
Structured Sparsity for Efficiency in
Model Inference

Semester Project

David Alexander Danhofer
ddanhofer@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Peter Belcák

Prof. Dr. Roger Wattenhofer

July 2024



Structured sparsity for efficiency in model inference
1st David Danhofer

Department of Computer Science
ETH Zürich

Zürich, Switzerland
ddanhofer@ethz.ch

Abstract—Repeated use of vision models for inference or deploy-
ment in resource-constrained environments necessitates effective
acceleration techniques. This paper proposes a novel method
to learn structured sparsity patterns enabling the utilization of
hardware accelerations for regularly sparse matrix multiplications.
The approach achieves an almost two-fold speed-up during
inference without significantly affecting model performance while
leaving the original model weights unchanged.

Index Terms—computer vision, sparsity, efficiency

I. INTRODUCTION

With ever more models used in production settings it
becomes increasingly interesting to look for ways to reduce
resource spending over the model lifetime. This can be achieved
by reducing the inference cost of the model by learning a
modification of the model once before deployment reducing
inference costs, i.e., a sparse masking of the weights. This way
the dense matrix operations usually required can be replaced by
cheaper and faster operations on sparse matrices. While many
works have demonstrated that sparse (pruned) submodels can
solve the same task at almost no loss of performance [7] the
sparsity of the models does not necessarily have to adhere to
a specific pattern making it difficult to leverage computational
speedups. At the same time limiting the choices for these sparse
patterns means the patterns need to be chosen carefully with
the goal of minimizing the loss in inference performance in
mind. This paper proposes a novel method of learning regularly
sparse masking patterns for convolutions, a key building block
for computer vision models, outperforming available heuristics
and showing that regular sparsity masks can be learned without
significant performance loss for computer vision classification
tasks. The proposed method provides the additional advantage
of not changing the original set of pretrained weights.

II. BACKGROUND

In the following two relevant aspects for the subsequent
work will be introduced, i.e., the notion and utility of regular
sparsity and approaches centred around pruning Convolutional
Neural Networks (CNNs).

N:M sparsity. Regular sparsity to accelerate network infer-
ence has been introduced in [11] as N:M-sparsity requiring
N out of M contiguous elements to be zero. Beyond the
general case of N:M sparsity the work addresses the practically
interesting special case of 2:4 sparsity in which exactly half
of the weights are pruned as illustrated in Fig. 1. This setting
enables hardware acceleration via NVIDIA sparse tensor

cores available from the NVIDIA Ampere architecture on
via the TensorRT v8.0 library [10]. Since half the elements are
negligible the amount of data to load from memory is almost
halved number with the number of flops needed to conduct
an operation on the sparse matrix also scaling accordingly.
The challenge in turning a dense matrix into a 2:4 sparse
matrix, however, lies in selecting the most useful two of the
four weights in each quadruple. To this end [11] proposes
a permutation regime that allows for preserving the weights
based on magnitude and assessing the found pattern via a
scoring mechanism, i.e., the efficacy score. The functionality
is available via NVIDIA’s Apex library [9]. Notably, pruning
via Apex requires finetuning the network again after pruning
to achieve comparable inference performance to the dense
network in computer vision tasks, e.g., classification [10], [11].

Fig. 1. A 2:4 sparse matrix of floating point values and its equivalent structured
representation containing only the non-zero entries and 2-bit index values
taking up roughly only half the space

Pruning. There have been different approaches to prune
and this way accelerate CNNs including learned [14] and
static approaches, e.g., based on weight magnitude [10], [15],
methods that prune entire channels from a CNN [5], [14]
and methods aimed at exploiting more fine-grained structures
[3]. Ultimately, pruning can be used both as a regularizing
mechanism as well as a method of finding a subnetwork
less expensive at inference time while retaining the original
performance.

The proposed method aims to specifically tackle the question
of learning a regularly sparse subnetwork of a CNN substructure
while leaving the original weights unchanged and preserving
inference performance.

III. METHODS

In the following, first, the concept of modelling regular
sparsity in a network architecture needed for leveraging



hardware acceleration is introduced then its application to
convolutions in computer vision models is detailed out.

