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Abstract

In this thesis, we studied the application of Physics-Informed Neural Networks
(PINNs) on the rail geometry’s prediction. Using the simulated data of train ve-
hicles as well as the prior knowledge about its dynamic system, we can effectively
detect the irregularities based on deep learning models. We first constructed a
physical model of the train vehicle by ordinary differential equations (ODEs),
focusing on wheel-rail interactions for external forces and the suspension systems
for internal forces.

We used a mass-spring-damper model as an analogue of the suspension sys-
tem, to compare the performance of PINNs against conventional neural networks.
By penalizing the deviations of predicted accelerations from the physical system,
PINNs shows higher accuracy and efficiency compared with traditional Convo-
lutional Neural Networks (CNNs). Our results also demonstrated their better
performance to train effectively under limited data volume.

Additionally, we developed a specialized PINN training algorithm tailored for
the train vehicle system, with the design of mixed loss function and loss type
switching mechanism. Implementing a 3-layer PINN on the vehicle sensor data
generated by numerical simulation, we successfully reduced the prediction error
of a traditional CNN by 14.9%, attaining a mean absolute error (MAE) of 0.377
mm for irregularity prediction. We also tuned the hyperparameters, including
physics weights, loss thresholds, and network architecture, to optimize the PINN
model’s performance.
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Chapter 1

Introduction

1.1 Background and Motivation

Rail irregularities, which refer to deviations from the nominal or designed posi-
tions of rails in both lateral and vertical directions, are critical concerns, partic-
ularly for high-speed railways (HSRs). Accurate detection of these irregularities
is crucial to repair rail deformations that exceed tolerances, ensuring both the
safety of train operations and the comfort of passengers at high speeds driving.
Traditional anomaly detection methods rely on either portable specific monitor-
ing devices or comprehensive inspection trains (CITs), which are not only costly
in terms of time and money, but could also take up operational rails or post-
pone regular train services due to different speed requirements. Additionally,
given the extensive mileage of HSRs, the limited number of measurement devices
and vehicles makes it challenging to maintain frequent detection and continuous
conservation of the rails.

A practical and effective solution to these challenges is to equip the in-service
trains with low-cost sensors, such as inertial measurement units (IMUs) or optical
monitors. These sensors can quickly and continuously gather data from railway
tracks in an economical manner, an approach often known as performance-based
track geometry (PBTG). Furthermore, enhanced with odometers and GPS sys-
tems, trains can also report precise locations of significant displacements directly
to the control center in real time.

Given the volume of data generated daily by in-service trains, employing data-
driven methods like deep learning to process onboard monitoring data presents
a viable option. Nowadays we have seen the great power deep neural networks
show in processing large scale datasets. Some research also has begun to explore
the application of machine learning in assessing track quality and rail roughness
profiles [1][2][3]. Nevertheless, there has been limited research on integrating
prior dynamic knowledge with deep learning models to enhance the accuracy of
track geometry predictions and to reduce the data demand for model training.
This gap represents the primary motivation for our research project.

1



1. Introduction 2

1.2 Literature Review

In the master thesis of Christiansen [4], a Ordinary Differential Equation (ODE)
system of a railway vehicle is developed to investigate the vehicle’s dynamic
behavior. Considering the complexity of this system, the compuatiion was im-
plemented with the help of some numerical method, such as SDIRK integrator [5]
and RSGEO contact point calculator [6]. His work also placed significant em-
phasis on the calculation of wheel penetration and the forces generated at the
wheel-rail interface, which gives us much inspiration on integrating the accelera-
tions derived from forces into our PINN model. We plan to modify his programs
for generating dynamics simulation dataset, for training and testing neural net-
works in the following work. Additionally, other research has leveraged tools like
SIMPACK and VAMPIRE for numerical simulation.

There are some other studies that apply deep learning models in rail geome-
try prediction. Plesner et al. [7] employed convolutional neural networks (CNNs)
and conformal prediction to predict track irregularities with uncertainty inter-
vals from high-fidelity sensor data of an ETR500 passenger train. In Plesner’s
master thesis [8], he also compares the CNN model with classic machine learning
models, such as decision tree, bootstrapping, and random forest, highlighting the
superior predictive capabilities and continuous monitoring potential of CNNs. He
also mentioned the mean unsigned error for railway industry requirements at 0.1
mm, and the error for state-of-the-art (SOTA) at 0.33 mm, which can be the
benchmarks for our model assessment.

Wang et al.[3] constructed a Branch Fourier Neural Operator (BFNO) model
to estimate the behavior of vehicle-track coupled system, which can successfully
handle the prediction tasks in a wide range of detection resolutions. They also
demonstrated the efficiency of the model by comparison with the conventional
CNN-GRU model. Their work gives us an inspiration that we can consider the
irregularity prediction question in a functional mapping form in the time domain,
using neural operator methods like Deep Operator Networks (DeepONet) [9],
Fourier Neural Operators[10], Convolutional Neural Operators[11], and Koopman
Neural Operators[12], etc.

Many studies have been done in applying Physics-Informed Neural Networks
(PINNs) on differential equations related fields, including system simulation,
data-driven equation exploration, and inverse problem solution [13] [14]. As a
new form of meshless method, PINNs can be easily extended to different resolu-
tions and irregular geometries without retraining the model [15], which shows its
significant characteristics in representation learning and transfer learning. PINN
models have shown their efficacy in solving inverse problems [16], even with multi-
fidelity and stochastic datasets.

Extended Physics-Informed Neural Networks (XPINNs) have facilitated the
decomposition of the time-space domain in arbitrary forms and resolutions [17],



1. Introduction 3

thereby enhancing the utilization of GPUs’ parallel computing capabilities and
improving the training efficiency. This represents a significant advancement over
Conservative PINNs (cPINNs) and worth further application or exploration in
our future work. However, it is important to note that all these PINN models
have limitations, particularly when addressing certain problems, such as abrupt
changes and chaotic systems, as well as constraints in model optimization [18] [19].
Considering that the geometry of the railway is a continuous quantity and has a
standardized description in dynamics, PINNs are applicable to our system.



Chapter 2

Dynamic Model of Railway
Vehicles

2.1 Coordinate System and Vehicle Structure

To clearly describe the motion of each component, we first set up the coordinate
system as follows: the x-axis (longitudinal direction) aligns with the direction of
train’s driving; the y-axis (lateral direction) is perpendicular to the driving direc-
tion and parallel to the sleepers; the z-axis (vertical direction) is perpendicular
to the field plane and pointing to the sky. Within this coordinate system, each
rigid body has defined rotational angles to measure its orientation relative to its
center of mass: roll angle ϕ (rotation around the x-axis), yaw angle ψ (rotation
around the z-axis), and pitch angle θ (rotation around the y-axis).

We adopt the structure and parameters from Cooperrider’s bogie [20] to
model our dynamic system, with linearity in Hooke’s Law and Damping Law.
Our research concentrates on the front part (leading section) of a train vehicle,
which includes four primary components: the leading front wheelset, leading rear
wheelset, leading bogie frame, and car body. Both the front and rear wheelsets
are connected to the bogie frame via the primary suspension system (6 springs for
each side), while the bogie frame and the car body are interconnected by the sec-
ondary suspension system (7 springs and 7 dampers). Though each component
theoretically possesses six degrees of freedom (DOF), denoted as [x, y, z, ϕ, ψ, θ],
our dynamic model in practice only considers specific DOFs: [y, z, ϕ, ψ] for both
front and rear wheelsets, [y, z, ϕ, ψ, θ] for the bogie frame, and [ϕ] for the car body.
The model also incorporates the first and second derivatives of these variables,
capturing corresponding translational or angular velocities and accelerations of
these DOFs. The coordinate system and the vehicle’s structure are depicted in
Figure 2.1 in detail.

The vehicle operates on a track where each wheelset contacts the left and
right rails. The motion of the vehicle is significantly influenced by its current
dynamic state as well as the lateral and vertical irregularities of these rails. Here,
lateral irregularity refers to deviations from the nominal y-direction position of

4
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Figure 2.1: Schematic diagram of the coordinate system and vehicle structure.

the rail, and vertical irregularity refers to deviations from the nominal z-direction
position of the rail.

2.2 Mass-Spring-Damper Model

The contact points serve as the sole source of external forces (normal forces and
creepage forces), while the suspension systems exclusively provide internal forces
(spring forces and damper forces). Therefore, investigating how the parameters
of springs and dampers in the suspension systems affect the kinetic characteristics
of the system’s components is crucial. To this end, we analyze a simple damped
harmonic oscillator consisting of a single spring and a single damper connecting
a ball to a rail. This basic system is commonly referred to as the mass-spring-
damper (MSD) model.

The MSD model is presumed to be positioned on a completely smooth ground
i.e. not considering frictions. The small ball is enclosed within a completely
smooth pipe, which is always kept perpendicular to the constant driving speed,
ν, along the x-axis. Within the pipe, a spring and a damper are installed, each
connecting one end to the ball and the other end to the rail via a smooth loop. The
schematic diagram of this MSD model is depicted in Figure 2.2. Let m represent
the mass of the ball, k the spring constant, c the damping coefficient, and u
the position of the ball. In the absence of rail irregularity (i.e., when the rail is
perfectly straight), the motion of the ball can be modeled by the following second-
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gama
Irregularity (x)

Figure 2.2: Schematic diagram of the mass-spring-damper model. The blue curve
represents the geometry of rail (lateral irregularity), and the green curve repre-
sents the motion trajectory of green ball.

order Ordinary Differential Equation (ODE) derived from Newton’s Second Law:

m
d2u

dt2
+ c

du

dt
+ ku = 0 (2.1)

After introducing the driving speed ν, and the rail’s lateral irregularity ϕ(x), the
original ODE is adjusted to:

m
d2[u(νt)− ϕ(νt)]

dt2
+ c

d[u(νt)− ϕ(νt)]
dt

+ k[u(νt)− ϕ(νt)] = 0 (2.2)

The dynamic characteristics of the system are significantly influenced by the
relative magnitudes of the spring and damper coefficients. This relationship is
quantified by the damping ratio, which has three ranges of damping conditions
(underdamping, critical damping, and overdamping):

ζ =
c

c c
=

c

2
√
mk


< 1 Underdamping
= 1 Critical damping
> 1 Overdamping

(2.3)

where cc = 2
√
mk denotes the critical damping coefficient. With the help of ODE

solver and linear interpolation, we conducted numerical simulations of the ball’s
trajectory utilizing the real data of left rail’s lateral irregularity. The outcomes
across three different damping conditions are outlined as follows: Figure 2.3
illustrates the underdamping condition with a ratio of 0.0025, where we can
observe significant oscillations in the ball’s motion; Figure 2.4 illustrates the
critical damping condition with a ratio of 1, where ball’s trajectory closely aligns
with the rail geometry, as the system quickly returns to its equilibrium state in a
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Figure 2.3: Underdamping ζ = 0.025. Blue curve: rail’s lateral irregularity.
Green curve: ball’s movement trajectory.

Figure 2.4: Critical damping ζ = 1. Blue curve: rail’s lateral irregularity. Green
curve: ball’s movement trajectory.

minimal amount of time.; Figure 2.5 illustrates the overdamping condition with
a ratio of 5, where the ball’s trajectory loses much of the geometric information
from the rail, because the high damping coefficient significantly slows its return
to the equilibrium state.

We apply CNNs and PINNs on this MSD model to verify their prediction
performance in predicting rail irregularities in section 4.2.

2.3 Wheel-Rail Interaction on the Contact point

The most challenging aspect of calculating the normal and friction forces at
the contact point is the nonlinear relationship among the deviation position,
rotation angle, and penetration depth, which arises directly from the irregular
shape and material properties of both the rails and wheels. Calculating the
rail-wheel interaction at the contact patches is crucial for updating the external
forces.
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Figure 2.5: Overdamping ζ = 5. Blue curve: rail’s lateral irregularity. Green
curve: ball’s movement trajectory.

2.3.1 Rail Profile

Our model utilizes the UIC60 rail profile, which consists of arcs with several radii
(300 mm, 80 mm, and 13 mm). The cross-sectional view of the rail surface and its
corresponding curvature are shown in Figure 2.6. Each half of the profile is made
up of three circular arcs, with the outermost section forming a steep inclined
plane with slant angle 87.14°. Additionally, we incorporate actual lateral and
vertical irregularities data to represent the 3D shape of the rail, as illustrated in
Figure 2.7.

The roll angle of the wheelset influences the distance between the contact
points on the left and right rails, as shown in Figure 2.8. As the roll angle
increases, the distance decreases from the nominal value of 1500 mm, stabilizing
around 1464 mm when the roll angle exceeds 0.5°. This underscores a factor
contributing to the contact area’s nonlinearity: even a slight deviation from the
wheelset’s zero-roll state significantly changes the positions of contact points.

2.3.2 Wheel Profile

In this project, we use the DSB97-1 profile as the surface shape of the four
wheels we are considering. The tread and flange (blue line in Figure 2.9) of a
railway wheel form the area where it contacts the track. When the wheelset’s roll
angle is small, the contact point lies on the tread; as the roll angle increases, the
contact point shifts to the flange. The flange plays a critical role in maintaining
the balance of the wheelset and preventing derailment, since it provide sufficient
centripetal force during train turning (track cant α ̸= 0 and turning radius R ̸=
∞). It is also the primary cause of the nonlinearity between the contact point
position, wheelset roll angle, and penetration depth — which makes analytical
solutions for these relationships nearly impossible. The 3D surface profile of the
wheel is displayed in Figure 2.10. The positions of the contact points on the
wheel have a nonlinear relationship with the wheelset’s roll angle (Fig 2.11).
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Figure 2.6: Cross-sectional view of the rail surface. Blue curve: rail shape. Red
curve: curvature.

Figure 2.7: 3D representation of the rail surface, including lateral and vertical
irregularities. The contour lines and color bar indicate the vertical height.
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Figure 2.8: Contact point distance under different wheelset roll angle.

Figure 2.9: Profile of the right wheel. The blue area represents the effective
contact region, while the red point indicates the nominal wheel-rail contact point
in a static state and zero irregularities.
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Figure 2.10: The 3D shape of wheel surface.

Figure 2.11: Wheelset roll angle at different contact point positions on the left
and right wheels.
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Figure 2.12: The relationship between normal force and wheelset roll angle.

2.3.3 Penetration Depths and Contact Point Forces

Based on the previous work by Christiansen on contact points [4], the normal
force is proportional to the penetration depth raised to the power of 1.5:

N ∝ p
3
2 (2.4)

Using the initial penetration depth p0 and normal force N0 values calculated from
RSGEO [6], we can express the normal force as:

N = N0(1 +
∆p

p0
)
3
2 (2.5)

By integrating the previously mentioned wheel and rail profiles, the normal
force can be calculated for different wheelset roll angles with some simplifications
on the wheelset yawing state. We can notice that there is a mutation point
around 1.15°.

2.4 Differential Equations of Vehicle Dynamics

The wheelset experiences various forces, including normal force, creepage force,
centrifugal force, and gravitational force. Normal force Nijk and creepage force
Fijk result from penetration at the rail-wheel contact point. Here, subscript
i ∈ {l, r} specifies the left or right rail, subscript j ∈ {x, y, z} specifies the
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direction along the three axes, and subscript k ∈ {1, 2} specifies the front or
rear wheelset. The bogie frame is subjected to centrifugal force and gravitational
force, alongside forces from the springs and dampers, because of its links to both
the primary and secondary suspension systems.

