980s, with the PPG Wave synthesizer being one of the earliest and
most influential examples. The PPG Wave, designed by Wolfgang Palm, utilized
digital wavetables in combination with analog filters, creating a hybrid instrument
capable of producing a wide range of unique sounds. |7]

One of the key advantages of wavetable synthesis is its ability to offer a vast
sonic palette within a single instrument. By storing multiple waveforms within a
wavetable, a synthesizer can play different timbres, creating complex sounds that
would be difficult to achieve using traditional methods.

Moreover, wavetable synthesis allows for detailed control over the harmonic
content of a sound. Producers can design custom wavetables by either selecting
or creating the waveforms that best match their creative vision. This level of
control is particularly valuable in modern music production, where there is often
a need to craft highly specific and unique sounds.

However, the complexity of wavetable synthesis also presents challenges, par-
ticularly in the area of sound design. Creating effective and sonically pleasing
wavetables requires not only a deep understanding of sound synthesis but also an
ability to translate abstract auditory ideas into concrete waveforms. This chal-
lenge is compounded by the sheer number of possibilities offered by wavetable
synthesis, which can make the process of designing custom wavetables both time-
consuming and technically demanding.
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2.3 Al in Audio Synthesis

Artificial Intelligence has increasingly become a transformative force in various
fields, and audio synthesis is no exception. The integration of Al into audio
synthesis has opened up new possibilities for sound design, composition, and
production, allowing for the creation of more complex, nuanced, and innovative
sounds than ever before. This section will explore the role of Al in audio synthesis,
with a particular focus on key developments such as the NSynth project [8] and
the emergence of Al-generated music.

2.3.1 The Rise of Al in Audio Synthesis

The application of Al in audio synthesis is rooted in the broader field of machine
learning, where algorithms learn patterns from data and use these patterns to
generate new content. In audio synthesis, this typically involves training neural
networks on large datasets of sounds, enabling the models to learn the charac-
teristics of different audio signals and generate new sounds based on this learned
knowledge [9].

Historically, much of the research in Al and audio has focused on tasks that
are either upstream or downstream of synthesis. On the upstream side, significant
advancements have been made in voice generation and text-to-speech (TTS) sys-
tems [10], where AI models generate human-like speech from text inputs. These
systems are now widely used in virtual assistants, automated customer service,
and accessibility tools. On the downstream side, Al has excelled in speech recog-
nition and dictation, where models convert spoken language into text, as well as
in tasks like audio classification and music recommendation [11], which involve
categorizing and analyzing audio content. While these applications are critical
and have seen widespread adoption, they differ fundamentally from the creative
and generative challenges posed by musical audio synthesis [12].

One of the pioneering efforts in Al-driven audio synthesis is Google’s NSynth
(Neural Synthesizer), developed as part of the Magenta project [8]. NSynth
uses a deep neural network to analyze and interpolate between sounds from a
large database of musical notes played by various instruments. Unlike traditional
synthesis methods that rely on deterministic mathematical algorithms to generate
sounds, NSynth leverages the learned latent space of the neural network to create
new, unique sounds by blending the characteristics of different source sounds.
This allows for the generation of hybrid timbres that are not constrained by the
limitations of traditional synthesis techniques, offering a new frontier in sound
design.

NSynth operates by encoding audio samples into a latent space where similar
sounds are positioned closer together. By manipulating this space, NSynth can
generate novel sounds that have characteristics of multiple instruments or timbres
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[8]. For example, it can create a sound that blends the qualities of a flute and
a violin, or a guitar and a trumpet, producing new sonic textures that are both
familiar and entirely original. This approach not only expands the palette of
available sounds but also introduces new creative possibilities for musicians and
sound designers.

Beyond NSynth, AI has also been applied to more comprehensive music gen-
eration tasks. Al systems such as OpenAl’s Jukebox [13] and AIVA (Artificial
Intelligence Virtual Artist) [14] have demonstrated the capability to compose
entire musical pieces autonomously. These systems use deep learning models
trained on large datasets of music to understand and replicate the structure,
style, and emotional content of different genres. AIVA, for instance, has been
used to compose classical music pieces that are indistinguishable from human-
composed works in terms of complexity and emotional depth [14]. This level
of sophistication in Al-generated music represents a significant milestone in the
integration of Al into the creative process.