Modelling regular sparsity. As introduced in the previous
section regular sparsity shall be leveraged in the form of
2:4´sparsity. There are exactly 4·3

2! = 6 ways of choosing
two of the four elements in any quadruple. This can be
modelled via a categorical variable z with class probabilities
π1, ..., π6 s.t. each probability denotes the probability of
selecting the corresponding 2:4 sparsity pattern. Sampling
from this distribution yields a 6-dimensional one-hot vector
on the simplex ∆5 encoding this choice. Sampling from such
a categorical distribution can be performed efficiently via the
Gumbel-Max trick [2]

z = onehot(argmax
i

[gi + log πi]) (1)

where gi ∼ Gumbel(0, 1). Since the max operator is discrete
and thus not differentiable, however, this method cannot
be used directly in a neural network to be optimized via
backpropagation. Instead a differentiable approximation is
constructed by replacing the argmax operator with a softmax.
The choice vector y can now be drawn as follows

yi =
exp((gi + log πi)/τ)∑
k exp((gk + log πk)/τ)

(2)

yielding a Gumbel-Softmax (GS) distribution [6] over the six
choices additionally parametrized by the temperature parameter
τ . While not identical to a categorical distribution, the GS
distribution approximates a categorical distribution over the
choices for small temperature values, e.g., τ = 0.1. This
distribution allows for expressing the gradient as a deterministic
function of the choice weights π and an independent source
of random noise and thus gradient propagation through the
stochastic node [6]. By updating the class probabilities in the
distribution in respect to the classification objective the choice
weights can be optimized for the classification task and ideally
the optimal choice is selected. An element-wise multiplication
of the mask obtained this way yields the desired regularly
sparse matrix.

Regularly sparse convolutions. A discrete two-dimensional
convolution with a kernel H ∈ Rcin×h×w convolves an input
tensor X ∈ Rcin×b×d into an output tensor y ∈ Rb×d assuming
zero padding. In the below formulation the functions f and g
handle the padding for invalid combinations of input values,
i.e., out of range values, else return the sum of the two input
values:

yij =

cin∑
c=1

w∑
u=1

h∑
s=1

HcusXcf(i,u)g(j,s) (3)

Usually such a convolution is conducted with cout kernels
to obtain an output Y ∈ Rcout×b×d. Alternatively, this con-
volution can also be expressed as a matrix multiplication
between the same input X ∈ Rcin×b×d and a weight matrix
W ∈ Rcout×(cinwh) constructed from the cout kernels in the
convolutional layer:

Ỹ = WU(X) (4)

The unfold operator U(·) turns the matrix X into a flattened
matrix X̃ ∈ Rcinwh×L where L = (b+2p1−w−1)(d+2p2−
h− 1) denotes the number of blocks in the input. In the case
of zero padding, i.e., full padding, the padding sizes in the
respective dimensions for uneven kernel dimensions are p1 =
⌊w
2 ⌋ and p2 = ⌊h

2 ⌋ and thus L = bd. Reshaping Ỹ recovers
the exact same Y as in (3). To achieve a 2:4 sparse convolution
compatible with the accelerated matrix multiplication for a 2:4
sparse matrix a masking matrix M ∈ {0, 1}cout×cinwh whose
(block) entries are sampled according to a GS distribution as
described above is multiplied entry-wise to the weight matrix.

Ỹ = (M ⊙W ) U(X) (5)

The corresponding masking layer therefore learns as many GS
distributions as there are blocks of four elements in the matrix.
Note that this assumes that the product cout ·cinwh is a multiple
of four, since M can only contain a multiple of four entries
to account for the size of the sparsity pattern. If this is not the
case the matrix needs to be augmented column- or row-wise
to contain a multiple of 4 entries. A schematic illustration of
the two views on convolutions are illustrated in Fig. 2.

Fig. 2. Simplified visualizations of convolutions on single channel input X of
unspecified width and height and a single filter H as (a) “standard” convolution
with a moving filter and (b) as a matrix product between an unfolded input
X̃ and a weight matrix W derived from the filter

IV. RESULTS

Architectures. To evaluate whether the proposed perfor-
mance gain via regular sparsity can be achieved without
any significant loss in inference performance the following
three architectures were considered: ResNet [4], VGG [13]
and ShuffleNetV2 [8]. Each reformulated convolutional layer
was equipped with a trainable masking layer masking the
entries of the weight matrices in a 2:4 sparse fashion. The
pretrained weights of the original architectures were copied
into the modified models initializing the weights of the masking
layers randomly using Glorot initialization [1] and a normal
distribution with σ = 10−6 for weights and biases respectively.
Only the weights associated with the masking layers were
configured to be trainable leaving the set of pretrained weights
unchanged.