Table 2.1: Definition of the variables in ODEs
Variable Description

q1 Lateral position of front wheelset
q2 Lateral linear velocity of front wheelset
q3 Yaw angle of front wheelset
q4 Yaw angular velocity of front wheelset
q5 Lateral position of rear wheelset
q6 Lateral linear velocity of rear wheelset
q7 Yaw angle of rear wheelset
q8 Yaw angular velocity of rear wheelset
q9 Lateral position of bogie frame
q10 Lateral linear velocity of bogie frame
q11 Yaw angle of bogie frame
q12 Yaw angular velocity of bogie frame
q13 Roll angle of bogie frame
q14 Roll angular velocity of bogie frame
q15 Roll angle of car body
q16 Roll angular velocity of car body
q17 Vertical position of front wheelset
q18 Vertical linear velocity of front wheelset
q19 Vertical position of rear wheelset
q20 Vertical linear velocity of rear wheelset
q21 Roll angle of front wheelset
q22 Roll angular velocity of front wheelset
q23 Roll angle of rear wheelset
q24 Roll angular velocity of rear wheelset
q25 Vertical position of bogie frame
q26 Vertical linear velocity of bogie frame
q27 Pitch angle of bogie frame
q28 Pitch angular velocity of bogie frame
q29 Rolling constraint of front wheelset
q30 Rolling constraint of rear wheelset
q31 Driving distance of the vehicle

Utilizing the Newton-Euler equations, we can characterize the translational
motion of a rigid body using Newton’s second law and its rotational motion using
Euler’s formula. Consequently, the dynamic system of the vehicle is depicted by
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a set of second-order differential equations, which describe the movement of each
component and the modifications of two rolling constraints. To streamline the
calculations and decrease the model’s complexity, we have also incorporated the
velocities and angular velocities of each component, approximately doubling the
number of variables (Table 2.1). Based on previous work [4] [8], the ODEs for
these state variables are presented below, where we convert the 2nd-order ODEs
into 1st-order ODEs:

d

dt
qi = qi+1, i ∈ {1, 3, . . . , 27} (2.6)

mw
d

dt
q2 = Fly1 + Fry1 +Nly1 +Nry1

− 2k1(q1 − q9 − bq11 − h1q13)−mxgθ +mw
V 2

R
(2.7)

Iwy
d

dt
q4 = ar1[Frx1 + (Fry1 +Nry1)q3]− al1[Flx1 + (Fly1 +Nly1)q3]

− 2k2d
2
1(q3 − q11) (2.8)

mw
d

dt
q6 = Fly2 + Fry2 +Nly2 +Nry2

− 2k1(q5 − q9 − bq11 − h1q13)−mxgθ +mw
V 2

R
(2.9)

Iwx
d

dt
q8 = ar2[Frx2 + (Fry2 +Nry2)q7]− al2[Flx2 + (Fly2 +Nly2)q7]

− 2k2d
2
1(q7 − q11) (2.10)

mb
d

dt
q10 = 2k1(q1 + q5− 2q9 − 2h1q13) + 2k4(h2q13 + h3q15 − q9)

+ 2D2(h2q14 + h3q16 − q10)− (
1

2
mcb +mb)gθ +mb

V 2

R
(2.11)

Ibz
d

dt
q12 = 2d21k2(q3 + q7 − 2q11)− k6q11 −D6q12

+ 2bk1(q1 − q5 − 2bq11) (2.12)

Ibx
d

dt
q14 = 2k1h1(q1 + q5 − 2q9 − 2h1q13) + 2k4h2(q9 − h2q13 − h3q15)

+ 2D2h2(q10 − h2q14 − h3q16)− 2d22[k5(q13 − q15)
+D1(q14 − q16)]− 2d21k3(2q13 − q21 − q23) (2.13)
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Icx
d

dt
q16 = −2d22[k5(q15 − q13) +D1(q16 − q14)] (2.14)

mw
d

dt
q18 = Flz1 + Frz1 +Nlz1 +Nrz1

+ 2k3(q25 − q17)−mxg −mwθ
V 2

R
(2.15)

mw
d

dt
q20 = Flz2 + Frz2 +Nlz2 +Nrz2

+ 2k3(q25 − q19)−mxg −mwθ
V 2

R
(2.16)

Iwx
d

dt
q22 = −ar1[Frz1 +Nrz1 − (Fry1 +Nry1)q21]

+ al1[Flz1 +Nlz1 − (Fly1 +Nly1)q21]− 2k3d
2
1(q21 − q13) (2.17)

Iwx
d

dt
q24 = −ar2[Frz2 +Nrz2 − (Fry2 +Nry2)q23]

+ al2[Flz2 +Nlz2 − (Fly2 +Nly2)q23]− 2k3d
2
1(q23 − q13) (2.18)

mb
d

dt
q26 = −2k3(2q25 − q17 − q19)− 2k5q25 − 2D1q26 −mbθ

V 2

R
(2.19)

Iby
d

dt
q28 = −2bk3(2bq27 + q17 − q19) (2.20)

Iwy
d

dt
q29 = −rr1(Frx1 + Fry1q3 +Nry1q3)− rl1(Flx1 + Fly1q3 +Nly1q3)

− 2d21k3q3q13 (2.21)

Iwy
d

dt
q30 = −rr2(Frx2 + Fry2q7 +Nry2q7)− rl2(Flx2 + Fly2q7 +Nly2q7)

− 2d21k3q7q13 (2.22)
d

dt
q31 = V (2.23)

where m• represents the mass, and I• denotes the moment of inertia. The static
load of mass on each wheelset, mx = 1

4mc +
1
2mb + mw, is calculated by con-

sidering the masses of the car body (mc), bogie frame (mb), and wheelset (mw)
respectively. The driving velocity of the train, V = V (t), can vary over time in
general settings. However, for our model and experiments, we only consider the
vehicle’s movement at several constant speeds, i.e., V = V̄ . The radius of the rail
curve at present, R = R(q31) = R(V̄ t), which is also the turning radius of the
train, is assumed to be infinite to simplify our computations, implying that the
nominal centerline of the rails is a straight line, and therefore, the corresponding
cant angle α is always zero. The parameters aik and rik represent the lateral and
vertical distances from the wheelset’s mass center to the contact points, respec-
tively. The values and meanings of other parameters in this ODE system are
detailed in Table B.1.
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2.5 Numerical Simulation of Vehicle Dynamics

In this project, we utilize the simulation code authored by Christiansen [4] in
C++ to generate a comprehensive dataset for training, validating, and testing
neural networks. We have further modified this code in Python to include both a
point-to-point and a tensor-to-tensor version, which facilitate the calculation of
physics loss in Physics-Informed Neural Networks (PINNs) based on the parallel
computing on GPUs.

The structure of the numerical simulation program in C++ is depicted in
Figure 2.13. Initially, the program generates 160 km of lateral and vertical ir-
regularities using Vector Auto-Regression (VAR). It then loads this irregularity
data along with rail profile data computed by the RSGEO program [6]. Upon
initializing the system state, the algorithm proceeds through loops of numeri-
cal integration of the state variables until the target driving distance is reached.
Each time step within these loops consists of two main tasks: updating penetra-
tion depths and solving the ODEs using the Runge-Kutta method (RK56). It is
important to note that the adjustment of contact forces (normal forces and creep-
age forces) through penetration updates is necessary. Because Nijk and Fijk only
appear as exogenous variables in the above ODEs, rather than as endogenous
state variables.

Let h denote the time step and V̄ the constant driving speed. The recording
and detection resolution, γ, can be computed as follows:

γ = h · V̄ (2.24)

In this thesis, we consider three driving speeds (120 km/h, 160 km/h, and 200
km/h) and assume a constant resolution of 0.16 m for the convenience of com-
parison across different scenarios. Accordingly, we can calculate their respective
time step values, as detailed in Table 2.2.

Table 2.2: Time step values under constant driving speeds.
Driving speed [km/h] Time step [s] Resolution [m]

120 0.00480 0.16
160 0.00360 0.16
200 0.00288 0.16

2.5.1 Penetration Depths and Contact Forces Update

The motivation of updating penetration depths is to recalculate normal forces
Nijk and creepage forces Fijk for their subsequent application in solving the ODEs
at each time step of integration loop. This process begins by determining the
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Gradients of system state variables

rkqs()
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Initial system state

Figure 2.13: Flowchart of the Numerical Simulation Program. Arrows indicate
the call relationships between functions, with numbers on the arrows showing the
sequence of execution.
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Figure 2.14: Algorithm of forces update and acceleration calculation.

current driven distance and calculating the displacements of the left and right rails
using linear interpolation based on the irregularity table. Subsequently, linear
interpolation is applied to the 13 contact point parameters listed in the RSGEO
table, including the semi-axes of contact patch ellipses, the actual rolling radii of
the wheels, and the coordinates of the contact points, etc. Adjustments to the
normal forces on both sides are then made using Equation 2.5. The longitudinal,
lateral, and yaw-direction creepages are computed based on the Shen-Hedrick-
Elkins (SHE) theory [21], and then longitudinal friction fx and lateral friction fy
are calculated based on updated creepage data.

At this point, all updates to the external forces have been completed. Next,
we only need to update the internal forces of the springs and dampers based
on the relative positions of the components within the primary and secondary
suspension systems.

Figure 2.14 illustrates the force update algorithm in our acceleration approx-
imation program specially designed for the tensor data in physics loss functions.

2.5.2 Explicit Runge-Kutta Method in Each Time Step

The aforementioned ODEs can be expressed again in the form of vectors suc-
cinctly as:

d

dt
q⃗ =

d

dt
(q1, · · · , q31)⊤ = (f1(q⃗, t), · · · , f31(q⃗, t))⊤ = f⃗(q⃗, t) (2.25)

Here, q⃗ represents the system state vector, and f⃗(•) denotes the vector of func-
tions on all right-hand-sides of the ODEs. Using the state vector q⃗n obtained



2. Dynamic Model of Railway Vehicles 19

from the previous time step, we employ the explicit 5th-order-6th-order Runge-
Kutta method (RK56) to compute the state q⃗n+1 for the current iteration. This
method is a numerical integration technique of order O(h5) with an error esti-
mator of order O(h6), which adaptively adjusts the integration step size h based
on the discrepancy between the 5th-order and 6th-order approximations:

q⃗
(5)
n+1 = q⃗n + h

s∑
i=1

b
(5)
i k⃗i (2.26)

q⃗
(6)
n+1 = q⃗n + h

s∑
i=1

b
(6)
i k⃗i (2.27)

where k⃗i, i ∈ {1, · · · , s} represents the slope vectors (or called intermediate
stages) estimated at various points on the right-hand-side vector function f⃗(•),
within a single time step. If the error ||q⃗(5)n+1 − q⃗

(6)
n+1|| is too large, the algorithm

decreases the step size h, and vise versa.

This method is analogous to the Runge–Kutta–Fehlberg method (RK45) [22],
automatically keeping the trade-off between computational efficiency and ap-
proximation accuracy. Compared to RK45, RK56 theoretically achieves higher
solution precision but at a cost of higher computational complexity.



Chapter 3

The Theory of Deep Learning
and Physics-Informed Neural

Networks

3.1 The Architecture of Multi-Layer Perceptrons

The Multi-Layer Perceptron (MLP), also known as a Feedforward Neural Net-
work (FNN), consists of multiple fully-connected neuron layers. There are three
types of layers in this architecture: input layers, hidden layers, and output lay-
ers. Every neuron in a hidden layer is linked to all neurons in the preceding
and following layers, making the information spread smoothly throughout the
network. Every hidden layer implements an affine transformation followed by an
activation function, whereas the output layer typically involves only the affine
transformation. The operations of an MLP can be described mathematically as:

h(0) = Inputs (3.1)

h(i) = σ(W (i)h(i−1) + b(i)), i ∈ {1, · · · , L} (3.2)

h(L+1) =W (L+1)h(L) + b(L+1) = Outputs (3.3)

Here L denotes the number of hidden layers, h(i) the output of each layer, and σ(·)
the activation function. The h(0) is the input layer, primarily for data reception
and not for parameter learning. The h(L) is the output layer, which ultimately
produces the network’s prediction. The intervening L− 1 layers, termed hidden
layers, contain trainable weights and biases, which can be expressed by weight
matrix W (i) and bias vector b(i) as a whole. The activation functions within these
layers introduce non-linearity, enabling the MLP to learn complex functional
relationships. Figure 3.1 depicts a simple two-hidden-layer MLP.

The fitting capability of MLPs is proved by the Universal Approximation
Theorem (UAT) [23] [24]. It sates that a MLP model is able to fit any continuous
function in the Euclidean space, as long as it has enough layers and neurons.

20
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Figure 3.1: Diagram of a 2-layer MLP, featuring two hidden layers and one output
layer.
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3.2 The Architecture of Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an architecture specifically tailored to
process matrix or tensor-structured data, such as images, videos, and audio. A
well-known implementation, AlexNet [25], demonstrated the exceptional accuracy
of CNNs in image recognition and highlighted the significance of network depth
in enhancing model performance. Each layer in a CNN includes a convolution
operation and an activation function, and occasionally, a pooling operation. This
layered convolutional structure enables the network to extract different levels of
features from the input data. As the convolution kernels are learned automati-
cally, explicit inversion is unnecessary. In this case, convolution is equivalent to
cross-correlation operation:

Yi,j =

⌊k/2⌋∑
p=−⌊k/2⌋

⌊k/2⌋∑
q=−⌊k/2⌋

Xi+p,j+qKp,q (3.4)

where K is the convolutional kernel, X is the input matrix, and Y is the output
matrix.

For this project, we focus on the One-Dimensional CNN (1D-CNN), where
convolution occurs solely along one dimension, such as the time dimension in
time-series datasets. The above operation now can be expressed as

Yi =

⌊k/2⌋∑
p=−⌊k/2⌋

Xi+pKp (3.5)

We do not incorporate pooling for undersampling in this project because our
target is to achieve a mapping for irregularity prediction at the same position as
the input sensor data.

Compared with MLP, CNN generally has less parameters to consider, which
makes its training faster. We applied the CNN model on the mass-spring-damper
system to predict the rail geometry. Figure 3.2 and Figure 3.3 show the com-
parison between CNN and baseline models, under different damping ratios and
moving speeds respectively.

3.3 The Training of Neural Networks

Training neural networks involves three critical processes: forward-propagation,
back-propagation [26][27], and parameter updates. Initially, the input data tra-
verse the entire network to generate prediction values. These predictions are
subsequently used to compute the gradients (partial derivatives) of the loss func-
tion with respect to all learnable parameters of the network. Following this, the
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Figure 3.2: Comparison of CNN and baseline models under different damping
ratios.

Figure 3.3: Comparison of CNN and baseline models under different moving
speeds.
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parameters (weights and biases) are adjusted in specific patterns based on these
gradients and according to chosen optimization strategies to minimize the loss
function. Commonly used optimizers include Stochastic Gradient Descent (SGD)
and Adaptive Moment Estimation (Adam)[28].

We also implemented an early stopping mechanism during the network’s train-
ing phase to prevent overfitting and save training time, the pseudocode for which
is detailed in Algorithm 1.

3.4 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) integrate neural network architec-
tures with the principles of physics, as described in the foundational work [29].
This approach incorporates a regularization term—referred to as physics loss—into
the original loss function. This term quantifies the deviation of predictions from
governing differential equations (ODEs or PDEs), so as to encourage the network
to learn prior physical knowledge about the system. Consequently, PINNs are
also known as Theory-Training Deep Neural Networks (TTNs) [30].

The loss function of a PINN is given by:

L = Ldata + λ⃗physics · L⃗physics (3.6)

where Ldata is the same data loss as in conventional deep learning models, L⃗physics

is the vector of different types of physics loss (such as observation points residu-
als, initial conditions, or boundary conditions), and λ⃗physics is the corresponding
weight vector for the physics loss. Data loss is often defined as the mean square
error (MSE) between the network’s predictions and the target values:

Ldata =
1

N

N∑
i=1

||ŷi − yi||2 (3.7)

Here, N denotes the number of samples. And L⃗physics is defined as the MSE
vector of deviations about some terms DEi(x, y) of the differential equation sets
(e.g. the squares of ODEs’ or PDEs’ left-hand-side values when keeping all right-
hand-side values being 0):

Lphysics,j =
1

M

M∑
i=1

||D̂Ej(xi, ŷi)−DEj(xi, yi)||2 (3.8)

Here M is the count of terms in the differential equations considered when cal-
culating physics loss. Note that although MSE is used to measure prediction
errors during training, the network’s fitting performance on validation and test-
ing phases is evaluated using mean absolute error (MAE).
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Algorithm 1 Neural Network Training with Early Stopping
1: Initialize neural network model and datasets
2: Set learning rate, batch size, number of epochs, patience, saving gap
3: Initialize optimizer and scheduler
4: best_val_mae←∞, patience_counter ← 0, saving_counter ← 0
5: for epoch in max_epochs do
6: Set to training mode
7: for each batch in training dataset do
8: Forward-propagation to compute prediction
9: Compute MSE on the batch

10: Loss Back-propagation by automatic differentiation (autograd)
11: Update network’s parameters using optimizer
12: Update optimizer’s learning rate using scheduler
13: end for
14: Set to evaluation mode
15: val_mae_sum← 0
16: for each batch in validation dataset do
17: Forward-propagation to compute prediction
18: Compute MAE on the batch and add to val_mae_sum
19: end for
20: val_mae← val_mae_sum/num_validation_batches
21: saving_counter ← saving_counter + 1
22: if val_mae < best_val_mae then
23: best_val_mae← val_mae
24: patience_counter ← 0
25: if saving_counter > saving_gap then
26: Save network parameters
27: saving_counter ← 0
28: end if
29: else
30: patience_counter ← patience_counter + 1
31: if patience_counter ≥ patience then
32: Early stopping triggered. Break training loop.
33: end if
34: end if
35: end for
36: Load the last saved parameters as the best model
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The architecture typically includes two simultaneous applications of the net-
work’s outputs to calculate total loss, which imposes constraints from both data
and physics perspectives. By incorporating prior information into the neural net-
work, PINNs can narrow down the feasible domain of inverse problem’s solutions,
thus thus improving the accuracy of predictions. With adequate prior knowledge
and accurate modeling of the system primarily through differential equations, it
is possible to achieve good model performance even with limited training sam-
ples. Moreover, as a non-grid method, PINNs can more easily manage complex
geometries or high-dimensional problems.

However, there are also some difficulties and disadvantages when using PINNs.
For example, the performance of PINNs depends on an exact understanding of
the physical system, particularly in the scenarios of limited data volume. If the
physical model we construct not conforms well with the real-world system, then
there will be much misleading for the neural networks’ learning. In addition,
keeping a balance between data loss and physics loss often requires many exper-
iments to optimize λ⃗physics, as bad values can easily make the model converge to
local optimum. Sometimes solving this problem even needs automatic adjustment
of loss weights or switching of loss modes.