Al-driven tools have also made their way into more practical applications
within music production. For instance, tools that use Al to automate tasks such
as mastering and audio restoration are becoming increasingly common. These
tools can analyze audio tracks and apply adjustments that would traditionally
require expert knowledge, thereby making high-quality music production more
accessible to a broader range of users [15].

2.3.2 Challenges and Opportunities

While the integration of Al in audio synthesis offers exciting opportunities, it
also presents several challenges. One of the primary challenges is ensuring that
Al-generated sounds are not only novel but also musically useful and emotionally
engaging. The subjective nature of music and sound means that evaluating the
quality of Al-generated content is inherently difficult, as it must resonate with
human listeners on both a technical and emotional level. [16]

Moreover, there is the issue of control and interpretability. In traditional
synthesis methods, sound designers have a clear understanding of how their input
parameters will affect the output. With Al, particularly deep learning models,
the relationship between input and output can be more opaque, making it harder
for users to predict or fine-tune the results [17]. This can limit the usability of
Al tools, especially for professionals who require precise control over their sound
design.

Despite these challenges, the potential for Al to revolutionize audio synthesis
is significant. By enabling the creation of entirely new types of sounds and au-
tomating complex sound design tasks, Al has the potential to democratize music
production, making it more accessible and expanding the creative possibilities
available to musicians and producers. As Al technology continues to evolve, it



2. BACKGROUND AND RELATED WORK 8

is likely that we will see even more sophisticated applications in audio synthesis,
pushing the boundaries of what is possible in sound design and music creation.

2.4 Sound and Timbre in Audio Synthesis

Timbre is one of the most fundamental aspects of how we perceive sound. The
Acoustical Society of America (ASA) defines timbre as "that attribute of auditory
sensation which enables a listener to judge that two nonidentical sounds, similarly
presented and having the same loudness and pitch, are dissimilar," adding that
"timbre depends primarily upon the frequency spectrum, although it also depends
upon the sound pressure and the temporal characteristics of the sound" [18]. This
characteristic allows us to distinguish between different sounds, even when they
share the same pitch and loudness. For example, a piano and a guitar playing
the same note at the same volume will still sound distinctly different due to
their unique timbral characteristics. Timbre is often described as the "color" or
"quality" of sound and is influenced by the harmonic content, dynamic behavior,
and spectral distribution of the waveform.

2.4.1 Timbre and the Fourier Transform

Timbre can also be understood visually through a Fourier transform represen-
tation of a sound, which converts a time-domain signal (i.e., a waveform) into
the frequency domain [?|. The Fourier transform reveals the harmonic content of
a waveform by showing the individual frequencies that make up the sound and
their relative amplitudes.

For example, in the Fourier transform of a waveform, a single fundamental
frequency will appear as the largest peak, while its overtones, or harmonics,
will appear as smaller peaks at integer multiples of the fundamental frequency.
The distribution and amplitude of these harmonics are what primarily define the
timbre of the sound.

Consider three waveforms—a pure sine wave, a square wave, and a triangle
wave—all with the same fundamental frequency:

e A sine wave is the simplest waveform, containing only the fundamental
frequency with no overtones. In the Fourier transform, it appears as a
single spike at the fundamental frequency. Its sound is perceived as very
pure and smooth.

e A square wave, on the other hand, has a richer harmonic content. Its
Fourier transform shows not only the fundamental frequency but also odd
harmonics (i.e., 3fy, 5fo, etc.). The higher the amplitude of these harmon-
ics, the "brighter" or "harsher" the sound becomes.
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e A triangle wave has a harmonic structure similar to the square wave, but
the harmonics fall off more quickly. Like the square wave, it contains only
odd harmonics, but their amplitudes decrease at a faster rate (proportional
to 1/n?, where n is the harmonic number). This results in a softer, more
"mellow" sound compared to the square wave.

The plots below show the time-domain representation (left) and the corre-
sponding Fourier transform (right) for a sine wave, square wave, and triangle
wave, respectively:
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Figure 2.1: Sine wave (left) and its Fourier Transform (right).
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Figure 2.2: Square wave (left) and its Fourier Transform (right).

In wavetable synthesis, controlling and shaping timbre is essential, as each
single-cycle waveform has a distinct harmonic structure that defines its timbral
characteristics. Traditionally, sound designers manipulate timbre by adjusting
the harmonic content of a waveform through its Fourier representation—shaping
the frequency components to craft the desired sound. This involves modifying
the amplitude and distribution of the waveform’s harmonics to achieve specific
qualities such as brightness, warmth, or harshness.