Classification task. The pretrained networks were retrained
and evaluated on the multi-class classification challenge pro-
vided by the ImageNet dataset [12]. The data set contains
approximately 1.2 million training images, 50k validation
and 100k test images. To ensure consistency between the
performance on the validation set and the reported accuracies
on the test set the unmodified architectures were evaluated



showing no significant differences (cf. Table I). Likewise
comparisons for the unmodified architectures and the modified
architectures without masking were conducted showing no
change in predictions and performance.

TABLE I
REPORTED AND VALIDATION CLASSIFICATION PERFORMANCE OF THE

UNMODIFIED ARCHITECTURES MEASURED AS THE TOP-k ACCURACY ON
IMAGENET [12]

Architecture Parameters
reported validation

top-1 top-5 top-1 top-5

ResNet-18 11.7M 69.76 89.08 69.69 89.06
ResNet-34 21.8M 73.31 91.42 73.24 91.42
ResNet-50 25.6M 76.13 92.86 75.99 92.92

VGG-16 138.2M 71.59 90.38 73.47 91.49
VGG-19 142.7M 72.38 90.88 74.17 91.85

ShuffleNetV2 2.0× 7.4M 76.23 93.00 76.24 92.91

Training. The pretrained modified architectures were trained
according to a generic training procedure using Stochastic
Gradient Descent (SGD) for optimization with a initial learning
rate η = 0.1, a momentum of β = 0.9 and weight decay with
a factor of λ = 10−4. The learning rate was adjusted by a step
scheduler with no warm-up period adjusting the learning rate
every 30 epochs by a factor of γ = 0.1. The training did not
make use of augmentation of the training data showing each
sample randomly cropped in every epoch exactly once.

Inference performance. Table II summarizes the results
obtained for the different architectures after the specified
number of epochs of training. The results show little to no
loss in performance for the ResNet architectures both in top-1
and top-5 accuracy after a short training period. In fact the
performance even increases for the top-1 accuracy. For the VGG
architecture on the other hand the performance worsened for
both the top-1 and the top-5 accuracy noticeably dropping by as
much as 6%. The tested ShuffleNet architecture converged to a
non-performant level and both measures of accuracy worsened
significantly. For all architectures convergence was reached
quickly and further training did not affect the performance
achieved.

TABLE II
VALIDATION CLASSIFICATION PERFORMANCE OF THE 2:4 SPARSE

NETWORKS MEASURED AS THE TOP-k ACCURACY ON IMAGENET [12] AND
PERCENTAGE-WISE CHANGE TO THE REPORTED ACCURACY AFTER THE

REFERENCE NUMBER OF EPOCHS TRAINED

Architecture
2:4 sparse

top-1 top-5 epochs

ResNet-18 70.05 (+0.4%) 88.16 (−1.0%) 10
ResNet-34 75.33 (+2.8%) 91.18 (−0.3%) 10
ResNet-50 78.51 (+3.1%) 92.84 (±0.0%) 10

VGG-16 67.79 (−5.3%) 87.12 (−3.6%) 12
VGG-19 68.63 (−6.2%) 87.63 (−3.6%) 12

ShuffleNetV2 2.0× 11.00 (−85.6%) 53.20 (−42.8%) 12

To compare the results of the proposed method to a state
of the art method of achieving a 2:4 sparse subnetwork two
variants of the heuristic proposed in [11], the so-called efficacy
score to evaluate permutations, available via NVIDIA’s Apex
library [9] were used in the same regime. To conform to
the idea of not altering the original weights the networks
were not retrained after pruning as originally proposed in
[11] and the results are aggregated in Table III. It can be
observed that for all variants of ResNet and VGG the loss
in performance is significant even in the better performing
variant allowing for channel permutations before selecting the
2:4 sparse subnetwork. The method proposed in this paper
always manages to learn a significantly better sparse pattern.
In the case of ShuffleNet, however, the efficacy score shows the
existence of a 2:4 sparse subnetwork of far better performance
than the one obtained by the proposed method. The failure
to converge on ShuffleNet therefore shows a need for further
research.