Chapter 4

PINNs for Solving Inverse
Problems

4.1 Inverse Problem for Irregularities Prediction

In our project, the inverse problem is defined as predicting the values of irregular-
ities from dynamic data collected by various sensors on the train, denoted by the
inverse process of ODEs simulation, H−1(•). There are two primary types of pre-
diction for this task. The first is the point-to-point methods, where sensor data
from a specific time point is used to predict irregularities at that exact moment.
e.g. the MLP model where we input a sensor vector and out put an irregularity
vector. Assuming there are nsens sensors on the vehicle and nirr irregularities to
predict, the point-to-point method can be mathematically represented as a map-
ping Rnsens → Rnirr , irrespective of the specific fitting models or neural networks
used:

Irregularities(xi) = H−1(Sensors(xi)) (4.1)

The second type of prediction method, known as the segment-to-segment
approaches, utilize a segment of time-series sensor data to produce outputs that
correspond to irregularities at the same or approximately the same locations. e.g.
the CNN model where we input a sensor matrix and output an irregularity matrix.
This relationship can be loosely defined as a mapping RTseg×nsens → RTseg×nirr :

[Irregularities(xk)]ik=i−s = H−1([Sensors(xk)]ik=i−s) (4.2)

where Tseg represents the number of time steps in each time-series segment. The
comparative analysis of the point-to-point and segment-to-segment methods is
illustrated in the following Figure 4.1.

27
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Bgs

Bog
Figure 4.1: The comparison between point-to-point and segment-to-segment
methods.

4.2 Testing PINNs on the Mass-Spring-Damper Sys-
tem

To preliminarily assess the applicability of Physics-Informed Neural Networks
(PINNs) to inverse problems, we employed a simple physics-informed CNN to
predict the lateral irregularities of a rail in the previously mentioned mass-spring-
damper system under the critical damping condition ( section 2.2). The input to
the PINN is a two-dimensional vector consisting of the lateral position and lateral
velocity of the ball measured by sensors, while the output is a scalar representing
the rail’s lateral irregularity we wish to predict.

Through our various experiments, we found that even a 2-layer or 3-layer
CNN could achieve very promising predictive performance. The 3-layer CNN
architecture we ultimately selected is illustrated in Figure 4.2. The kernel sizes
for each layer are [3, 11, 61], and the number of kernels for each layer are [28,
8, 32], with all strides being 1 and without pooling operations. We utilized the
Rectified Linear Unit (ReLU) as the activation function across all three layers.
The optimizer we use is Adam.

As depicted in the algorithm flowchart (Figure 4.3), the position and velocity
data are first input into the CNN to calculate the predicted irregularity. This
prediction is then used to compute the mean squared error (MSE) with the tar-
get irregularity. Simultaneously, the predicted irregularity is fed into the ODE
system along with the input-side vector and other dynamic parameters. Lever-
aging our prior knowledge of this ODE model, we can readily predict the lateral
acceleration. By comparing this predicted acceleration with actual acceleration
data, we calculate the physics loss. The final loss, which is a weighted sum of
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Figure 4.2: Architecture of the Physics-Informed CNN.

data loss and physics loss, is computed as follows:

L = ∥u− z∥Γ + λ · ∥f∥Ω

=
1

nΓ

∑
i

∥NN(xi)− Irregularity(xi)∥22

+
λ

nΩ

∑
j

∥F (H
−1(uj , vj), uj , vj)

m
− aj∥22 (4.3)

where Γ and Ω are the observation domains for data loss and physics loss respec-
tively, and nΓ and nΩ are the number of observation samples on them. NN(•)
represent the forward-propagation of the CNN. Function F (•) denotes the prior
knowledge we have to calculate the ball’s external forces from its velocity, accel-
eration, and current rail irregularity. And L is the final loss that we calculate
the gradient in compuation graph and used for back-propagation for the 3-layer
CNN.

To demonstrate the high prediction accuracy and low data requirement of
PINNs, we compared the performance of four models: a CNN trained with all
samples, a CNN trained with half the samples, a PINN trained with all samples,
and a PINN trained with half the samples. Except for the loss functions and the
usage volume of training data, all other hyperparameters were kept the same.
The predictions of lateral irregularity by these models are shown in Figure 4.4.

From the mean absolute error (MAE) comparison in Figure 4.5, it is evident
that prediction errors have been significantly reduced for both 50% and 100%
data usage scenarios. Remarkably, the performance of the PINN trained with
50% of the data even slightly surpasses that of the conventional CNN trained
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Figure 4.3: Flowchart of PINN’s Training Process.

Figure 4.4: Predictions of Lateral Irregularity by CNNs and PINNs.
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Figure 4.5: Prediction Errors of CNN and PINN on Test Set.

with 100% of the data by approximately 0.5 mm. Furthermore, the loss func-
tion curves indicates that after 1000 training epochs, the validation set MAE
of the PINN with 100% data usage quickly decreases to approximately 2.5 mm,
whereas the other three models only achieve around 7.5 mm. Additionally, the
PINN model utilizing 50% of the data also showcases its slightly higher learn-
ing efficiency after 1500 epochs, in comparison to the other two CNN models.
Consequently, we can conclude that under a good alignment between dynamic
system’s training data and prior knowledge of its differential equations, PINNs
not only achieve higher generalization capabilities with fewer training samples,
but also demonstrate faster convergence of loss compared to conventional CNNs.

4.3 Dataset Generation and Separation

We utilized MATLAB and C++ programs [8] [4] to generate track data and
vehicle dynamics data, respectively. Numerical simulations were implemented
at three driving speeds: 120 km/h, 160 km/h, and 200 km/h. For each speed,
50 random seeds were used to generate rail irregularities based on vector auto-
regression. The length of each railway is 152 km. So theoretically there should be
50 × 152 = 7600 km length of vehicle dynamics data. However, not all random
seeds yield valid results; some lead to scenarios where the train would derail
during simulations. Additionally, we discarded the first 2 km of data from each
simulation to eliminate transient state effects before the system reached a steady
state. Consequently, the amount of usable data for each speed we consider ranges
from approximately 2000 km to 3000 km.



4. PINNs for Solving Inverse Problems 32

Figure 4.6: Fast Fourier Transform of force data on the rear wheelset.

The segment length is set at 500 meters to ensure coverage of all rail ge-
ometry wavelength domains ranging from 3 m to 200 m, as discussed in the
literature [8] [7]. Table 4.1 presents the varying ranges of geometric wavelengths
and measurement frequencies associated with different driving speeds. Specif-
ically, D1, D2, and D3 correspond to high-frequency, medium-frequency, and
low-frequency geometry information, respectively. Our Fast Fourier Transform
(FFT) analysis of the forces on rear wheelset (Figure 4.6) further highlights this
information across various frequency bands.

Table 4.1: Wavelength ranges of rail geometry.
Range name Wavelength [m] f120kmh [Hz] f160kmh [Hz] f200kmh [Hz]

D1 3 - 25 1.33 - 11.11 1.78 - 14.81 2.22 - 18.52
D2 25 - 70 0.48 - 1.33 0.63 - 1.78 0.79 - 2.22
D3 70 - 200 0.17 - 0.48 0.22 - 0.63 0.28 - 0.79

Each simulation dataset contains 47 columns, which include metrics such as
distance driven, integration data, state variables, and irregularities. The column
names are detailed in the Appendix.

4.4 Validity of Acceleration Estimation and Physics
Loss Calculation

Similar to the application of PINNs to the mass-spring-damper system, we utilize
both translational and angular accelerations as criterion variables to quantify
physical deviations and compute the corresponding physics losses. Although we
could replicate the acceleration computation method used in the original C++
simulation code, doing so would considerably slow down the training due to the



4. PINNs for Solving Inverse Problems 33

high computational complexity.

Actually, in our previous numerical simulation work, calculating a complete
time-series of dynamic states for 152 km typically required over 10 hours on an
Intel Xeon E5-2690 CPU. This slow computation is attributed to several fac-
tors: First, the accuracy of the numerical simulation depends heavily on frequent
updates of parameters such as contact patch semi-axes and penetration depths.
Second, simulating vehicle kinematics is mainly a serial computing task because
current state variables depend on those from the previous time step as well as
current rail irregularities, which needs to be calculated step by step, making
it challenging to divide the task for parallel processing across multiple cores or
CPUs. Our experiments with multi-core processors and increased RAM confirm
that merely enhancing hardware capabilities does little to accelerate the dynam-
ics simulation. A third contributing factor to the slow simulation speed may be
the adaptive step size adjustment feature of the Runge-Kutta method (RK56).
When estimations from 5th and 6th order RK calculations diverge significantly,
the algorithm automatically reduces the step size to maintain accuracy, which,
while preserving precision, consumes considerable computation time and mini-
mally advances the time period t, thus reducing overall computational efficiency.

Consequently, it is crucial and beneficial to modify and simplify the accelera-
tion computation logic within the physics loss calculation component of PINNs’
training to avoid extremely slow training processes across thousands of train-
ing epochs and mini-batch computations. We firstly streamlined the state up-
date process in the serial computing mode of acceleration computation and ad-
justed variable processing to better suit neural network training. We replaced
the Runge-Kutta method with a fixed-step differential representation, because in
neural networks’ training phase, the real state variables at each step are known;
thus, errors can only arise from the network’s irregularity predictions, as well as
the computation in current time step using the completely precise data of last
time step’s system state and current irregularities. The modified acceleration
calculation algorithm we wrote in Python aligns very well with accelerations gen-
erated by the original numerical simulation algorithm in C++, while significantly
reducing computation time. Figures 4.7 and 4.8 show comparisons of lateral and
vertical accelerations on the front wheelset between the original simulation in
C++ and our modified calculations in Python.
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Figure 4.7: Comparison of Lateral Accelerations between the Original and Mod-
ified Calculations.

Figure 4.8: Comparison of Vertical Accelerations between the Original and Mod-
ified Calculations.

To make the best use of the capabilities of PyTorch’s autograd for gradient
calculation, we improved our code to be compatible with PyTorch tensor opera-
tions, which can further enhance model’s training efficiency.
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The total loss is calculated as:

L = Ldata + λlateral · Llateral + λvertical · Lvertical (4.4)

where Llateral is the physical loss of wheelsets’ lateral accelerations, and Lvertical

is the physical loss of wheelsets’ vertical accelerations.

Note that physics loss is used only during the training phase, and the input of
state variables is obtained precisely from system’s numerical simulation. In the
validation and testing phases, forward-propagation is implemented in the identi-
cal way as conventional methods, i.e., domain knowledge only influences model’s
training through the design of loss function, but does not directly participate in
the evaluation of model’s performance.

Based on the physics loss calculation method, we have designed the training
process for the PINN as depicted in Algorithm 2.
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Algorithm 2 Training of PINN for Vehicle Dynamics
1: Initialize neural network model and datasets
2: Set hyperparameters
3: Calculate target accelerations alateral and avertical
4: loss_mode← "mixed"
5: for epoch in max_epochs do
6: Set to training mode
7: Forward-propagation to compute prediction
8: Compute data MSE
9: if loss_type = "mixed" then

10: Compute estimated acceleration âlateral and âvertical from the irregu-
larity prediction and state variables

11: Compute physics MSEs ||âlateral−alateral||2 and ||âvertical−avertical||2
12: Loss← weighted average of data MSE and physics MSEs
13: else if loss_type = "data" then
14: Loss← data MSE
15: end if
16: Loss Back-propagation by automatic differentiation (autograd)
17: Update network’s parameters using optimizer
18: Update optimizer’s learning rate using scheduler
19: Set to evaluation mode
20: Forward-propagation to compute prediction
21: Compute MAEs for irregularities, lateral accelerations, and vertical ac-

celerations
22: Compute estimated acceleration âlateral and âvertical from the irregularity

prediction and state variables
23: Compute physics MAEs ||âlateral − alateral|| and ||âvertical − avertical||
24: if ||âlateral − alateral|| < lateral_threshold or ||âvertical − avertical|| < ver-

tical_threshold then
25: loss_mode← "data"
26: end if
27: end for



Chapter 5

Network Tuning and Relevant
Experiments

5.1 Comparison of Loss Function Types

We currently employ several types of loss functions to train our CNN: The first is
data loss, which measures the discrepancy between predicted and target values,
akin to traditional methods. Another type is mixed loss, used in PINNs, which
is defined as the weighted average between data error and physics error. The
physics error comprises deviations in lateral and vertical accelerations of the front
wheelset and the rear wheelset within our vehicle dynamic system. Additionally,
we have the option to train the network solely on physics loss, whether by focusing
on lateral acceleration, vertical acceleration, or a combination of both.

Given our limited computational resources and the extensive training time
required for all the dynamics data we have simulated, we opted for a relatively
simple model structure and a lightweight dataset to implement the experiments.
We use a 3-layer CNN, with each layer containing 8 channels of the same kernel
size 19, to capture the rail geometry within the small wavelength domain (high-
frequency information). The input to the networks is a 30-dimensional vector
representing sensor measurements, and the output is an 8-dimensional vector
representing rail irregularities at the positions of 8 considered wheels. For hyper-
parameter tuning, we selectively use part of the dynamics data under a driving
speed of 120 km/h.

We trained the aforementioned CNN architecture with both data loss and
mixed loss respectively. Figure 5.1 illustrates their mean absolute error (MAE)
convergence curves on the validation set during training phase. Predictions of
rail irregularities on the test set are shown in Figure 5.2 for lateral irregularities
and Figure 5.3 for vertical irregularities. The CNN model ultimately achieved a
prediction MAE of 0.443 mm, while the PINN model reduced this error by 14.9%
to 0.377 mm.

From the data loss curve, we observe that training with mixed loss enhances
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Figure 5.1: Data and physics MAE convergence comparison between CNN (data
loss mode) and PINN (mixed loss mode).

model convergence speed in the initial period, primarily due to the higher ef-
ficacy of physics information compared to data information in this stage. The
physics information also contributes to higher prediction accuracy, as evidenced
by the data loss curves, for the reason that our prior knowledge about the vehicle
dynamics system provides additional information to the neural network that the
training dataset alone cannot offer.

Furthermore, the physics information in the PINN model demonstrates a
stronger ability to learn lateral geometry information, significantly enhancing ac-
curacy concerning lateral wheelset acceleration. This improvement explains why,
in Figure 5.2, the mixed loss mode curve more closely aligns with the ground
truth, whereas in Figure 5.3, both types perform well in learning vertical accel-
erations.

It is also important to note that our experiments using complete physics
loss for training did not yield favorable prediction results. This may be due to
the limited physics indices used to construct the physics loss, as we have only
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Figure 5.2: Lateral irregularities prediction under the data loss (CNN) and mixed
loss (PINN) training modes.

Figure 5.3: Vertical irregularities prediction under the data loss (CNN) and mixed
loss (PINN) training modes.
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Figure 5.4: Lateral and Vertical Losses on the Validation Set.

considered lateral and vertical accelerations of wheelsets so far. It is difficult for
neural networks to deduce the system’s operation based solely on measurements
from just two 2-axis accelerometers, since the solution to the inverse problem
may not be unique, i.e., many other railway geometries could also yield the same
accelerometer data. For this reason, the prior physics knowledge serves merely
as an auxiliary factor to constrain the solution space, rather than the primary
determinant in searching the direction of the solution vector. Therefore, the
mixed loss, comprising weighted data loss and physics loss, proves to be a more
effective approach for our subsequent experiments.

5.2 Tuning of Physics Weights and Thresholds

5.2.1 Ratio between Lateral Weight and Vertical Weight

After some experiments with different network architectures, we observed the dif-
ference between the magnitude orders in prediction MAEs for lateral and vertical
accelerations. The MAE for vertical acceleration is roughly an order of magni-
tude larger than that for lateral acceleration in the validation set, as shown in
the convergence values in Figure 5.4. To adjust these weighted physics losses to a
same level, considering that mean squared error (MSE) is used to represent loss
on the training set, we have:

log

√
λlateral
λvertical

≈ 1 (5.1)

After a grid search within neighboring range, with 15000 epochs for each test
(as shown in Figure 5.5 and Figure 5.6), we determined the optimal ratio to be
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Figure 5.5: Prediction MAE comparison for physics weight ratios in [10, 100].

16 approximately, which means λlateral/λvertical = 162 = 256. Figure 5.7 displays
the MAE convergence curves under different physics weight ratios. We can see
that small variations within this range do not significantly affect model’s final
performance.

5.2.2 Tuning Lateral Weight’s Order of Magnitude

Through several experiments, we found that the order of magnitude of the lat-
eral weight does not significantly affect prediction accuracy (Figure 5.8), provided
that the number of training epochs exceeds 15000. However, it does impact the
loss convergence speed during the initial phase of model training. This effect
arises because it modulates the balance between given data and prior knowledge.
Consequently, we have set this hyperparameter to 10−15 for our subsequent im-
plementations.

5.2.3 Optimal Physics Weight Thresholds

Assuming that the lateral and vertical acceleration MAEs are of the same order of
magnitude in terms of their convergence rates, then the ratio between the vertical
and lateral MAE thresholds should also match the ratio of λlateral

λvertical
, which is 16.