In this thesis, however, rather than directly manipulating the Fourier space,
we aim to shape the sound in the time domain, allowing the waveform’s har-
monic structure to emerge naturally from the generated time-domain signal. The
Conditional Variational Autoencoder (CVAE) is designed to generate wavetables
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Figure 2.3: Triangle wave (left) and its Fourier Transform (right).

conditioned on perceptually meaningful parameters like brightness and warmth,
which are closely tied to the harmonic content of the waveform. By controlling
these parameters in the time domain, we implicitly shape the Fourier represen-
tation, just as a sound designer would when sculpting harmonics.
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Methodology

3.1 Sonically Meaningful Parameters

In order to guide the waveform generation process, the CVAE is conditioned on
a sonically meaningful parameter that corresponds to perceptual characteristics
of sound. This parameter is chosen to ensure that the generated waveforms align
with the creative goals of music producers and sound designers. The parameter
used in this research is defined as follows:

e Brightness: Brightness refers to the balance of high-frequency content in
a sound. Sounds with more energy in higher frequency ranges are perceived
as "brighter," while sounds with more emphasis on lower frequencies are
perceived as "darker" or "duller." To quantify brightness, the spectral cen-
troid of the waveform is calculated, which serves as an indicator of where
the majority of the sound’s frequency energy is concentrated. [19] [20]

The calculation of brightness begins by applying a real fast Fourier trans-
form (FFT) to the waveform, which converts the time-domain signal into its
frequency-domain representation. The spectral centroid is then computed
using the following formula:

21X ()
21X () +10-8

where X (f) represents the magnitude of the waveform’s frequency com-
ponent at frequency f, and the sum is taken over all frequencies in the
spectrum. This ensures that the spectral centroid reflects the "center of
mass" of the frequency distribution, providing a direct measure of bright-
ness.

spectral centroid =

A higher spectral centroid indicates that more energy is concentrated in
the higher frequencies, resulting in a brighter sound. Conversely, a lower
spectral centroid corresponds to a darker sound. This calculated brightness

11
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is used as an input to the CVAE, allowing the model to generate waveforms
with varying degrees of brightness, based on user-defined preferences.

The brightness parameter is numerically encoded and passed as part of the
conditioning input ¢, allowing the model to learn how variations in this parameter
affect the resulting waveform. This approach enables intuitive control over the
synthesis process and facilitates the generation of a wide range of sounds by
simply adjusting the brightness value.

3.1.1 Dataset Preparation

To train the Conditional Variational Autoencoder (CVAE) model, a dataset of
single-cycle waveforms was prepared using the AKWF dataset. The AKWF
dataset is a collection of approximately 4000 single-cycle waveforms, provided
under the Creative Commons CCO 1.0 license.! These waveforms, sampled at
600 samples per cycle, are widely used in synthesizers and samplers for wavetable
synthesis. This makes the dataset ideal for research in automated waveform
generation.

The preparation of the dataset involved several key steps:

e Waveform Normalization: Each waveform from the AKWF dataset was
processed to ensure consistency in amplitude by normalizing it to the range
[—1,1]. This step was crucial to ensure that all waveforms had comparable
levels and could be used uniformly in the training process.

e Brightness Calculation: The perceptual quality of brightness was com-
puted for each waveform using its spectral centroid, which measures the
distribution of energy across the frequency spectrum. The spectral cen-
troid is a widely used metric for quantifying how much of the waveform’s
energy is concentrated in higher frequencies. The brightness values were
normalized to a range of 0 to 1, ensuring that they were comparable across
all waveforms in the dataset.

e Data Labeling and Storage: After computing the brightness values,
each waveform was labeled with its corresponding brightness value. These
labels were stored alongside the waveforms, allowing the CVAE model to
condition its waveform generation on these perceptual characteristics during
training.

e Dataset Structuring: The dataset was organized for efficient loading
and training. The waveforms and their corresponding brightness labels
were structured to be used in batches, allowing for scalable and effective
training of the model.

"https://www.adventurekid.se/akrt/waveforms/adventure-kid-waveforms/
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The use of the AKWF dataset ensured that the waveforms provided a wide
range of timbral characteristics, making it a robust resource for training the
CVAE. The careful normalization of both waveform amplitude and brightness
values facilitated the generation of diverse and perceptually meaningful wave-
forms, aligned with the creative goals of sound designers and music producers.