TABLE III
VALIDATION CLASSIFICATION PERFORMANCE OF THE 2:4 SPARSE

NETWORKS OBTAINED VIA THE APEX LIBRARY [11] MEASURED AS THE
TOP-k ACCURACY ON IMAGENET [12]. THE NETWORKS ARE COMPARED IN

TWO SETTINGS DISALLOWING AND ALLOWING PERMUTATIONS OF THE
CHANNELS BEFORE PRUNING.

2:4 sparse (Apex)

Architecture not permuted permuted

top-1 top-5 top-1 top-5

ResNet-18 17.20 36.13 21.48 41.76
ResNet-34 43.75 68.27 49.27 73.71
ResNet-50 30.09 52.52 48.37 72.47

VGG-16 42.11 67.17 49.43 75.15
VGG-19 58.99 82.16 63.99 85.64

ShuffleNetV2 2.0× 69.32 89.49 69.38 89.51

V. DISCUSSION

The results show that it is possible to learn regular sparsity
patterns that accelerate inference while not impeding classi-
fication performance with ShuffleNet being a notable outlier.
However, the effects are not the same across all architectures.
Specifically, the method appears to work better for ResNet-
based architectures than VGG-based architectures. Within one
family the change in performance does not necessarily correlate
with the size of the models. Likewise the change in top-1 and
top-5 accuracy is not consistently worse or better for one
metric over the other exhibiting different effects for ResNets
and VGGs. While clearly showing superior performance to
the heuristic provided by the efficacy score [11] the case of
ShuffleNet indicates that architectures can be difficult to learn a
sparsity pattern for despite this pattern existing. It is conceivable
that the training procedure significantly affects the obtained
patterns and different approaches would need to be tried out
for different model classes to verify this claim. Furthermore,
the proposed method allows for exchanging the underlying
weights against a new, updated, e.g., finetuned, weight set as it



does not rely on changing the weights. This only makes sense,
however, if similar underlying weights yield similar sparsity
patterns which is yet to be researched.

VI. CONCLUSION

In this paper, a novel method for accelerating inference in
computer vision architectures by a factor of close to 2× at little
to no performance loss by expressing convolutions as a 2:4
sparse matrix multiplication without changing the underlying
weights was presented. It has been shown empirically that
regular sparsity patterns can be learned that do not significantly
affect performance thus effectively leveraging the widely
available hardware acceleration provided by current hardware.

REFERENCES

[1] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks.

[2] E. J. Gumbel. Statistical Theory of Extreme Values and Some Practical
Applications: A Series of Lectures, volume 33. US Government Printing
Office, 1954.

[3] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and
connections for efficient neural network. Advances in neural information
processing systems, 28, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[5] Y. He, X. Zhang, and J. Sun. Channel Pruning for Accelerating Very
Deep Neural Networks. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 1398–1406, Venice, Oct. 2017. IEEE.

[6] E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with
Gumbel-Softmax, Aug. 2017.

[7] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the Value
of Network Pruning, Mar. 2019.

[8] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design. In V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision
– ECCV 2018, volume 11218, pages 122–138. Springer International
Publishing, Cham, 2018.

[9] {NVIDIA} Corporation. Apex (A PyTorch Extension) — Apex 0.1.0
documentation. https://nvidia.github.io/apex/, 2018.

[10] J. Pool, A. Sawarkar, and J. Rodge. Accelerating Inference with
Sparsity Using the NVIDIA Ampere Architecture and NVIDIA Ten-
sorRT. https://developer.nvidia.com/blog/accelerating-inference-with-
sparsity-using-ampere-and-tensorrt/, July 2021.

[11] J. Pool and C. Yu. Channel Permutations for N:M Sparsity. Advances
in neural information processing systems, 34:13316–13327, 2021.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211–252, Dec. 2015.

[13] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, Apr. 2015.

[14] Y. Wang, X. Zhang, X. Hu, B. Zhang, and H. Su. Dynamic Network
Pruning with Interpretable Layerwise Channel Selection. Proceedings of
the AAAI Conference on Artificial Intelligence, 34(04):6299–6306, Apr.
2020.

[15] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing Energy-Efficient
Convolutional Neural Networks Using Energy-Aware Pruning. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6071–6079, Honolulu, HI, July 2017. IEEE.