This is supported by observing the plateau values of the physics MAE after
training for 50000 epochs (Figure 5.9). We did the grid search in the range [20,
200], with each test running for 20000 epochs. The result is shown in Figure 5.10.
We can find that the prediction MAE is kept in a relatively low value in the range
of about [40, 150]. Thus we choose the lateral physics threshold to be 100 and
the vertical physics threshold to be 1600 in our following PINN models.
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Figure 5.6: Prediction MAE comparison for physics weight ratios in [2, 20].

Figure 5.7: Validation set MAE convergence under different physics weight ratios.
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Figure 5.8: Prediction MAEs across aarious orders of magnitude for the lateral
physics weight.

Figure 5.9: Losses following 50000 training epochs.
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Figure 5.10: Prediction MAE comparison for lateral physics threshold [20, 200].

5.3 Tuning CNN Architecture and Other Hyperpa-
rameters

We have tested the training of PINNs with several different network architec-
tures, and the final hyperparameters we have chosen is listed in Table 5.1. The
loss convergence curves and prediction results of the final model are shown in
Figure 5.11 and Figure 5.12. Our final model achieved a prediction MAE of
0.329 mm on the testing set.
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Table 5.1: Hyperparameters in the final PINN model.
Hyperparameter Value

Physics weight (lateral) 1.0e-15 (m/s)−2

Physics weight (vertical) 3.9e-18 (m/s)−2

Physics loss threshold (lateral) 100 (m/s)−1

Physics loss threshold (vertical) 1600 (m/s)−1

Number of hidden layers 3
Kernel number [16, 64, 16]

Kernel size [5, 21, 21]
Output layer kernel size 3

Optimizer Adam
Scheduler None

Number of epochs 20000
Activation function ELU

Learning rate 1.0e-3
Resolution 0.16 m

Figure 5.11: Loss convergence of the final model.
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Figure 5.12: Irregularity prediction of the final model.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we explored the use of Physics-Informed Neural Networks (PINNs)
to predict railway track irregularities utilizing on-board sensor data from in-
service train vehicles. By integrating the system’s governing differential equations
in to the loss function and developing an algorithm for the automatic switching
between loss types, we enhanced the neural network’s learning capabilities. The
inclusion of physics-based loss during the training phase proved that PINNs can
outperform traditional deep learning approaches, such as CNNs, in terms of pre-
diction accuracy and training efficiency.

Our experiment results on both the mass-spring-damper model and the dy-
namic railway vehicle system demonstrated that PINNs not only enhance pre-
diction accuracy but also accelerate the convergence of loss, compared to con-
ventional models with identical network structures. Additionally, our findings
indicate that PINNs are adept at handling time-variant complex systems where
data might be scarce or costly to obtain.

This research highlights the considerable potential of PINNs as a powerful
tool for real-time detection and predictive maintenance of railway infrastructure,
showing their broader applicability in other scientific and engineering fields.

6.2 Research Limitations and Future Work

In this project we only used simulated vehicle data for neural networks training.
But It would be more beneficial to use the real measurement data from train
sensors, such as accelerometers or gyroscopes, to verify the effectiveness of the
PINN models in a real engineering scenario.

PINN models have a strict requirement for domain knowledge to align with
the real physical system, including the structure of differential equations and
system parameters. Future investigations should assess the robustness of PINNs
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under physical knowledge deviations. For instance, if a spring or damper in
the suspension systems is experiencing wear and tear, whose coefficient is not
updated in the physics loss calculation, how will this influence the training results
of PINNs?

Moreover, since we have only considered wheelset accelerations to calculate
the physics loss so far, other work can also be done in integrating more physical
indices, to further improve the prediction accuracy with more domain knowledge.



Bibliography

[1] S. Ma, L. Gao, X. Liu, and J. Lin, “Deep learning for track quality evaluation
of high-speed railway based on vehicle-body vibration prediction,” in IEEE
Access, 2019.

[2] C. D. Stoura, V. K. Dertimanis, C. Hoelzl, C. Kossmann, A. Cigada, and
E. N. Chatzi, “Stoura c d, dertimanis v k, hoelzl c, et al. a model-based
bayesian inference approach for on-board monitoring of rail roughness pro-
files: Application on field measurement data of the swiss federal railways
network,” in Structural Control and Health Monitoring, 2023.

[3] Q. Wang, W. Ding, Q. He, and P. Wang, “Estimation of railway vehicle
response for track geometry evaluation using branch fourier neural operator,”
in arXiv preprint arXiv:2402.18366, 2024.

[4] L. Engbo, “The dynamics of a railway vehicle on a disturbed track – mod-
elling of lateral irregularities,” in Master’s Thesis, Department of Physics,
The Technical University of Denmark, Jun. 2001.

[5] E. Østergaard, “Documentation for the sdirk c++ solver,” in IMM, The
Technical University of Denmark (DTU), Denmark, 1998.

[6] W. Kik, “Rsgeo and rsprof programs for the simulation of the wheel-rail or
the wheelset-roller kinematics, translation j,” in Litzenburger, DTU, 2000.

[7] A. Plesner, A. P. Engsig-Karup, and H. True, “Advanced cnn and confor-
mal prediction techniques for railway track irregularity prediction,” in The
Technical University of Denmark (DTU), Denmark, Jun. 2000.

[8] A. Plesner, “Using data-driven state-of-the-art machine learning and confor-
mal prediction for track irregularities from observed dynamics of in-service
railway vehicles,” in Master’s Thesis, Department of Applied Mathematics
and Computer Science, The Technical University of Denmark, 2022.

[9] L. Lu, P. Jin, and G. E. Karniadakis, “Deeponet: Learning nonlinear opera-
tors for identifying differential equations based on the universal approxima-
tion theorem of operators,” in Nature Machine Intelligence, Mar. 2021.

[10] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stu-
art, and A. Anandkumar, “Fourier neural operator for parametric partial
differential equations,” in arXiv preprint arXiv:2010.08895, 2020.

49



Bibliography 50

[11] B. Raonic, R. Molinaro, T. Rohner, S. Mishra, and E. de Bezenac, “Convo-
lutional neural operators,” in ICLR 2023 Workshop on Physics for Machine
Learning,, 2023.

[12] W. Xiong, X. Huang, Z. Zhang, R. Deng, P. Sun, and Y. Tian, “Koopman
neural operator as a mesh-free solver of non-linear partial differential equa-
tions,” in arXiv preprint arXiv:2301.10022, 2023.

[13] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” in Journal of Computa-
tional physics, 2019.

[14] T. D. Ryck, S. Mishra, R. Molinaro, and T. K. Rusch, “Deep learning in
scientific computing lecture notes,” in Department of Mathematics, ETH
Zürich, Switzerland, Feb. 2022.

[15] S. Markidis, “Physics-informed deep-learning for scientific computing,” in
KTH Royal Institute of Technology, Sweden, 2021.

[16] P. Thanasutives, T. Morita, M. Numao, and K. ichi Fukui, “Noise-aware
physics-informed machine learning for robust pde discovery,” in Machine
Learning: Science and Technology, 2023.

[17] A. D. Jagtap and G. E. Karniadakis, “Extended physics-informed neural net-
works (xpinns): A generalized space-time domain decomposition based deep
learning framework for nonlinear partial differential equations,” in Commu-
nications in Computational Physics, 2020.

[18] E. A. Antonelo, E. Camponogara, L. O. Seman, J. P. Jordanou, E. R.
de Souza, and J. F. Hübner, “Physics-informed neural nets for control of
dynamical systems,” in Neurocomputing, 2024.

[19] S. Rout, V. Dwivedi, and B. Srinivasan, “Numerical approximation in
cfd problems using physics informed machine learning,” in arXiv preprint
arXiv:2111.02987, 2021.

[20] P. Isaksen and H. True, “On the ultimate transition to chaos in the dynamics
of cooperrider’s bogie,” in Chaos, Solitons and Fractals, 1997.

[21] Z. Y. Shen, J. K. Hedrick, and J. A. Elkins, “A comparison of alternative
creep force models for rail vehicle dynamic analysis,” in Vehicle System Dy-
namics, 1983.

[22] E. Fehlberg, “Low-order classical runge-kutta formulas with stepsize control
and their application to some heat transfer problems,” in National aeronau-
tics and space administration, 1969.



Bibliography 51

[23] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” in Neural Networks, 1989.

[24] B. C. Csáji, “Approximation with artificial neural networks,” in Faculty of
Sciences, Eötvös Loránd University, Hungary, 2001.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems, 2012.

[26] H. J. KELLEY, “Gradient theory of optimal flight paths,” in Ars Journal,
1960.

[27] A. E. Bryson, “A gradient method for optimizing multi-stage allocation pro-
cesses,” in Harvard Univ. Symposium on digital computers and their appli-
cations, 1961.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
arXiv preprint arXiv:1412.6980, 2014.

[29] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equa-
tions,” in arXiv preprint arXiv:1711.10561, 2017.

[30] M. T. Rad, A. Viardin, G. Schmitz, and M. Apel, “Theory-training deep
neural networks for an alloy solidification benchmark problem,” in Compu-
tational Materials Science, 2020.



Appendix A

Shorthand Notation
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Shorthand Notation A-2

Table A.1: Shorthand notations used in the thesis.
Shorthand Full name

MSE Mean Squared Error
MAE Mean Absolute Error
VAR Vector Auto-Regression
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RK Runge-Kutta method
RK45 Runge–Kutta–Fehlberg method
RK56 5th-6th-order Runge-Kutta method
SHE Shen-Hedrick-Elkins theory
NN Neural Network
MLP Multi-Layer Perceptron
CNN Convolutional Neural Network
PINN Physics-Informed Neural Network
cPINN Conservative Physics-Informed Neural Network
XPINN Extended Physics-Informed Neural Network
TTN Theory-Trained Neural Network
SGD Stochastic Gradient Descent
ReLU Rectified Linear Unit
HSR High-Speed Railway
IMU Inertial Measurement Unit
CIT Comprehensive Inspection Train
VBA Vehicle-Body Acceleration
PBTG Performance-Based Track Geometry
TRV Track Recording Vehicles
MSD Mass-Spring-Damper model
FNO Fourier Neural Operator
FFT Fast Fourier Transform
SOTA State-Of-The-Art
DeepONet Deep Operator Networks
AD Automatic Differentiation



Appendix B

Parameters of the Dynamic
System

Table B.1: Definitions and values of the parameters in ODEs.
Parameter Description Value Unit

k1, k2, k3 Primary suspension spring co-
efficient

1823.0, 3646.0, 3646.0 kN/m

k4, k5, k6 Secondary suspension spring
coefficient

182.3, 333.3, 2710.0 kN/m

D1, D2, D6 Secondary suspension damper
coefficient

20.0, 29.2, 500.0 kNs/m

b Longitudinal characteristic
length

1.074 m

d1, d2 Lateral characteristic length 0.62, 0.68 m
h1, h2, h3 Vertical characteristic length 0.0762, 0.6584, 0.8654 m
h1, h2, h3 Vertical characteristic length 0.0762, 0.6584, 0.8654 m
mw Wheelset’s mass 1022.0 kg
Iwx, Iwy, Iwz Wheelset’s moment of inertia

around axes
678.0 80.0 678.0 kgm2

mb Bogie frame’s mass 2918.9 kg
Ibx, Iby, Ibz Bogie frame’s moment of iner-

tia around axes
6780.0 6780.0 6780.0 kgm2

mc Car body’s mass 44388.0 kg
Icx Car body’s moment of inertia

around x-axis
280000.0 kgm2

g Gravitational acceleration 9.81 m/s2
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Appendix C

Programming Environment

C.1 Programming Languages

The generation of track data is implemented in MATLAB R2024a. Numerical
simulation of vehicle’s dynamic system is realized using C++11. Deep Learning
models and main data processing are employed in Python 3.8.19.

C.2 Packages and Toolboxes

Table C.1: Python packages used in this thesis.
Package name Version

pandas 1.4.4
numpy 1.19.2
matplotlib 3.6.2
scipy 1.6.2
tqdm 4.66.4
torch 2.3.1
sklearn 1.2.1
IPython 8.12.2
seaborn 0.12.2
os built-in
math built-in
time built-in

C.3 Computational Hardware

We mainly use the hardware resources from the Computer Engineering and Net-
works Laboratory, ETH Zurich.

C-1
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Table C.2: MATLAB toolboxes used in this thesis.
Toolbox name Version

Optimization Toolbox 24.1
Statistics and Machine Learning Toolbox 24.1
Econometrics Toolbox 24.1
Signal Processing Toolbox 24.1

In numerical simulations for the train dynamic system, we use the Dual Octa-
Core Intel Xeon E5-2690 CPU (node arton03 in the lab cluster). We allocate 1 GB
memory and 1 core to each simulation on a 152 km track data. Thus, according
to the resources constraints by the laboratory clusters, we can run 16 simulations
at the same time, with the allocated 16 GB memory and 16 CPU cores.

It the work related to deep learning models, the GPU we are using is NVIDIA
TITAN Xp with CUDA 12.2 (node tikgpu02 in the lab cluster), allocated with
64 GB memory. Before large-scale training on the full formal dataset, I also do
some light-weight demo verification on my MacBook Air with M3 chip, using the
Metal Performance Shaders (MPS) 14.6.1 framework.



Appendix D

Extra Results and Extra Plots

D.1 Numerical Simulation

Table D.1: Valid random seeds for rail geometry generation.
Driving speed Valid seeds from 1 to 50

120 km/h 4, 5, 6, 7, 8, 12, 13, 14, 15, 19, 42, 44, 45, 48
160 km/h 3, 5, 6, 7, 11, 14, 19, 22, 23, 24, 28, 34, 42, 47
200 km/h 3, 4, 10, 11, 14 19, 22, 23, 24, 27, 28, 35, 47
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Extra Results and Extra Plots D-2

D.2 PINNs Application on Mass-Spring-Damper Dy-
namics

Figure D.1: CNN prediction in underdamping condition, with damping ratio
0.025.

Figure D.2: CNN prediction in critical damping condition, with damping ratio
1.0.
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Figure D.3: CNN prediction in overdamping condition, with damping ratio 5.0.

Figure D.4: Comparison of CNN’s performance with baseline models (simple
average and linear regression) on the MSD system.
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D.3 PINNs Application on Vehicle Dynamics

Figure D.5: The consistency of front wheelset’s lateral position.

Figure D.6: The consistency of front wheelset’s vertical position.
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Figure D.7: The consistency of front wheelset’s roll angle.

Figure D.8: The consistency of front wheelset’s yaw angle.
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Figure D.9: The consistency of bogie frame’s lateral position.

Figure D.10: The consistency of bogie frame’s vertical position.
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Figure D.11: The consistency of bogie frame’s roll angle.

Figure D.12: The consistency of bogie frame’s yaw angle.
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Figure D.13: The consistency of bogie frame’s pitch angle.

Figure D.14: The consistency of car body’s roll angle.
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Figure D.15: The consistency of left penetration depth on front wheelset.

Figure D.16: The consistency of right penetration depth on front wheelset.
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Figure D.17: Rail irregularities Prediction by a 3-layer CNN.



Appendix E

Important Code

E.1 cnn.py

1 import numpy as np
2 import pandas as pd
3 from tqdm import tqdm
4 import torch
5 import torch.nn as nn
6 import torch.optim as optim
7 import torch.nn.functional as F
8 # from p2p_acc_calc_tensor import get_acc_tensor
9 from convolutional_neural_networks.p2p_acc_calc_tensor import

get_acc_tensor
10

11 class CNNModel(nn.Module):
12 def __init__(self , input_dim , output_dim ,
13 conv_kernel_numbers , conv_kernel_sizes , device):
14 super(CNNModel , self).__init__ ()
15 assert len(conv_kernel_numbers) == len(conv_kernel_sizes),

"The length of conv_kernel_numbers not equals to the
length of conv_kernel_sizes."

16 num_layers = len(conv_kernel_numbers)
17 assert conv_kernel_numbers [-1] == output_dim , "The last

element of conv_kernel_numbers should be equal to
output_dim."