3.2 Model Architecture

The Conditional Variational Autoencoder (CVAE) used in this research is de-

signed to generate single-cycle waveforms conditioned on a perceptual feature—brightness.
The CVAE consists of two primary components: an encoder and a decoder, with

a reparameterization step in between to facilitate sampling from the learned la-

tent space. This section describes the architecture of the CVAE, as well as the

loss function used during training.

3.2.1 Encoder

The encoder takes as input both the waveform and the brightness condition.
The waveform is represented as a vector of 600 time-domain samples, and the
brightness is a scalar value representing the perceptual quality of the sound.
These two inputs are concatenated and passed through a series of fully connected
layers to extract high-level features. The final output of the encoder is two
vectors: one representing the mean (1) and the other representing the logarithm
of the variance (log o2) of the latent distribution. These values are used to define
the Gaussian distribution from which latent variables are sampled.

Mathematically, given the input waveform x and the conditioning variable ¢
(brightness), the encoder computes:

o= fenc,,u(-rv 6)7 10g 02 = fenc, (ZL‘, C)

where fenc,, and fene, represent the neural network transformations that out-
put the mean and log-variance, respectively.

3.2.2 Reparameterization

The reparameterization step is crucial for enabling backpropagation through the
stochastic latent space. To sample from the latent space, the mean and log-
variance produced by the encoder are used to generate the latent variable z.
This is done by sampling from a Gaussian distribution with the learned mean
and variance:
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z=p+e-o, wheree~N(0,1I)

Here, 0 = exp(0.5-log 0?) represents the standard deviation, and € is a random
noise sampled from a standard normal distribution. This process, known as the
reparameterization trick, allows gradients to be passed through the sampling
process during training.

3.2.3 Decoder

The decoder takes the sampled latent variable z and the brightness condition c as
inputs, concatenates them, and passes them through a series of fully connected
layers. The decoder aims to reconstruct the original waveform from the latent
representation. The output of the decoder is a vector of the same dimension as
the input waveform, and a tanh activation function is applied to ensure that the
reconstructed waveform has values in the range [—1,1].

Formally, the decoder reconstructs the waveform z as follows:

= fdec(za C)

where fgec represents the neural network that decodes the latent variable z
and the conditioning variable ¢ back into a waveform.

3.3 Model Training and Validation

Training the Conditional Variational Autoencoder (CVAE) involved optimizing
the model’s ability to reconstruct input waveforms and ensuring the latent space
supports smooth interpolation while adhering to the desired conditioning param-
eters. The following details the training process, including the loss function,
optimization, and hyperparameters used.

3.3.1 Loss Function

The total loss function used during training is a combination of three key com-
ponents:

e Reconstruction Loss: This is computed using the Mean Squared Error
(MSE) between the input waveform z and the reconstructed waveform z.
The reconstruction loss encourages the model to accurately reproduce the
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original waveform from the latent space and the conditioning parameters:
| N
MSE(z, &) = Zl(fﬁi — #;)°
1=

e KL Divergence Loss: This term encourages the latent space to follow
a normal distribution, allowing the model to generate new waveforms by
sampling from this distribution. The KL divergence between the learned
latent distribution ¢(z|z) and a standard normal distribution p(z) is given
by:

N
KL(q(z|2)||p(2)) = =0.5 Y (1 +1log(a7) — pf — 07)
1=1

where p and o represent the mean and variance of the latent space.

e Brightness Loss: This measures the error between the predicted bright-
ness of the reconstructed waveform and the actual brightness of the input
waveform. The brightness is computed as a scalar value for each waveform,
and the loss is calculated as:

N
1
MSE(bpreda btrue) = N E (bpredi - btruei)2
i=1

where bpreq is the predicted brightness and biye is the true brightness value.

The total loss is a weighted combination of these three components:
L =a-MSE(z,z) 4+ 8 - KL + v - MSE(bpred; btrue)

where «, (8, and v are the weights assigned to each loss term. In the final
implementation, these weights were set as follows:

a=10, B=0.1, ~=1.0

3.3.2 Training Process and Hyperparameters

The Conditional Variational Autoencoder (CVAE) model was trained using a
variety of configurations to explore how different hyperparameters and latent
dimensions affected the model’s performance. The following parameters were
explored:

¢ Waveform Input Dimension: Each waveform was represented as a vec-
tor of 600 time-domain samples.
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¢ Condition Dimension: The brightness parameter was used as the single
conditioning input.

e Latent Dimension: Different values of latent dimension (32,64, 128) were
tested to determine the optimal capacity for encoding the waveform data.

e Hidden Dimension: All configurations used a hidden dimension of 256
for the fully connected layers in both the encoder and decoder.

e Loss Weights: The relative weights for the reconstruction loss, KL diver-
gence, and brightness loss were adjusted across experiments. The brightness
loss was weighted more heavily in some configurations to improve percep-
tual accuracy in generated waveforms, with values ranging from 1.0 to 4.0.

e Optimizer: The Adam optimizer was used for training, with the parame-
ters 81 = 0.9 and {2 = 0.999.

e Learning Rate: A fixed learning rate of 1 x 1072 was used in all experi-
ments.

e Batch Size and Epochs: Each configuration was trained for 100 epochs
using a batch size of 64, ensuring sufficient coverage of the dataset.

The model was trained on single-cycle waveforms from the AKWF dataset,
and the brightness of each waveform was used as the conditioning parameter to
guide the generation process. The different configurations allowed for a compar-
ison of how varying the latent dimension and brightness weight impacted both
the reconstruction quality and the perceptual alignment with the brightness pa-
rameter.

3.3.3 Normalization of Brightness Values

As part of the brightness loss, the predicted brightness values were normalized
based on the maximum brightness in the dataset, which was set to a constant
value of 5000 for this experiment. The brightness predictions for the recon-
structed waveforms were clamped between 0.0 and 1.0 to ensure they remained
within a valid range.

3.3.4 Validation

To monitor the model’s performance during training, a validation set consisting
of 20% of the data was used. The validation loss, consisting of the same three
components (reconstruction, KL divergence, and brightness), was computed af-
ter each epoch to track overfitting. Early stopping was applied based on the
validation loss to prevent overfitting and ensure generalization.



3. METHODOLOGY 17

Additionally, qualitative assessments were performed by visually inspecting
the reconstructed and generated waveforms and conducting listening tests to
ensure that the generated waveforms aligned with their conditioning parameters.

At the end of training, the model’s ability to generate new waveforms was
tested by sampling from the latent space and conditioning on different brightness
values. These generated waveforms were compared both visually (in terms of
waveform shape) and aurally to confirm that the CVAE was successfully produc-
ing sonically meaningful waveforms aligned with the input conditions.



CHAPTER 4

Results

This chapter presents the outcomes of the experiments conducted to evaluate the
performance of the CVAE in generating sonically meaningful wavetables. The
results are organized into three sections: model performance, the characteristics
of the generated wavetables, and a detailed evaluation of the generated sounds.

4.1 Model Performance

The performance of the CVAE model was evaluated based on four primary met-
rics: the reconstruction loss (MSE), KL divergence, brightness prediction
loss, and the total loss. These metrics were used to assess how well the model
was able to learn and reconstruct waveforms, as well as the quality of the latent
space learned during training and its ability to predict brightness.

4.1.1 Training and Validation Loss

During the training process, the model’s loss functions—reconstruction loss (Mean
Squared Error), KL divergence loss, brightness prediction loss, and total loss—were
monitored for both the training and validation datasets. Figures 4.1, 4.2, 4.3, and

4.4 show the progression of these metrics over the course of training for several

different configurations.

As seen in Figures 4.1 to 4.4, the model shows strong convergence across all
metrics. The brightness loss decreases rapidly during the early steps of training,
suggesting that the model learns to predict the brightness of generated wave-
forms accurately from the start. The KL divergence stabilizes after some initial
fluctuation, indicating that the model maintains a well-formed latent space for
effective waveform generation. Both the total loss and MSE converge steadily,
confirming the model’s ability to minimize reconstruction errors over time.

18
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Brightness Loss

Showing first 10 runs
— happy-frost-46 — sweet-rain-42 = silvery-oath-2
== lilac-butterfly-42 hopeful-shadow-44
— comfy-water-48 — swift-voice-41
== earthy-totem-22 = vague-eon-35

20
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Figure 4.1: Brightness Loss over 500 steps for multiple runs of the CVAE model.
The loss converges quickly, indicating the model’s ability to align the generated
waveforms with the target brightness values.
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Figure 4.2: KL Divergence over 500 steps for multiple runs of the CVAE model.