18 for kernel_size in conv_kernel_sizes:
19 assert kernel_size % 2 == 1, "All kernel sizes should

be odd numbers."
20

21 layers = []
22 for i in range(num_layers -1):
23 layers.append(nn.Conv1d(in_channels=input_dim if i ==

0 else conv_kernel_numbers[i-1],
out_channels=conv_kernel_numbers[i],

24 kernel_size=conv_kernel_sizes[i],
stride=1, padding=0,
bias=True))

25 layers.append(nn.ELU())
26

E-1
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27 self.conv_layers = nn.Sequential (* layers)
28 self.output_layer =

nn.Conv1d(in_channels=conv_kernel_numbers [-2] if
num_layers > 1 else input_dim ,

29 out_channels=output_dim ,
kernel_size=conv_kernel_sizes [-1],
stride=1, padding=0,
bias=True)

30

31 self.alignment_index = np.sum(np.array(conv_kernel_sizes)
// 2)

32 self.device = device
33 self.to(device)
34 self.criterion_train = nn.MSELoss ()
35 self.criterion_eval = nn.L1Loss ()
36

37 def forward(self , x):
38 x = self.conv_layers(x)
39 x = self.output_layer(x)
40 return x
41

42 def train_model(self , train_feature_seg_tensor ,
train_label_seg_tensor ,

43 val_feature_seg_tensor , val_label_seg_tensor ,
44 optimizer , scheduler , epochs ,
45 rsgeo_table_tensor , velocity , time_step ,
46 loss_mode , data_weight ,

physics_weight_lateral ,
physics_weight_vertical):

47 # (batch_size , sequence_length , channels) -> (batch_size ,
channels , sequence_length)

48 train_feature = train_feature_seg_tensor.permute(0, 2, 1)
49 train_label = train_label_seg_tensor.permute(0, 2, 1)[:,

:, self.alignment_index:-self.alignment_index]
50 val_feature = val_feature_seg_tensor.permute(0, 2, 1)
51 val_label = val_label_seg_tensor.permute(0, 2, 1)[:, :,

self.alignment_index:-self.alignment_index]
52

53 train_acceleration_seg_tensor =
get_acc_tensor(train_label_seg_tensor ,
train_feature_seg_tensor , rsgeo_table_tensor ,
velocity , time_step , self.device)

54 val_acceleration_seg_tensor =
get_acc_tensor(val_label_seg_tensor ,
val_feature_seg_tensor , rsgeo_table_tensor , velocity ,
time_step , self.device)

55

56 train_losses = []
57 val_losses = []
58 val_losses_lateral = []
59 val_losses_vertical = []
60 for epoch in range(epochs):
61 self.train ()
62 optimizer.zero_grad ()
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63 output = self(train_feature)
64

65 if loss_mode == ’data’:
66 data_loss = self.criterion_train(output ,

train_label)
67 loss = data_loss
68 elif loss_mode == ’lateral ’:
69 acc_calculated = get_acc_tensor(output.permute(0,

2, 1), train_feature_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
:], rsgeo_table_tensor , velocity , time_step ,
self.device)

70 physics_loss_lateral =
self.criterion_train(acc_calculated [:, :, [0,
2]], train_acceleration_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
[0, 2]])

71 loss = physics_loss_lateral
72 elif loss_mode == ’vertical ’:
73 acc_calculated = get_acc_tensor(output.permute(0,

2, 1), train_feature_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
:], rsgeo_table_tensor , velocity , time_step ,
self.device)

74 physics_loss_vertical =
self.criterion_train(acc_calculated [:, :, [1,
3]], train_acceleration_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
[1, 3]])

75 loss = physics_loss_vertical
76 elif loss_mode == ’pinn’ or loss_mode == ’pinn_auto ’:
77 data_loss = self.criterion_train(output ,

train_label)
78 acc_calculated = get_acc_tensor(output.permute(0,

2, 1), train_feature_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
:], rsgeo_table_tensor , velocity , time_step ,
self.device)

79 physics_loss_lateral =
self.criterion_train(acc_calculated [:, :, [0,
2]], train_acceleration_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
[0, 2]])

80 physics_loss_vertical =
self.criterion_train(acc_calculated [:, :, [1,
3]], train_acceleration_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
[1, 3]])

81 loss = data_weight * data_loss +
physics_weight_lateral * physics_loss_lateral
+ physics_weight_vertical *
physics_loss_vertical

82

83 loss.backward ()
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84 optimizer.step()
85 # scheduler.step()
86

87 # Validation
88 self.eval()
89 with torch.no_grad ():
90 # Calculate data loss for training set
91 output = self(train_feature)
92 data_loss_train = self.criterion_eval(output ,

train_label)
93 train_losses.append(data_loss_train.item())
94

95 # Calculate data loss for validation set
96 output = self(val_feature)
97 data_loss_val = self.criterion_eval(output ,

val_label)
98 val_losses.append(data_loss_val.item())
99

100 # Calculate physics loss for validation set
101 acc_calculated = get_acc_tensor(output.permute(0,

2, 1), val_feature_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
:], rsgeo_table_tensor , velocity , time_step ,
self.device)

102 physics_loss_lateral =
self.criterion_eval(acc_calculated [:, :, [0,
2]], val_acceleration_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
[0, 2]])

103 val_losses_lateral.append(physics_loss_lateral.item())
104 physics_loss_vertical =

self.criterion_eval(acc_calculated [:, :, [1,
3]], val_acceleration_seg_tensor [:,
self.alignment_index:-self.alignment_index ,
[1, 3]])

105 val_losses_vertical.append(physics_loss_vertical.item())
106

107 # Adjust physics weight
108 if loss_mode == ’pinn_auto ’:
109 physics_weight_lateral = data_loss_val /

physics_loss_lateral
110 physics_weight_vertical = data_loss_val /

physics_loss_vertical
111

112 print(f’Epoch {epoch +1}/{ epochs}, Training set
data MSE: {loss}, Training set data MAE:
{train_losses [-1]}, \

113 Validation set data MAE: {val_losses [-1]},
Physics lateral MAE:
{val_losses_lateral [-1]}, Physics
vertical MAE: {val_losses_vertical [-1]}’)

114

115 return train_losses , val_losses , val_losses_lateral ,
val_losses_vertical
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Listing E.1: cnn.py

E.2 p2p_acc_calc.py

1 import numpy as np
2 import pandas as pd
3 import math
4

5 NOV = 31 # Number of variables
6 NOC = 13 # Number of constants (in rsgeo_table)
7 NOPO = 3401 # Number of points in rsgeo datafile
8 epsilon = 1e-9
9

10 k1 , k2 , k3, k4, k5 , k6 = 1823000. , 3646000. , 3646000. , 182300. ,
333300. , 2710000.

11 D1 , D2 , D6 = 20000. , 29200. , 500e3
12 d1 , d2 = 0.620 , 0.680
13 b = 1.074
14 h1 , h2 , h3 = 0.0762 , 0.6584 , 0.8654
15 d1d1 = d1 * d1
16 d2d2 = d2 * d2
17 Iwy , Iwx , Iwz = 80., 678., 678.
18 Ifz , Ifx , Ify = 6780. , 6780., 6780.
19 Icx = 2.80e5
20 mw , mf , mrc = 1022., 2918.9 , 44388.
21 mx = 0.25 * mrc + 0.5 * mf + mw
22 g = 9.82
23

24 min = -0.01700 # Lower bound of the irregularity
25 max = 0.01700 # Upper bound of the irregularity
26 step = NOPO - 1
27 delta = (max - min) / step # Interval of the irregularity
28

29 r0 = 0.4248828 # nominal rotational radius of wheel
30 z0 = 0.424827690183942 # Initial vertical position of wheel
31 y0d = 9.999748926159402e-05 # Initial lateral displacement of wheel
32 Nz_static = 133343.0 # Static normal force
33 # Nz_static = 0.0 # Static normal force
34

35 G = 2.1 e11 / (2 * (1 - 0.27)) # Shear Modulus
36 nu = 0.15 # Coefficient of friction
37

38 def update_state(y, data , velocity , time_step):
39 dy = np.zeros(NOV + 1)
40 dy[1] = y[2]
41 dy[2] = (data[0, 5] + data[1, 5] + data[0, 2] + data[1, 2]

-
42 2 * k1 * (y[1] - y[9] - b * y[11] - h1 * y[13])) /

mw
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43 dy[3] = y[4]
44 dy[4] = (data[1, 0] * (data[1, 4] + (data[1, 5] + data[1,

2]) * y[3]) -
45 data[0, 0] * (data[0, 4] + (data[0, 5] + data[0,

2]) * y[3]) -
46 2 * k2 * d1d1 * (y[3] - y[11])) / Iwz
47 dy[5] = y[6]
48 dy[6] = (data[2, 5] + data[3, 5] + data[2, 2] + data[3, 2]

-
49 2 * k1 * (y[5] - y[9] + b * y[11] - h1 * y[13])) /

mw
50 dy[7] = y[8]
51 dy[8] = (data[3, 0] * (data[3, 4] + (data[3, 5] + data[3,

2]) * y[7]) -
52 data[2, 0] * (data[2, 4] + (data[2, 5] + data[2,

2]) * y[7]) -
53 2 * k2 * d1d1 * (y[7] - y[11])) / Iwz
54 dy[9] = y[10]
55 dy[10] = (2 * k1 * (y[1] + y[5] - 2 * y[9] - 2 * h1 *

y[13]) + 2 * k4 *
56 (h2 * y[13] + h3 * y[15] - y[9]) +
57 2 * D2 * (h2 * y[14] + h3 * y[16] - y[10])) / mf
58 dy[11] = y[12]
59 dy[12] = (2 * d1d1 * k2 * (y[3] + y[7] - 2 * y[11]) - k6 *

y[11] - D6 * y[12] +
60 2 * b * k1 * (y[1] - y[5] - 2 * b * y[11])) / Ifz
61 dy[13] = y[14]
62 dy[14] = (2 * k1 * h1 * (y[1] + y[5] - 2 * y[9] - 2 * h1 *

y[13]) +
63 2 * k4 * h2 * (y[9] - h2 * y[13] - h3 * y[15]) + 2

* D2 * h2 *
64 (y[10] - h2 * y[14] - h3 * y[16]) -
65 2 * d2d2 * (k5 * (y[13] - y[15]) + D1 * (y[14] -

y[16])) -
66 2 * d1d1 * k3 * (2 * y[13] - y[21] - y[23])) / Ifx
67 dy[15] = y[16]
68 dy[16] = (-2 * d2d2 * (k5 * (y[15] - y[13]) + D1 * (y[16]

- y[14]))) / Icx
69 dy[17] = y[18]
70 dy[18] = (data[0, 6] + data[1, 6] + data[0, 3] + data[1,

3] - Nz_static +
71 2 * k3 * (y[25] - y[17])) / mw
72 dy[19] = y[20]
73 dy[20] = (data[2, 6] + data[3, 6] + data[2, 3] + data[3,

3] - Nz_static +
74 2 * k3 * (y[25] - y[19])) / mw
75 dy[21] = y[22]
76 dy[22] = (-data[1, 0] *
77 (data[1, 6] + data[1, 3] - (data[1, 5] + data[1,

2]) * y[21]) +
78 data[0, 0] *
79 (data[0, 6] + data[0, 3] - (data[0, 5] + data[0,

2]) * y[21]) -
80 2 * k3 * d1d1 * (y[21] - y[13])) / Iwx
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81 dy[23] = y[24]
82 dy[24] = (-data[3, 0] *
83 (data[3, 6] + data[3, 3] - (data[3, 5] + data[3,

2]) * y[23]) +
84 data[2, 0] *
85 (data[2, 6] + data[2, 3] - (data[2, 5] + data[2,

2]) * y[23]) -
86 2 * k3 * d1d1 * (y[23] - y[13])) / Iwx
87 dy[25] = y[26]
88 dy[26] = (-2 * k3 * (2 * y[25] - y[17] - y[19]) - 2 * k5 *

y[25] - 2 * D1 *
89 y[26]) / mf
90 dy[27] = y[28]
91 dy[28] = (-2 * b * k3 * (2 * b * y[27] + y[17] - y[19])) /

Ify
92 dy[29] = (-data[1, 1] * (data[1, 4] + (data[1, 5] +

data[1, 2]) * y[3]) +
93 -data[0, 1] * (data[0, 4] + (data[0, 5] + data[0,

2]) * y[3]) -
94 2 * d1d1 * k3 * y[3] * y[13]) / Iwy
95 dy[30] = (-data[3, 1] * (data[3, 4] + (data[3, 5] +

data[3, 2]) * y[7]) +
96 -data[2, 1] * (data[2, 4] + (data[2, 5] + data[2,

2]) * y[7]) -
97 2 * d1d1 * k3 * y[7] * y[13]) / Iwy
98 dy[31] = velocity
99

100 return y + 0.5 * dy * time_step
101

102 def get_acc(irregularity , y, rsgeo_table , velocity , time_step):
103 Omega = r0 / velocity
104

105 # Get irregularity
106 # irreg = np.zeros((4, 2))
107 # irreg[0, 0] = irregularity [0] # fw left lateral
108 # irreg[1, 0] = irregularity [1] # fw right lateral
109 # irreg[2, 0] = irregularity [2] # rw right lateral
110 # irreg[3, 0] = irregularity [3] # rw right lateral
111 # irreg[0, 1] = irregularity [4] # fw left vertical
112 # irreg[1, 1] = irregularity [5] # fw right vertical
113 # irreg[2, 1] = irregularity [6] # rw left vertical
114 # irreg[3, 1] = irregularity [7] # rw right vertical
115 irreg = np.array(irregularity).reshape (2,4).T
116

117 # Interpolate RSGEO
118 point = np.zeros((4, NOC)) # Contact point states
119 # point[0, 0] = y[1] - irreg[0, 0] # F l lateral

displacement
120 # point[1, 0] = -(y[1] - irreg[1, 0]) # F r lateral

displacement
121 # point[2, 0] = y[5] - irreg[2, 0] # R l lateral

displacement
122 # point[3, 0] = -(y[5] - irreg[3, 0]) # R r lateral

displacement
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123 point[:, 0] = [y[1] - irreg[0, 0], -(y[1] - irreg[1, 0]), y[5]
- irreg[2, 0], -(y[5] - irreg[3, 0])]

124

125 # for i in range (4):
126 # tmp = np.clip(point[i, 0], -0.01699 , 0.01699)
127 # # point[i, 0] = tmp
128 # index = int(np.floor ((tmp - min) / delta))
129 # frac = (tmp - rsgeo_table[index , 0]) / delta
130 # for j in range(1, NOC):
131 # point[i, j] = rsgeo_table[index , j] * (1 - frac) +

rsgeo_table[index + 1, j] * frac
132 tmp = np.clip(point[:, 0], -0.01699, 0.01699)
133 index = np.floor((tmp - min) / delta).astype(int)
134 frac = (tmp - rsgeo_table[index , 0]) / delta
135 for j in range(1, NOC):
136 point[:, j] = rsgeo_table[index , j] * (1 - frac) +

rsgeo_table[index + 1, j] * frac
137

138 # Update penetration
139 dp = np.zeros (4) # Penetration
140 for i in [0, 2]:
141 # left wheels:
142 dp[i] = (( point[i, 12] + irreg[i, 0] - y[1 + 2 * i] -

point[i, 5] - y[21 + i] *
143 point[i, 6] - y0d) * np.sin(point[i, 2] + y[21 +

i]) +
144 np.cos(point[i, 2] + y[21 + i]) *
145 (point[i, 10] - z0 - y[17 + i] - y[21 + i] *

point[i, 5] +
146 point[i, 6] + irreg[i, 1]))
147 # right wheels:
148 dp[i + 1] = ((point[i + 1, 12] - irreg[i + 1, 0] + y[1 + 2

* i] - point[i + 1, 5] +
149 y[21 + i] * point[i + 1, 6] - y0d) *
150 np.sin(point[i + 1, 2] - y[21 + i]) +
151 np.cos(point[i + 1, 2] - y[21 + i]) *
152 (point[i + 1, 10] - z0 - y[17 + i] + y[21 + i] *

point[i + 1, 5] +
153 point[i + 1, 6] + irreg[i + 1, 1]))
154 # print(dp)
155

156 # Adjust normal forces
157 # for i in range (4):
158 # if point[i, 11] == 0 or point[i, 1] == 0:
159 # print(’Division by zero ’)
160 # if dp[i] > -point[i, 11]:
161 # N = point[i, 1] * math.pow(1 + dp[i] / point[i, 11],

1.5)
162 # else:
163 # N = epsilon
164 # N3 = math.pow(N / point[i, 1], 1. / 3.) # Adjustment

factor for semi axes
165

166 # point[i, 3] *= N3
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167 # point[i, 4] *= N3
168 # point[i, 1] = N
169 # print(’A:’, point[:, 11])
170 # print(’B:’, 1 + dp / point[:, 11])
171 N = point[:, 1] * np.power(np.maximum (1 + dp / point[:, 11],

0), 1.5)
172 # print(’N:’, N)
173 N3 = np.power(N / point[:, 1], 1/3)
174 point[:, 3] = point[:, 3] * N3
175 point[:, 4] = point[:, 4] * N3
176 point[:, 1] = N
177

178 # for i in [0, 2]:
179 # if point[i, 1] == epsilon and point[i + 1, 1] != epsilon:
180 # point[i + 1, 3] *= math.pow(epsilon / point[i, 1],

1. / 3.)
181 # point[i + 1, 4] *= math.pow(epsilon / point[i, 1],

1. / 3.)
182 # point[i + 1, 1] = epsilon
183 # elif point[i + 1, 1] == epsilon and point[i, 1] !=

epsilon:
184 # point[i, 3] *= math.pow(epsilon / point[i + 1, 1],

1. / 3.)
185 # point[i, 4] *= math.pow(epsilon / point[i + 1, 1],

1. / 3.)
186 # point[i, 1] = epsilon
187

188 # Calculate creepages on longitudinal , lateral , and yaw
directions

189 creep = np.zeros((4, 3))
190 for i in [0, 2]:
191 tsin = np.sin(point[i, 2])
192 tsin2 = np.sin(point[i + 1, 2])
193 tcos = np.cos(point[i, 2])
194 tcos2 = np.cos(point[i + 1, 2])
195 y21i = y[21 + i]
196 y22i = y[22 + i]
197 y29i2 = y[29 + i // 2]
198 y2p2i = y[2 + 2 * i]
199 y3p2i = y[3 + 2 * i]
200

201 creep[i, 0] = (( velocity - point[i, 6] * (Omega + y29i2 -
y3p2i * y22i) -

202 y[4 + 2 * i] * point[i, 5] + y3p2i *
y2p2i) / velocity) # chi_xL
longitutinal creepage of left wheel