The latent space gradually stabilizes, as indicated by the declining KLD.
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total_loss

Showing first 10 runs
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Figure 4.3: Total Loss over 500 steps for multiple runs of the CVAE model. The
convergence of the total loss demonstrates the overall learning and stabilization
of the model.
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MSE
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Figure 4.4: Mean Squared Error (MSE) over 500 steps for multiple runs of the
CVAE model. The reconstruction error converges steadily, indicating the model’s
ability to accurately reconstruct input waveforms.



CHAPTER 5

Discussion

This chapter provides an interpretation of the results presented in the previ-
ous chapter, explores the limitations of the current approach, and discusses the
broader implications of the findings for the field of wavetable synthesis and Al-
driven sound design.

5.1 Analysis of Results

The results from the CVAE model demonstrate the potential of conditional gen-
erative models in creating sonically meaningful wavetables. The ability to con-
dition the waveform generation on perceptual parameters such as brightness was
a significant strength, as reflected in both the quantitative analysis and loss con-
vergence metrics across multiple configurations.

5.1.1 Consistency Across Configurations

The training results showed a high degree of consistency across different configu-
rations, even though the configurations varied in terms of brightness weight, KL
divergence weight, and other hyperparameters. As demonstrated in Figures 4.1,
4.2, 4.3, and 4.4, the loss curves for all key metrics—including brightness pre-
diction loss, reconstruction loss (MSE), KL divergence, and total loss—followed
nearly identical trajectories across configurations.

This consistency is a positive indicator of the model’s robustness, suggesting
that the CVAE is capable of reliably learning the underlying waveform charac-
teristics regardless of variations in the loss function weights. The model’s ability
to handle different configurations with similar performance indicates that it is
flexible and stable across a range of parameter settings. This is particularly ad-
vantageous in practical applications, where exact hyperparameter tuning may
not be feasible or desirable.
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5.1.2 Impact of Brightness Weight and KL Divergence

The fact that the brightness weight () varied from 1.0 to 4.0 without significantly
affecting the final loss indicates that brightness is an easily learned feature for
the model. This suggests that the model architecture naturally captures the
brightness parameter well, even without a high weighting in the loss function.
This could be due to the inherent structure of the input data, which may lend
itself to straightforward representation of brightness-related features.

Similarly, the KL divergence loss curves indicate that the model’s latent space
stabilized consistently across different KL weights (8 = 0.1 and 8 = 0.05). This
shows that the model is well-regularized and that slight changes in the weight
of the KL divergence term do not drastically impact the learned latent space.
The latent space regularization is effective enough to prevent overfitting while
maintaining sufficient capacity for waveform diversity.

5.1.3 Evaluation of Overall Performance

The convergence of both the total loss and individual loss components (brightness
loss, MSE, and KL divergence) confirms the model’s ability to balance multiple
objectives—reconstruction accuracy, latent space regularization, and brightness
prediction. The similarity in the results across configurations suggests that the
model is not overly sensitive to changes in loss weighting, which further supports
its robustness.

However, the lack of variation between configurations could also indicate that
certain parameters, such as the brightness weight, may not need as much empha-
sis in future experiments. This opens the possibility for simplifying the model by
reducing the complexity of the loss function or adjusting other hyperparameters,
such as the latent dimension or learning rate, to explore more diverse behaviors.

Key observations include:

e The CVAE consistently generated waveforms that aligned with the de-
sired brightness while maintaining a stable latent space, as indicated by
the steady KL divergence.

e Increasing the brightness weight did not significantly alter the brightness
prediction performance, suggesting that brightness is an inherently learn-
able feature of the input waveforms.

e The model performed well across different configurations, demonstrating
that it is robust and capable of maintaining good performance regardless
of variations in loss weighting.
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These findings suggest that the CVAE could be an effective tool for wavetable
generation, as it provides reliable performance without requiring extensive hyper-
parameter tuning.

5.2 Computational Complexity

One of the strengths of the current CVAE model is its efficiency in generating
new waveforms. The model was able to generate waveforms in less than a second,
making it highly suitable for real-time sound design applications. This rapid
generation time ensures that the model can be integrated into music production
workflows without significant delays, allowing for near-instant feedback when
adjusting parameters such as brightness.

However, while the waveform generation process is fast, the training phase
still requires substantial computational resources, especially when working with
large datasets of waveforms or fine-tuning model parameters. As a result, training
the CVAE model on standard hardware may still be a limiting factor for some
users without access to high-performance computing systems. Future work could
focus on optimizing the training process, for instance, by reducing the dataset
size or leveraging more efficient model architectures, while maintaining the high
speed of waveform generation.

5.3 Limitations

Despite the promising results, several limitations of the current approach should
be acknowledged. These limitations highlight areas for future improvement and
suggest possible extensions of the work.

5.3.1 Lack of Sensitivity to Hyperparameters

While the consistency in performance across configurations is a strength, it also
suggests that the model may not be particularly sensitive to the weighting of
different loss terms. This could mean that the model is overly dependent on the
reconstruction loss (MSE) and less influenced by the brightness prediction or KL
divergence terms. Further investigation into the impact of these loss components
is necessary to ensure that the model is capturing a broad range of sonic features,
rather than focusing predominantly on waveform reconstruction.
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5.3.2 Dataset and Generalization

One of the primary limitations is the scope of the dataset used for training
the CVAE. While the dataset was curated to include a variety of single-cycle
waveforms, it may not fully capture the diversity of waveforms encountered in
real-world sound design scenarios. The model’s ability to generalize to new and
unseen waveforms, particularly those with highly complex harmonic content or
noise components, may be limited by the diversity of the training set.

5.3.3 Latent Space Exploration

While the KL divergence loss suggests that the latent space is well-regularized,
further exploration of the latent space’s structure could reveal additional insights.
Evaluating how well the model interpolates between different waveforms and
how diverse the generated sounds are would provide more information about the
richness of the learned latent space.

5.4 Implications

The findings from this research have several important implications for the future
of wavetable synthesis and the integration of Al into sound design workflows.

5.4.1 Democratizing Sound Design

One of the most significant implications of this work is the potential to democ-
ratize the sound design process. By allowing users to condition the generation of
waveforms on high-level perceptual parameters, the CVAE model removes much
of the complexity traditionally associated with creating custom wavetables. This
could open up the world of sound design to a broader audience, including hob-
byist producers who may not have the technical expertise to manually design
waveforms.

5.4.2 Expanding Creative Possibilities

The ability to smoothly interpolate between waveforms in the latent space also
presents new creative possibilities for musicians and sound designers. Producers
could potentially explore novel sounds by navigating the latent space of the model,
discovering new timbres that might not have been possible through traditional
synthesis methods. This could lead to more experimental and personalized sound
design approaches, pushing the boundaries of what is possible in digital music
production.



CHAPTER 6

Conclusion and Future Work

This chapter concludes the thesis by summarizing the key findings of the re-
search and discussing potential avenues for future work. The contributions made
through the application of a Conditional Variational Autoencoder (CVAE) for
generating sonically meaningful wavetables are highlighted, along with recom-
mendations for future improvements and extensions.

6.1 Summary of Findings

The primary objective of this thesis was to explore the use of Conditional Vari-
ational Autoencoders (CVAEs) for automating the creation of wavetables in
wavetable synthesis, conditioned on perceptually relevant sonic parameters such
as brightness. The following are the key findings from this work:

e The CVAE model successfully generated a variety of novel and musically
useful waveforms, conditioned on high-level parameters such as brightness.
The ability to condition waveform generation on user-specified values en-
abled an intuitive and controllable interface for sound design.

e Despite testing several configurations with varying weights for the bright-
ness loss, KL divergence, and reconstruction loss, the model’s performance
was robust and consistent across all configurations. This suggests that the
model architecture is flexible and well-suited for waveform generation, with
minimal sensitivity to hyperparameter adjustments.

e The CVAE’s latent space provided smooth interpolation between wave-
forms, presenting creative possibilities for sound designers to explore new
timbres by navigating the latent space. The stability and regularization of
the latent space suggest that the model can generate diverse and sonically
interesting waveforms.

e Several limitations were identified, particularly with regard to the diversity
of the training data and the relatively minimal impact of varying certain
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hyperparameters. While the model performed well overall, further refine-
ment could enhance its precision in controlling specific sound qualities and
improve its generalization to more complex or unseen waveforms.