203 creep[i + 1, 0] = (( velocity - point[i + 1, 6] * (Omega +
y29i2 - y3p2i * y22i) +

204 y[4 + 2 * i] * point[i + 1, 5] + y3p2i
* y2p2i) / velocity) # chi_yL
longitutinal creepage of right
wheel

205



Important Code E-10

206 creep[i, 1] = ((( y2p2i - y3p2i * velocity + y21i * y[18 +
i] + point[i, 6] * y22i) * tcos +

207 (y[18 + i] - y2p2i * y21i + point[i, 5] *
y22i) * tsin) / velocity) # chi_yL
lateral creepage of left wheel

208 creep[i + 1, 1] = ((( y2p2i - y3p2i * velocity + y21i *
y[18 + i] + point[i + 1, 6] * y22i) * tcos2 -

209 (y[18 + i] - y2p2i * y21i - point[i +
1, 5] * y22i) * tsin2) / velocity)
# chi_yR lateral creepage of right
wheel

210

211 creep[i, 2] = ((-( Omega + y29i2 - y3p2i * y22i) * tsin +
212 y[4 + 2 * i] * tcos) / velocity) # chi_spL

spin creepage of left wheel
213 creep[i + 1, 2] = ((( Omega + y29i2 - y3p2i * y22i) * tsin2

+
214 y[4 + 2 * i] * tcos2) / velocity) #

chi_spR spin creepage of right wheel
215

216 # Calculate frictions based on Shen -Hedrick -Elkins (SHE) model
217 fx = np.zeros (4) # Longitudinal friction
218 fy = np.zeros (4) # Lateral friction
219 for i in range (4):
220 fx[i] = -point[i, 3] * point[i, 4] * G * point[i, 7] *

creep[i, 0]
221 fy[i] = -point[i, 3] * point[i, 4] * G * (point[i, 8] *

creep[i, 1] +
222 np.sqrt(point[i, 3]

* point[i, 4]) *
223 point[i, 9] *

creep[i, 2])
224

225 fnorm = np.sqrt(fx[i] * fx[i] + fy[i] * fy[i]) / (nu *
point[i, 1]) # Normalized friction

226

227 if fnorm < 3:
228 factor = 1 - fnorm / 3. + fnorm * fnorm / 27.
229 fx[i] *= factor
230 fy[i] *= factor
231 else:
232 fx[i] *= 1 / fnorm
233 fy[i] *= 1 / fnorm
234

235 # Transfter from point[] to data[]
236 data = np.zeros((4, 8))
237 data[:4, 0] = point [:4, 5] # K_wy
238 data[:4, 1] = point [:4, 6] # K_wz
239 data[:4, 7] = point [:4, 10] # K_rz
240

241 for i in [0, 2]:
242 phi = y[21 + i]
243 if point[i, 1] > 0:
244 tsin = np.sin(point[i, 2] + phi)
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245 tcos = np.cos(point[i, 2] + phi)
246 data[i, 2] = -point[i, 1] * tsin # N_y
247 data[i, 3] = point[i, 1] * tcos # N_z
248 data[i, 4] = fx[i] # F_wx
249 data[i, 5] = fy[i] * tcos # F_y
250 data[i, 6] = fy[i] * tsin # F_z
251 else:
252 for j in range(2, 7):
253 data[i, j] = 0
254

255 if point[i + 1, 1] > 0:
256 tsin = np.sin(point[i + 1, 2] - phi)
257 tcos = np.cos(point[i + 1, 2] - phi)
258 data[i + 1, 2] = point[i + 1, 1] * tsin # N_y
259 data[i + 1, 3] = point[i + 1, 1] * tcos # N_z
260 data[i + 1, 4] = fx[i + 1] # F_wx
261 data[i + 1, 5] = fy[i + 1] * tcos # F_y
262 data[i + 1, 6] = -fy[i + 1] * tsin # F_z
263 else:
264 for j in range(2, 7):
265 data[i + 1, j] = 0
266

267 # y = update_state(y, data , velocity , time_step)
268

269

270 # Iterated calculation of accelerations
271 # for _ in range (2):
272 # N = point[:, 1] * np.power(np.maximum (1 + dp / point[:,

11], 0), 1.5)
273 # N3 = np.power(N / point[:, 1], 1/3)
274 # point[:, 3] = point[:, 3] * N3
275 # point[:, 4] = point[:, 4] * N3
276 # point[:, 1] = N
277

278 # for i in range (4):
279 # fx[i] = -point[i, 3] * point[i, 4] * G * point[i, 7]

* creep[i, 0]
280 # fy[i] = -point[i, 3] * point[i, 4] * G * (point[i,

8] * creep[i, 1] +
281 # np.sqrt(point[i,

3] * point[i, 4]) *
282 # point[i, 9] *

creep[i, 2])
283

284 # fnorm = np.sqrt(fx[i] * fx[i] + fy[i] * fy[i]) / (nu
* point[i, 1]) # Normalized friction

285

286 # if fnorm < 3:
287 # factor = 1 - fnorm / 3. + fnorm * fnorm / 27.
288 # fx[i] *= factor
289 # fy[i] *= factor
290 # else:
291 # fx[i] *= 1 / fnorm
292 # fy[i] *= 1 / fnorm
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293

294 # for i in [0, 2]:
295 # phi = y[21 + i]
296 # if point[i, 1] > 0:
297 # tsin = np.sin(point[i, 2] + phi)
298 # tcos = np.cos(point[i, 2] + phi)
299 # data[i, 2] = -point[i, 1] * tsin # N_y
300 # data[i, 3] = point[i, 1] * tcos # N_z
301 # data[i, 4] = fx[i] # F_wx
302 # data[i, 5] = fy[i] * tcos # F_y
303 # data[i, 6] = fy[i] * tsin # F_z
304 # else:
305 # for j in range(2, 7):
306 # data[i, j] = 0
307

308 # if point[i + 1, 1] > 0:
309 # tsin = np.sin(point[i + 1, 2] - phi)
310 # tcos = np.cos(point[i + 1, 2] - phi)
311 # data[i + 1, 2] = point[i + 1, 1] * tsin # N_y
312 # data[i + 1, 3] = point[i + 1, 1] * tcos # N_z
313 # data[i + 1, 4] = fx[i + 1] # F_wx
314 # data[i + 1, 5] = fy[i + 1] * tcos # F_y
315 # data[i + 1, 6] = -fy[i + 1] * tsin # F_z
316 # else:
317 # for j in range(2, 7):
318 # data[i + 1, j] = 0
319

320

321 bound_lateral = 50
322 bound_vertical = 200
323 acc_FW_lateral = np.clip((data[0, 5] + data[1, 5] + data[0, 2]

+ data[1, 2] -
324 2 * k1 * (y[1] - y[9] - b * y[11] - h1 * y[13])) /

mw , -bound_lateral , bound_lateral)
325 acc_FW_vertical = np.clip((data[0, 6] + data[1, 6] + data[0,

3] + data[1, 3] - Nz_static +
326 2 * k3 * (y[25] - y[17])) / mw , -bound_vertical ,

bound_vertical)
327 acc_RW_lateral = np.clip((data[2, 5] + data[3, 5] + data[2, 2]

+ data[3, 2] -
328 2 * k1 * (y[5] - y[9] + b * y[11] - h1 * y[13])) /

mw , -bound_lateral , bound_lateral)
329 acc_RW_vertical = np.clip((data[2, 6] + data[3, 6] + data[2,

3] + data[3, 3] - Nz_static +
330 2 * k3 * (y[25] - y[19])) / mw , -bound_vertical ,

bound_vertical)
331 # acc_B_lateral = (2 * k1 * (y[1] + y[5] - 2 * y[9] - 2 * h1 *

y[13]) + 2 * k4 *
332 # (h2 * y[13] + h3 * y[15] - y[9]) +
333 # 2 * D2 * (h2 * y[14] + h3 * y[16] - y[10])) / mf
334 # acc_B_vertical = (-2 * k3 * (2 * y[25] - y[17] - y[19]) - 2

* k5 * y[25] - 2 * D1 *
335 # y[26]) / mf
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336 # acc_C_roll = (-2 * d2d2 * (k5 * (y[15] - y[13]) + D1 *
(y[16] - y[14]))) / Icx

337

338

339 acc = np.array([ acc_FW_lateral , acc_FW_vertical ,
acc_RW_lateral , acc_RW_vertical ])

340

341 return acc

Listing E.2: p2p_acc_calc.py

E.3 p2p_acc_calc_tensor.py

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from tqdm import tqdm
5 import math
6 import torch
7

8 NOV = 31 # Number of variables
9 NOC = 13 # Number of constants (in rsgeo_table)

10 NOPO = 3401 # Number of points in rsgeo datafile
11 epsilon = 1e-9
12

13 k1 , k2 , k3, k4, k5 , k6 = 1823000. , 3646000. , 3646000. , 182300. ,
333300. , 2710000.

14 D1 , D2 , D6 = 20000. , 29200. , 500e3
15 d1 , d2 = 0.620 , 0.680
16 b = 1.074
17 h1 , h2 , h3 = 0.0762 , 0.6584 , 0.8654
18 d1d1 = d1 * d1
19 d2d2 = d2 * d2
20 Iwy , Iwx , Iwz = 80., 678., 678.
21 Ifz , Ifx , Ify = 6780. , 6780., 6780.
22 Icx = 2.80e5
23 mw , mf , mrc = 1022., 2918.9 , 44388.
24 mx = 0.25 * mrc + 0.5 * mf + mw
25 g = 9.82
26

27 min = -0.01700 # Lower bound of the irregularity
28 max = 0.01700 # Upper bound of the irregularity
29 step = NOPO - 1
30 delta = (max - min) / step # Interval of the irregularity
31

32 r0 = 0.4248828 # nominal rotational radius of wheel
33 z0 = 0.424827690183942 # Initial vertical position of wheel
34 y0d = 9.999748926159402e-05 # Initial lateral displacement of wheel
35 Nz_static = 133343.0 # Static normal force
36 # Nz_static = 0.0 # Static normal force
37
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38 G = 2.1 e11 / (2 * (1 - 0.27)) # Shear Modulus
39 nu = 0.15 # Coefficient of friction
40

41 bound_lateral = 50
42 bound_vertical = 200
43

44 def get_acc_tensor(irregularity , y, rsgeo_table_tensor , velocity ,
time_step , device):

45 Omega = r0 / velocity
46 batch_size = irregularity.shape [0]
47 segment_length = irregularity.shape [1]
48

49 zeros_tensor = torch.zeros(batch_size , segment_length , 1,
device=device)

50 y = torch.cat(( zeros_tensor , y), dim=2)
51

52 irreg = irregularity.view(batch_size , segment_length , 2,
4).permute(0, 1, 3, 2).to(device)

53

54 point = torch.zeros(( batch_size , segment_length , 4, NOC),
device=device)

55 point[:, :, 0, 0] = y[:, :, 1] - irreg[:, :, 0, 0] # F l
lateral displacement

56 point[:, :, 1, 0] = -(y[:, :, 1] - irreg[:, :, 1, 0]) # F
r lateral displacement

57 point[:, :, 2, 0] = y[:, :, 5] - irreg[:, :, 2, 0] # R l
lateral displacement

58 point[:, :, 3, 0] = -(y[:, :, 5] - irreg[:, :, 3, 0]) # R
r lateral displacement

59 tmp = torch.clip(point[:, :, :, 0]. clone (), -0.01699,
0.01699)

60 index = torch.floor((tmp - min) / delta).long()
61 frac = (tmp - rsgeo_table_tensor[index , 0]) / delta
62 for j in range(1, NOC):
63 point[:, :, :, j] = rsgeo_table_tensor[index , j] *

(1 - frac) + rsgeo_table_tensor[index + 1, j]
* frac

64

65 dp = torch.zeros((batch_size , segment_length , 4),
dtype=torch.float32 , device=device)

66 for i in [0, 2]:
67 # left wheels:
68 dp[:, :, i] = ((point[:, :, i, 12] + irreg[:, :,

i, 0] - y[:, :, 1 + 2 * i] - point[:, :, i, 5]
- y[:, :, 21 + i] *

69 point[:, :, i, 6] - y0d) *
torch.sin(point[:, :, i, 2] + y[:, :,
21 + i]) +

70 torch.cos(point[:, :, i, 2] + y[:, :, 21 +
i]) *

71 (point[:, :, i, 10] - z0 - y[:, :, 17 + i]
- y[:, :, 21 + i] * point[:, :, i, 5] +

72 point[:, :, i, 6] + irreg[:, :, i, 1]))
73 # right wheels:
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74 dp[:, :, i + 1] = (( point[:, :, i + 1, 12] -
irreg[:, :, i + 1, 0] + y[:, :, 1 + 2 * i] -
point[:, :, i + 1, 5] +

75 y[:, :, 21 + i] * point[:, :, i + 1, 6] -
y0d) *

76 torch.sin(point[:, :, i + 1, 2] - y[:, :,
21 + i]) +

77 torch.cos(point[:, :, i + 1, 2] - y[:, :,
21 + i]) *

78 (point[:, :, i + 1, 10] - z0 - y[:, :, 17
+ i] + y[:, :, 21 + i] * point[:, :, i
+ 1, 5] +

79 point[:, :, i + 1, 6] + irreg[:, :, i + 1,
1]))

80

81 N = point[:, :, :, 1]. clone () * torch.pow(torch.clamp(1 +
dp / point[:, :, :, 11]. clone(), min=epsilon), 1.5)

82 N3 = torch.pow((N / point[:, :, :, 1]. clone()), 1/3)
83 point[:, :, :, 3] = point[:, :, :, 3]. clone () * N3
84 point[:, :, :, 4] = point[:, :, :, 4]. clone () * N3
85 point[:, :, :, 1] = N
86

87 creep = torch.zeros(( batch_size , segment_length , 4, 3),
device=device)

88 for i in [0, 2]:
89 tsin = torch.sin(point[:, :, i, 2])
90 tsin2 = torch.sin(point[:, :, i + 1, 2])
91 tcos = torch.cos(point[:, :, i, 2])
92 tcos2 = torch.cos(point[:, :, i + 1, 2])
93

94 y21i = y[:, :, 21 + i]
95 y22i = y[:, :, 22 + i]
96 y29i2 = y[:, :, 29 + i // 2]
97 y2p2i = y[:, :, 2 + 2 * i]
98 y3p2i = y[:, :, 3 + 2 * i]
99

100 creep[:, :, i, 0] = (velocity - point[:, :, i, 6]
* (Omega + y29i2 - y3p2i * y22i) -

101 y[:, :, 4 + 2 * i] *
point[:, :, i, 5] +
y3p2i * y2p2i) /
velocity

102 creep[:, :, i + 1, 0] = (velocity - point[:, :, i
+ 1, 6] * (Omega + y29i2 - y3p2i * y22i) +

103 y[:, :, 4 + 2 * i] *
point[:, :, i + 1, 5]
+ y3p2i * y2p2i) /
velocity

104

105 creep[:, :, i, 1] = ((y2p2i - y3p2i * velocity +
y21i * y[:, :, 18 + i] + point[:, :, i, 6] *
y22i) * tcos +

106 (y[:, :, 18 + i] - y2p2i *
y21i + point[:, :, i,
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5] * y22i) * tsin) /
velocity

107 creep[:, :, i + 1, 1] = ((y2p2i - y3p2i * velocity
+ y21i * y[:, :, 18 + i] + point[:, :, i + 1,
6] * y22i) *

108 tcos2 - (y[:, :, 18 + i] -
y2p2i * y21i -
point[:, :, i + 1, 5]
* y22i) * tsin2) /
velocity

109

110 creep[:, :, i, 2] = (-(Omega + y29i2 - y3p2i *
y22i) * tsin + y[:, :, 4 + 2 * i] * tcos) /
velocity

111 creep[:, :, i + 1, 2] = ((Omega + y29i2 - y3p2i *
y22i) * tsin2 + y[:, :, 4 + 2 * i] * tcos2) /
velocity

112 # if torch.isnan(creep).any():
113 # print ("creep contains NaN")
114 # elif torch.isinf(creep).any():
115 # print ("creep contains Inf")
116 # else:
117 # print ("creep does not contain NaN or Inf")
118

119 fx = -point[:, :, :, 3] * point[:, :, :, 4] * G * point[:,
:, :, 7] * creep[:, :, :, 0]

120 fy = -point[:, :, :, 3] * point[:, :, :, 4] * G *
(point[:, :, :, 8] * creep[:, :, :, 1] +

121 torch.sqrt(point[:,
:, :, 3] *
point[:, :, :,
4]) *

122 point[:, :, :, 9]
* creep[:, :,
:, 2])

123 # if torch.isnan(fx).any():
124 # print ("fx contains NaN")
125 # elif torch.isinf(fx).any():
126 # print ("fx contains Inf")
127 # else:
128 # print ("fx does not contain NaN or Inf")
129 # if torch.isnan(fy).any():
130 # print ("fy contains NaN")
131 # elif torch.isinf(fy).any():
132 # print ("fy contains Inf")
133 # else:
134 # print ("fy does not contain NaN or Inf")
135 fnorm = torch.sqrt(fx**2 + fy**2) / (nu * point[:, :, :,