Overall, this thesis demonstrated that Al-driven techniques, particularly the
use of CVAEs, have strong potential to enhance the creative possibilities in
wavetable synthesis, making sound design more accessible and personalized. The
model’s robustness and flexibility highlight its suitability for real-world applica-
tions in music production.

6.2 Future Work

While the CVAE model presented promising results, several areas for future re-
search and development were identified throughout the thesis. These future di-
rections are aimed at addressing the limitations of the current work and exploring
new opportunities to further enhance Al-driven sound synthesis.

¢ Expanding the Dataset: A key area for improvement involves expanding
the diversity of the training data. The current dataset, while effective,
may not fully capture the range of waveforms encountered in professional
sound design. Incorporating more complex or hybrid sounds, including
waveforms with noise components or unconventional harmonic structures,
could improve the model’s ability to generalize to a broader range of sonic
possibilities.

¢ Exploring Latent Space Dynamics: While the CVAE exhibited con-
sistent performance in learning and regularizing the latent space, further
exploration of the latent space could yield valuable insights. Future re-
search could focus on analyzing how smoothly the latent space interpolates
between waveforms and how diverse the generated outputs are. This could
help in ensuring that the latent space is not only well-regularized but also
meaningfully structured for creative sound exploration.

¢ Refining Parameter Control: Although the current model successfully
conditioned on brightness, additional sonic characteristics such as warmth,
sharpness, or harmonic richness could be incorporated to offer finer control
over the generated waveforms. By introducing multi-dimensional param-
eter spaces, the model could allow for more granular conditioning inputs,
providing users with a more comprehensive and intuitive set of controls for
sound design.

e Investigating Other Generative Models: Future work could investi-
gate the potential of combining different generative models to improve the
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diversity and quality of the generated waveforms. For instance, combin-
ing Conditional Variational Autoencoders with Generative Adversarial Net-
works (GANSs) could help generate higher-quality and more human pleasing
waveforms. Additionally, exploring the use of noise as an additional timbral
dimension using Diffusers could

e Investigating Other Generative Models: Future research could ex-
plore the combination of different generative models to further enhance the
diversity, quality, and perceptual appeal of the generated waveforms. For
example, integrating Conditional Variational Autoencoders (CVAEs) with
Generative Adversarial Networks (GANs) could leverage the strengths of
both models—using the CVAE for structured, controllable latent spaces
and the GAN to refine waveform realism and produce more musically pleas-
ing outputs. Additionally, investigating the use of Diffusion Models, which
gradually refine noise into structured outputs, could introduce noise as an
additional dimension for timbral control, enabling more sophisticated sound
shaping and texture generation. This approach could unlock novel timbral
characteristics, especially for more complex and evolving sounds.

e User Interface and Accessibility: While the CVAE demonstrates strong
technical performance, its practical application in a user-friendly environ-
ment is still an open challenge. Developing graphical user interfaces (GUIs)
or integrating the model into existing digital audio workstations (DAWs)
as plugins would make it more accessible to a wider audience. By simplify-
ing the interaction with the model, sound designers could benefit from its
capabilities without needing deep technical knowledge.

e Advanced Evaluation Techniques: Expanding the evaluation meth-
ods to include more subjective and objective metrics could provide a more
comprehensive understanding of the model’s performance. Psychoacoustic
measures, for example, could quantify how listeners perceive the quality of
the generated waveforms, while more in-depth comparisons with human-
designed wavetables could offer insights into the model’s creative potential.
Listening tests involving diverse audiences would also help validate the
model’s applicability in real-world sound design contexts.

6.3 Conclusion

In conclusion, this thesis has demonstrated that Conditional Variational Autoen-
coders (CVAEs) offer a powerful and flexible approach for automating wavetable
generation. The model’s consistent performance across configurations, combined
with its ability to generate perceptually meaningful waveforms, highlights the
potential for Al to transform sound design workflows. The CVAE enables mu-
sicians and producers to create custom wavetables without extensive technical
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expertise, potentially democratizing sound design and opening new avenues for
creative exploration.

However, the field of Al-driven sound synthesis is still evolving, and there are
many opportunities for further innovation. By expanding the training dataset,
refining parameter control, exploring new generative models, and enhancing the
user experience, future work can build on the foundations established by this
research. With continued advancements in Al, the future of sound design holds
exciting possibilities for both professional and amateur creators alike.
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