1])
136 # if torch.isnan(fnorm).any():
137 # print ("fnorm contains NaN")
138 # elif torch.isinf(fnorm).any():
139 # print ("fnorm contains Inf")
140 # else:
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141 # print ("fnorm does not contain NaN or Inf")
142 factor = torch.where(fnorm < 3, 1 - fnorm / 3. + fnorm **2

/ 27., 1 / fnorm)
143 fx = fx * factor
144 fy = fy * factor
145 # if torch.isnan(fx).any():
146 # print ("fx contains NaN")
147 # elif torch.isinf(fx).any():
148 # print ("fx contains Inf")
149 # else:
150 # print ("fx does not contain NaN or Inf")
151 # if torch.isnan(fy).any():
152 # print ("fy contains NaN")
153 # elif torch.isinf(fy).any():
154 # print ("fy contains Inf")
155 # else:
156 # print ("fy does not contain NaN or Inf")
157

158 data = torch.zeros((batch_size , segment_length , 4, 8),
dtype=torch.float32 , device=device)

159 data[:, :, :, 0] = point[:, :, :, 5]
160 data[:, :, :, 1] = point[:, :, :, 6]
161 data[:, :, :, 7] = point[:, :, :, 10]
162 for i in [0, 2]:
163 phi = y[:, :, 21 + i]
164

165 mask = point[:, :, i, 1] > 0
166 tsin = torch.sin(point[:, :, i, 2] + phi)
167 tcos = torch.cos(point[:, :, i, 2] + phi)
168 data[:, :, i, 2] = (-point[:, :, i, 1] * tsin[:,

:])
169 data[:, :, i, 3] = (point[:, :, i, 1] * tcos[:, :])
170 data[:, :, i, 4] = (fx[:, :, i])
171 data[:, :, i, 5] = (fy[:, :, i] * tcos[:, :])
172 data[:, :, i, 6] = (fy[:, :, i] * tsin[:, :])
173 # data[:, :, i, 2][ mask] = (-point[:, :, i, 1] *

tsin[:, :])[mask]
174 # data[:, :, i, 3][ mask] = (point[:, :, i, 1] *

tcos[:, :])[mask]
175 # data[:, :, i, 4][ mask] = (fx[:, :, i])[mask]
176 # data[:, :, i, 5][ mask] = (fy[:, :, i] * tcos[:,

:])[mask]
177 # data[:, :, i, 6][ mask] = (fy[:, :, i] * tsin[:,

:])[mask]
178

179 mask = point[:, :, i + 1, 1] > 0
180 tsin = torch.sin(point[:, :, i + 1, 2] - phi)
181 tcos = torch.cos(point[:, :, i + 1, 2] - phi)
182 data[:, :, i + 1, 2] = (point[:, :, i + 1, 1] *

tsin[:, :])
183 data[:, :, i + 1, 3] = (point[:, :, i + 1, 1] *

tcos[:, :])
184 data[:, :, i + 1, 4] = (fx[:, :, i + 1])
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185 data[:, :, i + 1, 5] = (fy[:, :, i + 1] * tcos[:,
:])

186 data[:, :, i + 1, 6] = (-fy[:, :, i + 1] * tsin[:,
:])

187 # data[:, :, i + 1, 2][ mask] = (point[:, :, i + 1,
1] * tsin[:, :])[mask]

188 # data[:, :, i + 1, 3][ mask] = (point[:, :, i + 1,
1] * tcos[:, :])[mask]

189 # data[:, :, i + 1, 4][ mask] = (fx[:, :, i +
1])[mask]

190 # data[:, :, i + 1, 5][ mask] = (fy[:, :, i + 1] *
tcos[:, :])[mask]

191 # data[:, :, i + 1, 6][ mask] = (-fy[:, :, i + 1] *
tsin[:, :])[mask]

192 # if torch.isnan(data).any():
193 # print ("data contains NaN")
194 # elif torch.isinf(data).any():
195 # print ("data contains Inf")
196 # else:
197 # print ("data does not contain NaN or Inf")
198

199 acc_FW_lateral = (data[:, :, 0, 5] + data[:, :, 1, 5] +
data[:, :, 0, 2] + data[:, :, 1, 2] -

200 2 * k1 * (y[:, :, 1] - y[:, :, 9] - b * y[:, :,
11] - h1 * y[:, :, 13])) / mw

201 acc_FW_vertical = (data[:, :, 0, 6] + data[:, :, 1, 6] +
data[:, :, 0, 3] + data[:, :, 1, 3] - Nz_static +

202 2 * k3 * (y[:, :, 25] - y[:, :, 17])) / mw
203 acc_RW_lateral = (data[:, :, 2, 5] + data[:, :, 3, 5] +

data[:, :, 2, 2] + data[:, :, 3, 2] -
204 2 * k1 * (y[:, :, 5] - y[:, :, 9] + b * y[:, :,

11] - h1 * y[:, :, 13])) / mw
205 acc_RW_vertical = (data[:, :, 2, 6] + data[:, :, 3, 6] +

data[:, :, 2, 3] + data[:, :, 3, 3] - Nz_static +
206 2 * k3 * (y[:, :, 25] - y[:, :, 19])) / mw
207

208 acc_calculated = torch.stack([ acc_FW_lateral ,
acc_FW_vertical , acc_RW_lateral , acc_RW_vertical],
dim =2)

209 # if torch.isnan(acc_calculated).any():
210 # print (" acc_calculated contains NaN")
211 # elif torch.isinf(acc_calculated).any():
212 # print (" acc_calculated contains Inf")
213 # else:
214 # print (" acc_calculated does not contain NaN or

Inf")
215 return acc_calculated

Listing E.3: p2p_acc_calc_tensor.py

E.4 spring_damper_system.py
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1 import numpy as np
2 import pandas as pd
3 import scipy
4 from scipy.interpolate import interp1d
5 from scipy.integrate import odeint
6 import matplotlib.pyplot as plt
7 import seaborn as sns
8 from plotnine import ggplot , aes , geom_point , theme , labs
9 from tqdm import tqdm

10 import time
11 from IPython.display import display , clear_output
12

13 import sklearn
14 from sklearn.model_selection import train_test_split
15 from sklearn.preprocessing import StandardScaler
16 from sklearn.model_selection import KFold
17 from sklearn.linear_model import LinearRegression
18 from sklearn.metrics import mean_squared_error , mean_absolute_error
19

20 import torch
21 import torch.nn as nn
22 import torch.optim as optim
23 from torch.utils.data import DataLoader , TensorDataset
24 import torch.nn.functional as F
25 from torch.optim.lr_scheduler import StepLR
26

27 class CNN(nn.Module):
28 ’’’
29 This class defines a 1D CNN model with a variable number of

convolutional layers , kernel numbers , and kernel sizes ,
etc.

30 Keep all kernel sizes odd numbers and with at least one kernel
size larger than 200m/resolution.

31 ’’’
32 def __init__(self , resolution , device , input_dim , output_dim ,

num_layers , conv_kernel_numbers ,
33 conv_kernel_sizes , activation ,

dropout):
34 super(CNN , self).__init__ ()
35 assert len(conv_kernel_numbers) == num_layers , "The length

of conv_kernel_numbers not equals to num_layers."
36 assert len(conv_kernel_sizes) == num_layers , "The length

of conv_kernel_sizes not equals to num_layers."
37 assert conv_kernel_numbers [-1] == output_dim , "The last

element of conv_kernel_numbers should be equal to
output_dim."

38 for kernel_size in conv_kernel_sizes:
39 assert kernel_size % 2 == 1, "All kernel sizes should

be odd numbers."
40

41 self.resolution = resolution
42 self.device = device
43 self.input_dim = input_dim
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44 self.output_dim = output_dim
45 self.num_layers = num_layers
46 self.conv_kernel_numbers = conv_kernel_numbers
47 self.conv_kernel_sizes = conv_kernel_sizes
48

49 layers = []
50 for i in range(num_layers -1):
51 layers.append(nn.Conv1d(in_channels=input_dim if i ==

0 else conv_kernel_numbers[i-1],
out_channels=conv_kernel_numbers[i],

52 kernel_size=conv_kernel_sizes[i],
stride=1, padding=0,
bias=True))

53

54 # layers.append(nn.BatchNorm1d(conv_kernel_numbers[i]))
55

56 if activation == ’relu’:
57 layers.append(nn.ReLU())
58 elif activation == ’elu’:
59 layers.append(nn.ELU())
60 elif activation == ’leaky_relu ’:
61 layers.append(nn.LeakyReLU ())
62 elif activation == ’sigmoid ’:
63 layers.append(nn.Sigmoid ())
64 elif activation == ’tanh’:
65 layers.append(nn.Tanh())
66 else:
67 raise ValueError(’Activation function not

supported.’)
68

69 # layers.append(nn.Dropout(p=dropout))
70

71 self.conv_layers = nn.Sequential (* layers)
72 self.output_layer =

nn.Conv1d(in_channels=conv_kernel_numbers [-2] if
num_layers > 1 else input_dim ,

73 out_channels=output_dim ,
kernel_size=conv_kernel_sizes [-1],
stride=1, padding=0,
bias=True)

74

75 def forward(self , x):
76 ’’’
77 Define the forward pass of the 1D CNN model.
78 ’’’
79 x = self.conv_layers(x)
80 x = self.output_layer(x)
81

82 return x
83

84 def dataset_reshape(self , segment_length , segment_step ,
X_train , y_train , X_val , y_val , X_test , y_test):

85 ’’’
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86 Reshape the input and target datasets into 3D arrays for
the 1D CNN model.

87 The reshaping pattern depends on the network architecture.
88 ’’’
89 print("Segment length:", segment_length / 1000, "km")
90 self.segment_size_X = int(segment_length / self.resolution)
91 print("Segment size of X:", self.segment_size_X)
92 self.segment_size_y = self.segment_size_X
93 for i in range(self.num_layers):
94 self.segment_size_y = self.segment_size_y -

(self.conv_kernel_sizes[i] - 1)
95 print("Segment size of y:", self.segment_size_y)
96

97 # Reshape the training dataset into a new 3D tensor
(segments , channels , time series)

98 num_segments_train = (X_train.shape [0] -
self.segment_size_X) // segment_step + 1

99 X_train_3d = np.zeros(( num_segments_train , self.input_dim ,
self.segment_size_X))

100 y_train_3d = np.zeros(( num_segments_train ,
self.output_dim , self.segment_size_y))

101 for i in tqdm(range(num_segments_train)):
102 X_train_3d[i, :, :] = X_train.iloc[i * segment_step :

i * segment_step + self.segment_size_X , :].T
103 y_train_3d[i, :, :] = y_train.iloc[
104 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step :
105 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step + self.segment_size_y , :].T
106 X_train_3d = torch.from_numpy(X_train_3d).float()
107 y_train_3d = torch.from_numpy(y_train_3d).float()
108

109 # Reshape the validation dataset into a new 3D tensor
(segments , channels , time series)

110 num_segments_val = (X_val.shape [0] - self.segment_size_X)
// segment_step + 1

111 X_val_3d = np.zeros (( num_segments_val , self.input_dim ,
self.segment_size_X))

112 y_val_3d = np.zeros (( num_segments_val , self.output_dim ,
self.segment_size_y))

113 for i in tqdm(range(num_segments_val)):
114 X_val_3d[i, :, :] = X_val.iloc[i * segment_step : i *

segment_step + self.segment_size_X , :].T
115 y_val_3d[i, :, :] = y_val.iloc[
116 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step :
117 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step + self.segment_size_y , :].T
118 X_val_3d = torch.from_numpy(X_val_3d).float()
119 y_val_3d = torch.from_numpy(y_val_3d).float()
120

121 # Reshape the test dataset into a new 3D tensor (segments ,
channels , time series)

122 # Without overlapping and gap between y’s segments
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123 num_segments_test = (X_test.shape [0] -
(self.segment_size_X - self.segment_size_y)) //
self.segment_size_y

124 X_test_3d = np.zeros(( num_segments_test , self.input_dim ,
self.segment_size_X))

125 for i in tqdm(range(num_segments_test)):
126 X_test_3d[i, :, :] = X_test.iloc[i *

self.segment_size_y : i * self.segment_size_y +
self.segment_size_X , :].T

127 X_test_cut = X_test.iloc[(self.segment_size_X -
self.segment_size_y) // 2 :

128 (self.segment_size_X -
self.segment_size_y) // 2
+ num_segments_test *
self.segment_size_y , :

129 ]. values
130 y_test_cut = y_test.iloc[(self.segment_size_X -

self.segment_size_y) // 2 :
131 (self.segment_size_X -

self.segment_size_y) // 2
+ num_segments_test *
self.segment_size_y , :

132 ]. values
133 X_test_3d = torch.from_numpy(X_test_3d).float()
134 X_test_cut = torch.from_numpy(X_test_cut).float()
135 y_test_cut = torch.from_numpy(y_test_cut).float()
136

137 return X_train_3d , y_train_3d , X_val_3d , y_val_3d ,
X_test_3d , X_test_cut , y_test_cut

138

139 def set_optimizer(self , criterion_type="mse",
140 optimizer_type="adam", learning_rate =1e-3,

weight_decay =0.0):
141 ’’’
142 Set the optimizer for the CNN model.
143 ’’’
144 self.criteron_type = criterion_type
145 if criterion_type == ’mse’:
146 self.criterion = nn.MSELoss () # MSE
147 elif criterion_type == ’l1’:
148 self.criterion = nn.L1Loss () # MAE
149 else:
150 raise ValueError(’Criterion not supported.’)
151

152 if optimizer_type == ’adam’:
153 self.optimizer = optim.Adam(self.parameters (),

lr=learning_rate , weight_decay=weight_decay)
154 elif optimizer_type == ’sgd’:
155 self.optimizer = optim.SGD(self.parameters (),

lr=learning_rate , weight_decay=weight_decay)
156 elif optimizer_type == ’rmsprop ’:
157 self.optimizer = optim.RMSprop(self.parameters (),

lr=learning_rate , weight_decay=weight_decay)
158 else:
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159 raise ValueError(’Optimizer not supported.’)
160

161 self.scheduler = StepLR(self.optimizer , step_size =100,
gamma =0.8)

162

163 def train_model(self , X_train_3d , y_train_3d , X_val_3d ,
y_val_3d ,

164 epochs =1000 ,
165 patience =10, save_gap =10):
166

167 train_losses = []
168 val_losses = []
169 best_val_loss = float(’inf’)
170 epochs_since_save = 0
171 epochs_no_improve = 0
172 estimation_criterion = nn.L1Loss ()
173

174 for epoch in range(epochs):
175 epochs_since_save += 1
176

177 self.train ()
178 self.optimizer.zero_grad ()
179 output = self(X_train_3d)
180 loss = self.criterion(output , y_train_3d)
181 loss.backward ()
182 self.optimizer.step()
183

184 self.eval()
185 with torch.no_grad ():
186 output_train = self(X_train_3d)
187 train_loss_epoch =

estimation_criterion(output_train ,
y_train_3d).item()

188 output_val = self(X_val_3d)
189 val_loss_epoch = estimation_criterion(output_val ,

y_val_3d).item()
190

191 train_losses.append(train_loss_epoch)
192 val_losses.append(val_loss_epoch)
193

194 print(f"Epoch {epoch +1}/{ epochs}, Training Loss:
{train_losses [-1] * 1e3} mm, Validation Loss:
{val_losses [-1] *1e3} mm , Learning Rate:
{self.scheduler.get_last_lr ()[0]}")

195

196 # Early stopping logic
197 if val_losses [-1] < best_val_loss:
198 print("Better results found!")
199 best_val_loss = val_losses [-1]
200 epochs_no_improve = 0
201 if epochs_since_save > save_gap or epoch == 0:
202 print(f’Model and optimizer state_dict saved

after {epoch +1} epochs!’)
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203 torch.save(self.state_dict (),
’model_state_dict.pth’)

204 torch.save(self.optimizer.state_dict (),
’optimizer_state_dict.pth’)

205 torch.save(val_losses [-1], ’best_val_loss.pth’)
206 epochs_since_save = 0
207

208 else:
209 epochs_no_improve += 1
210 if epochs_no_improve > patience:
211 print(f’Early stopping triggered after

{epoch +1} epochs!’)
212 break
213

214 # self.scheduler.step()
215

216 # Load the best model and optimizer state_dict
217 self.load_state_dict(torch.load(’model_state_dict.pth’))
218 self.optimizer.load_state_dict(torch.load(’optimizer_state_dict.pth’))
219

220 best_val_loss = torch.load(’best_val_loss.pth’)
221 print("Best validation loss:", best_val_loss * 1e3, "mm")
222

223 return train_losses , val_losses
224

225 def evaluate_model(self , X_test_3d , X_test_cut , y_test_cut ,
X_train , y_train):

226 ’’’
227 Evaluate the CNN model on the test dataset.
228 ’’’
229 # Make predictions on the test set
230 self.eval()
231 with torch.no_grad ():
232 y_test_pred = self(X_test_3d[0, :,

:]. unsqueeze (0)).squeeze (0).T
233 for i in range(1, X_test_3d.shape [0]):
234 y_test_pred = torch.cat(( y_test_pred ,

self(X_test_3d[i, :,
:]. unsqueeze (0)).squeeze (0).T), dim=0)

235

236 # Baseline of simple average: the mean of training set’s
target values

237 pred_baseline_sa =
torch.tensor(np.array(y_train.mean(axis =0))).float().to(self.device)
* torch.ones_like(y_test_cut)

238

239 # Baseline of linear regression: fit a linear regression
model on the training set

240 model_lr = LinearRegression ()
241 model_lr.fit(X_train , y_train)
242 pred_baseline_lr =

torch.tensor(model_lr.predict(X_test_cut.cpu().numpy())).float().to(self.device)
243

244 # Calculate the error of model and the baselines
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245

246 # estimation_criterion = nn.L1Loss ()
247 errors_model =

np.array ([ mean_absolute_error(y_test_pred [:,i].cpu().numpy(),
y_test_cut [:, i].cpu().numpy()) for i in
range(self.output_dim)])

248 # errors_model =
np.array ([ estimation_criterion(y_test_pred [:,i],
y_test_actual [:, i]).item() for i in
range(self.output_dim)])

249 print("Model errors on test set:", errors_model * 1e3 ,
"mm")

250 print("Model mean error on test set:", errors_model.mean()
* 1e3 , "mm")

251

252 errors_baseline_avg =
np.array ([ mean_absolute_error(pred_baseline_sa [:,i].cpu().numpy(),
y_test_cut [:, i].cpu().numpy()) for i in
range(self.output_dim)])

253 # errors_baseline =
np.array ([ estimation_criterion(baseline[:,i],
y_test_actual [:, i]).item() for i in
range(self.output_dim)])

254 print("Baseline errors on test set (simple average):",
errors_baseline_avg * 1e3, "mm")

255 print("Baseline mean error on test set (simple average):",
errors_baseline_avg.mean() * 1e3, "mm")

256

257 errors_baseline_lr =
np.array ([ mean_absolute_error(pred_baseline_lr [:,i].cpu().numpy(),
y_test_cut [:, i].cpu().numpy()) for i in
range(self.output_dim)])

258 print("Baseline errors on test set (linear regression):",
errors_baseline_lr * 1e3 , "mm")

259 print("Baseline mean error on test set (linear
regression):", errors_baseline_lr.mean() * 1e3 , "mm")

260

261 return y_test_pred , pred_baseline_sa , pred_baseline_lr ,
errors_model , errors_baseline_avg , errors_baseline_lr

262

263

264 class PINN(nn.Module):
265 ’’’
266 This class defines a 1D CNN model with a variable number of

convolutional layers , kernel numbers , and kernel sizes ,
etc.

267 Keep all kernel sizes odd numbers and with at least one kernel
size larger than 200m/resolution.

268 ’’’
269 def __init__(self , resolution , device , input_dim , output_dim ,

num_layers , conv_kernel_numbers ,
270 conv_kernel_sizes , activation ,

dropout):
271 super(PINN , self).__init__ ()
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272 assert len(conv_kernel_numbers) == num_layers , "The length
of conv_kernel_numbers not equals to num_layers."

273 assert len(conv_kernel_sizes) == num_layers , "The length
of conv_kernel_sizes not equals to num_layers."

274 assert conv_kernel_numbers [-1] == output_dim , "The last
element of conv_kernel_numbers should be equal to
output_dim."

275 for kernel_size in conv_kernel_sizes:
276 assert kernel_size % 2 == 1, "All kernel sizes should

be odd numbers."
277

278 self.resolution = resolution
279 self.device = device
280 self.input_dim = input_dim
281 self.output_dim = output_dim
282 self.num_layers = num_layers
283 self.conv_kernel_numbers = conv_kernel_numbers
284 self.conv_kernel_sizes = conv_kernel_sizes
285

286 layers = []
287 for i in range(num_layers -1):
288 layers.append(nn.Conv1d(in_channels=input_dim if i ==

0 else conv_kernel_numbers[i-1],
out_channels=conv_kernel_numbers[i],

289 kernel_size=conv_kernel_sizes[i],
stride=1, padding=0,
bias=True))

290

291 # layers.append(nn.BatchNorm1d(conv_kernel_numbers[i]))
292

293 if activation == ’relu’:
294 layers.append(nn.ReLU())
295 elif activation == ’elu’:
296 layers.append(nn.ELU())
297 elif activation == ’leaky_relu ’:
298 layers.append(nn.LeakyReLU ())
299 elif activation == ’sigmoid ’:
300 layers.append(nn.Sigmoid ())
301 elif activation == ’tanh’:
302 layers.append(nn.Tanh())
303 else:
304 raise ValueError(’Activation function not

supported.’)
305

306 # layers.append(nn.Dropout(p=dropout))
307

308 self.conv_layers = nn.Sequential (* layers)
309 self.output_layer =

nn.Conv1d(in_channels=conv_kernel_numbers [-2] if
num_layers > 1 else input_dim ,

310 out_channels=output_dim ,
kernel_size=conv_kernel_sizes [-1],
stride=1, padding=0,
bias=True)
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311

312 def forward(self , x):
313 ’’’
314 Define the forward pass of the 1D CNN model.
315 ’’’
316 x = self.conv_layers(x)
317 x = self.output_layer(x)
318

319 return x
320

321 def dataset_reshape(self , segment_length , segment_step ,
X_train , y_train , X_val , y_val , X_test , y_test):

322 ’’’
323 Reshape the input and target datasets into 3D arrays for

the 1D CNN model.
324 The reshaping pattern depends on the network architecture.
325 ’’’
326 print("Segment length:", segment_length / 1000, "km")
327 self.segment_size_X = int(segment_length / self.resolution)
328 print("Segment size of X:", self.segment_size_X)
329 self.segment_size_y = self.segment_size_X
330 for i in range(self.num_layers):
331 self.segment_size_y = self.segment_size_y -

(self.conv_kernel_sizes[i] - 1)
332 print("Segment size of y:", self.segment_size_y)
333

334 # Reshape the training dataset into a new 3D tensor
(segments , channels , time series)

335 num_segments_train = (X_train.shape [0] -
self.segment_size_X) // segment_step + 1

336 X_train_3d = np.zeros(( num_segments_train , self.input_dim ,
self.segment_size_X))

337 y_train_3d = np.zeros(( num_segments_train ,
self.output_dim , self.segment_size_y))

338 for i in tqdm(range(num_segments_train)):
339 X_train_3d[i, :, :] = X_train.iloc[i * segment_step :

i * segment_step + self.segment_size_X , :].T
340 y_train_3d[i, :, :] = y_train.iloc[
341 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step :
342 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step + self.segment_size_y , :].T
343 X_train_3d = torch.from_numpy(X_train_3d).float()
344 y_train_3d = torch.from_numpy(y_train_3d).float()
345

346 # Reshape the validation dataset into a new 3D tensor
(segments , channels , time series)

347 num_segments_val = (X_val.shape [0] - self.segment_size_X)
// segment_step + 1

348 X_val_3d = np.zeros (( num_segments_val , self.input_dim ,
self.segment_size_X))

349 y_val_3d = np.zeros (( num_segments_val , self.output_dim ,
self.segment_size_y))

350 for i in tqdm(range(num_segments_val)):
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351 X_val_3d[i, :, :] = X_val.iloc[i * segment_step : i *
segment_step + self.segment_size_X , :].T

352 y_val_3d[i, :, :] = y_val.iloc[
353 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step :
354 (self.segment_size_X - self.segment_size_y) // 2 +

i * segment_step + self.segment_size_y , :].T
355 X_val_3d = torch.from_numpy(X_val_3d).float()
356 y_val_3d = torch.from_numpy(y_val_3d).float()
357

358 # Reshape the test dataset into a new 3D tensor (segments ,
channels , time series)

359 # Without overlapping and gap between y’s segments
360 num_segments_test = (X_test.shape [0] -

(self.segment_size_X - self.segment_size_y)) //
self.segment_size_y

361 X_test_3d = np.zeros(( num_segments_test , self.input_dim ,
self.segment_size_X))

362 for i in tqdm(range(num_segments_test)):
363 X_test_3d[i, :, :] = X_test.iloc[i *

self.segment_size_y : i * self.segment_size_y +
self.segment_size_X , :].T

364 X_test_cut = X_test.iloc[(self.segment_size_X -
self.segment_size_y) // 2 :

365 (self.segment_size_X -
self.segment_size_y) // 2
+ num_segments_test *
self.segment_size_y , :

366 ]. values
367 y_test_cut = y_test.iloc[(self.segment_size_X -

self.segment_size_y) // 2 :
368 (self.segment_size_X -

self.segment_size_y) // 2
+ num_segments_test *
self.segment_size_y , :

369 ]. values
370 X_test_3d = torch.from_numpy(X_test_3d).float()
371 X_test_cut = torch.from_numpy(X_test_cut).float()
372 y_test_cut = torch.from_numpy(y_test_cut).float()
373

374 return X_train_3d , y_train_3d , X_val_3d , y_val_3d ,
X_test_3d , X_test_cut , y_test_cut

375

376 def set_optimizer(self , criterion_type="mse",
377 optimizer_type="adam", learning_rate =1e-3,

weight_decay =0.0):
378 ’’’
379 Set the optimizer for the CNN model.
380 ’’’
381 self.criteron_type = criterion_type
382 if criterion_type == ’mse’:
383 self.criterion = nn.MSELoss () # MSE
384 elif criterion_type == ’l1’:
385 self.criterion = nn.L1Loss () # MAE
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386 else:
387 raise ValueError(’Criterion not supported.’)
388

389 if optimizer_type == ’adam’:
390 self.optimizer = optim.Adam(self.parameters (),

lr=learning_rate , weight_decay=weight_decay)
391 elif optimizer_type == ’sgd’:
392 self.optimizer = optim.SGD(self.parameters (),

lr=learning_rate , weight_decay=weight_decay)
393 elif optimizer_type == ’rmsprop ’:
394 self.optimizer = optim.RMSprop(self.parameters (),

lr=learning_rate , weight_decay=weight_decay)
395 else:
396 raise ValueError(’Optimizer not supported.’)
397

398 self.scheduler = StepLR(self.optimizer , step_size =100,
gamma =0.8)

399

400 def phy_loss(self , m, k, c, pos , irr , vel , acc):
401 ’’’
402 Define the physics loss for the CNN model.
403 ’’’
404 # ODE: m * acc + k * (pos - irr) + c * v = 0
405 return np.mean((m * acc + k * (pos - irr) + c * vel) ** 2)
406

407 def train_model(self , X_train_3d , y_train_3d , X_val_3d ,
y_val_3d ,

408 phy_weight , m, k, c,
409 epochs =1000 ,
410 patience =10, save_gap =10):
411

412 train_losses = []
413 estimation_losses = []
414 physics_losses = []
415 val_losses = []
416 best_val_loss = float(’inf’)
417 epochs_since_save = 0
418 epochs_no_improve = 0
419 estimation_criterion = nn.L1Loss ()
420

421 for epoch in range(epochs):
422 epochs_since_save += 1
423

424 self.train ()
425 self.optimizer.zero_grad ()
426 output = self(X_train_3d)
427 loss_estimation = estimation_criterion(output ,

y_train_3d)
428 # print("Loss of estimation :", loss_estimation.item())
429 estimation_losses.append(loss_estimation.item())
430 irr_matching = output[:, 0, :]. detach ().cpu().numpy()
431 pos_matching = X_train_3d [:, 0, (X_train_3d.size (2) -

output.size (2)) // 2 : (X_train_3d.size (2) -
output.size (2)) // 2 +
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output.size (2)]. detach ().cpu().numpy()
432 vel_matching = X_train_3d [:, 1, (X_train_3d.size (2) -

output.size (2)) // 2 : (X_train_3d.size (2) -
output.size (2)) // 2 +
output.size (2)]. detach ().cpu().numpy()

433 vel_matching_forward = X_train_3d [:, 1,
(X_train_3d.size (2) - output.size (2)) // 2 + 1 :
(X_train_3d.size (2) - output.size (2)) // 2 + 1 +
output.size (2)]. detach ().cpu().numpy()

434 acc_matching = vel_matching_forward - vel_matching
435 loss_physics_info = self.phy_loss(m, k, c,

pos_matching , irr_matching , vel_matching ,
acc_matching)

436 # print("Loss of physics:", loss_physics_info)
437 physics_losses.append(loss_physics_info)
438 loss = loss_estimation + phy_weight * loss_physics_info
439 loss.backward ()
440 self.optimizer.step()
441

442 self.eval()
443 with torch.no_grad ():
444 output_train = self(X_train_3d)
445 train_loss_epoch =

estimation_criterion(output_train ,
y_train_3d).item()

446 output_val = self(X_val_3d)
447 val_loss_epoch = estimation_criterion(output_val ,

y_val_3d).item()
448

449 train_losses.append(train_loss_epoch)
450 val_losses.append(val_loss_epoch)
451

452 print(f"Epoch {epoch +1}/{ epochs}, Training Loss:
{train_losses [-1] * 1e3} mm, Validation Loss:
{val_losses [-1] *1e3} mm , Learning Rate:
{self.scheduler.get_last_lr ()[0]}")

453

454 # Early stopping logic
455 if val_losses [-1] < best_val_loss:
456 print("Better results found!")
457 best_val_loss = val_losses [-1]
458 epochs_no_improve = 0
459 if epochs_since_save > save_gap or epoch == 0:
460 print(f’Model and optimizer state_dict saved

after {epoch +1} epochs!’)
461 torch.save(self.state_dict (),

’model_state_dict.pth’)
462 torch.save(self.optimizer.state_dict (),

’optimizer_state_dict.pth’)
463 torch.save(val_losses [-1], ’best_val_loss.pth’)
464 epochs_since_save = 0
465

466 else:
467 epochs_no_improve += 1
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468 if epochs_no_improve > patience:
469 print(f’Early stopping triggered after

{epoch +1} epochs!’)
470 break
471

472 # self.scheduler.step()
473

474 # Load the best model and optimizer state_dict
475 self.load_state_dict(torch.load(’model_state_dict.pth’))
476 self.optimizer.load_state_dict(torch.load(’optimizer_state_dict.pth’))
477

478 best_val_loss = torch.load(’best_val_loss.pth’)
479 print("Best validation loss:", best_val_loss * 1e3, "mm")
480

481 return train_losses , val_losses , estimation_losses ,
physics_losses

482

483 def evaluate_model(self , X_test_3d , X_test_cut , y_test_cut ,
X_train , y_train):

484 ’’’
485 Evaluate the CNN model on the test dataset.
486 ’’’
487 # Make predictions on the test set
488 self.eval()
489 with torch.no_grad ():
490 y_test_pred = self(X_test_3d[0, :,

:]. unsqueeze (0)).squeeze (0).T
491 for i in range(1, X_test_3d.shape [0]):
492 y_test_pred = torch.cat(( y_test_pred ,

self(X_test_3d[i, :,
:]. unsqueeze (0)).squeeze (0).T), dim=0)

493

494 # Baseline of simple average: the mean of training set’s
target values

495 pred_baseline_sa =
torch.tensor(np.array(y_train.mean(axis =0))).float().to(self.device)
* torch.ones_like(y_test_cut)

496

497 # Baseline of linear regression: fit a linear regression
model on the training set

498 model_lr = LinearRegression ()
499 model_lr.fit(X_train , y_train)
500 pred_baseline_lr =

torch.tensor(model_lr.predict(X_test_cut.cpu().numpy())).float().to(self.device)
501

502 # Calculate the error of model and the baselines
503

504 # estimation_criterion = nn.L1Loss ()
505 errors_model =

np.array ([ mean_absolute_error(y_test_pred [:,i].cpu().numpy(),
y_test_cut [:, i].cpu().numpy()) for i in
range(self.output_dim)])

506 # errors_model =
np.array ([ estimation_criterion(y_test_pred [:,i],
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y_test_actual [:, i]).item() for i in
range(self.output_dim)])

507 print("Model errors on test set:", errors_model * 1e3 ,
"mm")

508 print("Model mean error on test set:", errors_model.mean()
* 1e3 , "mm")

509

510 errors_baseline_avg =
np.array ([ mean_absolute_error(pred_baseline_sa [:,i].cpu().numpy(),
y_test_cut [:, i].cpu().numpy()) for i in
range(self.output_dim)])

511 # errors_baseline =
np.array ([ estimation_criterion(baseline[:,i],
y_test_actual [:, i]).item() for i in
range(self.output_dim)])

512 print("Baseline errors on test set (simple average):",
errors_baseline_avg * 1e3, "mm")

513 print("Baseline mean error on test set (simple average):",
errors_baseline_avg.mean() * 1e3, "mm")

514

515 errors_baseline_lr =
np.array ([ mean_absolute_error(pred_baseline_lr [:,i].cpu().numpy(),
y_test_cut [:, i].cpu().numpy()) for i in
range(self.output_dim)])

516 print("Baseline errors on test set (linear regression):",
errors_baseline_lr * 1e3 , "mm")

517 print("Baseline mean error on test set (linear
regression):", errors_baseline_lr.mean() * 1e3 , "mm")

518

519 return y_test_pred , pred_baseline_sa , pred_baseline_lr ,
errors_model , errors_baseline_avg , errors_baseline_lr

Listing E.4: spring_damper_system.py
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